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Abstract

In this paper, we establish some formulas for the noncentral Tanny-Dowling poly-
nomials, such as sums of products and explicit formulas. Some special cases are also
presented and discussed.

1 Introduction

The geometric polynomials [19], denoted by w,(x), are defined by

w(z) = ;k'{g}xk (1)

where {Z} are the celebrated Stirling numbers of the second kind [7, 18]. These polynomials
are known to satisfy the exponential generating function

> 2" 1
;w”(x)ﬁ T 1 z(er — 1) (2)
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and the recurrence relation [9, Proposition 7]

Waan() = 2o (1, (x) + 2000 (2)) (3)

The case when x = 1 yields
- n
wy, = w,(1) = k! , 4
(1) kEO { k} (4)

the geometric numbers (or ordered Bell numbers) whose values form the sequence A000670.
Recall that the numbers {Z} count the number of partitions of a set X with n elements
into k& non-empty subsets. These numbers can also be interpreted as the number of ways
to distribute n distinct objects into k identical boxes such that no box is empty. On the
other hand, the numbers k"{Z} can be combinatorially interpreted as the number of distinct
ordered partitions of X with k£ blocks, or the numbers of ways to distribute n distinct objects
into k distinct boxes. It follows immediately that the geometric numbers count the number
of distinct ordered partitions of the n-set X.

The study of geometric polynomials and numbers has a long history. Aside from the
work of Tanny [19], one may also see the papers written by Boyadzhiev [4], Dil and Kurt
9], Boyadzhiev and Dil [5], Kargin and Corcino [12], and the references therein for further
readings. Benoumbhani [3] studied two equivalent generalizations of w, (x) given by

Fa(niz) =Y m kW, (n, k)z* (5)
k=0
and .
Fna(niz) =Y KWo(n, k), (6)
k=0

where W, (n, k) denote the Whitney numbers of the second kind of Dowling lattices [2].
These are called Tanny-Dowling polynomials and are known to satisfy the following expo-
nential generating functions:

n

Z Foa(n; x)z— ¢
n=0

z

(7)

nl — 1—a(ems — 1)
> zZ" e
Franyz)— = - ) (8)
; n! 1— E(emz - 1)

More properties can be seen in [2, 3]. In a recent paper, Kargn [10] established a number
of explicit formulas and formulas involving products of geometric polynomials, viz.

n

4D () ur(ohns(o) = was(o) + ). )

k=0
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n (n> ol seg) = Town (22) — $1wn(x1)’ (10)

To — 1

wy () = x; {Z}(—l)"+kk!(x+ 1k (11)

and

“(n 2" (x + D)2k 4 (—1)F!
wy(x) = kZ:O {k}k!xk ( o l 1>k+<1 ) . (12)

These results were obtained by Kargin [10] with the aid of the two-variable geometric poly-
nomials wy(r; z) defined by

Tz

gown(r;x);—r; T 1= xiez —-1) (13)

A natural generalization of F,, (n;z) and F, 2(n;x) are the noncentral Tanny-Dolwing
polynomials introduced by Mangontarum et al. [15] defined as

fm,a(n; T) = Z k!Wm,a(n, k)ak, (14)

k=0

where Wmva(n, k) are the noncentral Whitney numbers of the second kind. The polynomials
Fm.a(n; x) satisfy the exponential generating function given by [15, Theorem 18]

me_aZ
m—z(em —1)

o0 " Zn
> Fonaln: ) = (15)
n==k

Looking at (15), it is readily observed that

~ n l’
Fmo(n;z) =m" w, <m> ,
]—:.m,fl(n; .Z’) = Fm,2<n; I)?
and _
Fi_r(n;z) = wy(r, z).

The numbers Wm,a(n, k) admit a variety of combinatorial properties which can be seen in
[15]. One of these properties is the triangular recurrence relation [15, Proposition §]

—~

Wina(n + 1, k) = Wia(n,k — 1) + (mk — a)Wyo(n, k) (16)



with Wmﬂ(n, 0) = (—a)" and /vaﬂ(n,k) = 1 when k = n. Using this recurrence relation,
the following noncentral Tanny-Dowling polynomials can be derived for n = 0,1,2, 3, 4:

;1) = 627 —|—2(3m—a)a: —|—( maZ)x—a3

+(m —2m*a + 2ma® — 2a*)x + a*.

These noncentral Whitney numbers of the second kind appear to be a common generalization
of {Z} and W,,(n, k), as well as other notable numbers reported by the respective authors
n [1, 6, 13, 14, 16]. It is important to note that the noncentral Whitney numbers of the
second kind are equivalent to the (r, 3)-Stirling numbers by Corcino [8] and the r-Whitney
numbers of the second kind by Mezé [17]. On the other hand, the higher order generalized
geometric polynomials, an even more generalized polynomial, were introduced in the paper of
Kargin and Corcino [11]. However, the said polynomials and the noncentral Tanny-Dolwing
polynomials were defined using different motivations. Moreover, the results obtained in this
paper do not appear as particular cases of the ones seen in [11].

In the present paper, we establish some formulas for the noncentral Tanny-Dowling poly-
nomials such as sums of products and explicit formulas. These formulas are shown to gener-
alize the above-mentioned identities obtained by Kargim [10] for the geometric polynomials
when the parameters are assigned with specific values. We also discuss some other identities
resulting from the said formulas.

2 Formulas for sum of products

Now the exponential generating function in (15) can be rewritten as

— = 2" 1 —az

Hence, by applying (2) and using Cauchy’s product for two series, we obtain

Z]—"ma n; ) Zm Wy, (—) 7”: i}(—a)”%

z (@) o)

Comparing the coefficients of %T,L yields the result in the next theorem.
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Theorem 1. The noncentral Tanny-Dowling polynomaials fmva(n;x) satisfy the following

identity: .
Frt= (oG

Alternative proof of Theorem 1. From [15, Theorem 10], the noncentral Whitney numbers of
the second kind satisfy the following formula in terms of the Stirling numbers of the second

kind: . _
ot (0)or )

j=0
Multiplying both sides by k!lz* and summing over k gives the desired result. O]
Before proceeding, we see that when m = 1 and a = —r, (17) becomes

n

R A

k=0

which is precisely an identity obtained by Kargin [10, Equation (13)].
By applying the exponential generating function in (15),

n —(a—m)z

i (fm,a—m(n;m) — Fna(ns $)> 2 me - me

| _ mz __ _ mz __
— nl m—x(e 1) m—uxe 1)

—az

:@Z]:manwi_ ;% il
S )

Comparing the coefficients of Z—T,L gives

Fina-m(n;2) = Fna(ni ) = = <J?m,a(n; T) — (—a)”) .

x
The result in the next theorem follows by solving for x]f"m,a_m(n; x).

Theorem 2. The noncentral Tanny-Dowling polynomials ]?m,a(n;:v) satisfy the following
recurrence relation:

x]?m7a_m(n;x) = (m+x)Fnan;z) — (—a)"m. (18)



Setting m = 1 and a = —r in (18) gives
ZL‘%L_T_l(TL; x)=(1+ x)]?lv_r(n; x)—r"
which is exactly the following identity [10, Equation (14)]:
zw,(r+ 1;z) = (1 4+ 2)w,(r;x) — ",

On the other hand, when a = 0 and a = m in (18), we get

x]?m,_m(n; x) = (m+ z)m"w, (£> (19)
m
and .
(m+ @) Fop (03 2) = amw, () = (=m)™+, (20)
m
respectively. Substituting (17) to the right hand sides of these equations yields

55 (o (2) = s (2) o

k=

and
(m + x) Z_: (Z) W (%) (—1)"* = 2w, (%) —m(=1)"" (22)

These identities are generalizations of the results obtained by Dil and Kurt [9, Proposition
3] using the Euler-Seidel matrix method and by Kargin [10, Equations (8) and (9)]. That is,
setting x = 1 and m = 1 gives

and 2; <Z> (=D *wg = (=1)"w, + 1.

The next theorem contains a formula for the sum of product of noncentral Tanny-Dowling
polynomials for different values of a.

Theorem 3. The noncentral Tanny-Dowling polynomaials satisfy the following relation:
: Z ( ) )P ki) = Pl 4 1)+ A pari). (23

where A = a1 + as + m for real numbers a, and as.



Proof. We start by taking the derivative of (15) with respect to z. That is,

0 ( me~% me~% rme™ ame %
) m

9z \m — x(em* — —z(em —1) m—a(em —1) m—ax(em —1)

Replacing a with A = a1 + as, + m yields

0 me=A
&(m—l‘(emz— )> Z‘FmAn+1 ZL‘)

n==k

7’L
n!

in the left-hand side while we get

me=4% rme? me 417 me” 2%

m—z(em —1) m—z(em —1) m—z(e™ —1) m— (e — 1)

n

- xzz (k)fmm(k;a”)]:m,ag(n — k:,:z;)m

and B
—Az

z"
n!

in the right-hand side. Combining the above equations and comparing the coefficients of
gives the desired result. D

When a; = as =0 in (23),

om Z() (DY i (2) = ol +1:2) 4 mF (i)

Applying (20) to the right-hand side of this equation gives

vm Z ( ) ( )wn K <x> _ e wn () - (cm)? | amw, (2) — (—m)m*!

m—+x m—+x

which can be simplified into the following identity:

S (o (B (2 e () e (2) e

Obviously, this identity boils down to the result obtained by Kargin [10] in (9) when m = 1.

Theorem 4. For xy # x5, the following formula holds:

n

3 (n) Fos (3 00) B (1 b ) = 22T menea(002) = D Fmanten (01) o

k Ty — X
k=0 2 1
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Proof. Note that we can write

m—xa(em* —1)  m—x(em® —1)

me~ 4% me~%2% 1 < xome(@11a2)2 ryme(@1tan)z )

m—axi(em —1) m—axo(em* —1) a9 —x
Following the same method used in the previous theorem leads us to the desired result. [J

This theorem contains a formula for the sums of products of noncentral Tanny-Dowling
polynomials for different values of z. When a; = ay = 0, (25) reduces to

> (1) (5w (2) - el e ) 0

It is clear to see that when m = 1, we recover the sum of products of geometric polynomials
in (10).

3 Explicit formulas

In Theorem 1, we obtained an explicit formula that expresses the noncentral Tanny-Dowling
polynomials in terms of the geometric polynomials. Now, with g, = a%fmﬁa(n;x) and

fi= (%)j w; (ﬁ), the binomial inversion formula
n n n i n
j=0 J Jj=0 J

allows us to express the geometric polynomials w,, (%) in terms of the noncentral Tanny-
Dowling polynomials as follows:

wn (L) =L Z (j) @ F ol 1), (28)

In this section, we will derive more explicit formulas for both polynomials.
Using  — m in place of = in (15) gives

Zn me_(_a_m)(_z)

iﬁm@(n; T — m)—' =
n=k

n! m-+zx(em* —1)

(=2)"

n!

- iﬁm,—a—m(n; _I)
n=~k

By comparing the coefficients of %, we get

Fma(n;z —m) = (=1)" Fop —a—m(n; —z). (29)
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Applying (18) to the right-hand side gives

Funalnsz —m) = (=1)" <(m — ) Fm,—a(n; —2) — anm) |

—x
Replacing —x and —a with z and a, respectively, and solving for fm@(n; x) yields

Fona(n;z) = (=12 Fon o =z — m) + (—a)nm'

m-+x
By (14), we get the next theorem.

Theorem 5. The noncentral Tanny-Dowling polynomials satisfy the following explicit for-

mula:
(—a)"m

Fa(niz) =2 (=1 R, _o(n, k) (m + )" + (30)

Setting a = 0 in Wm,a(n, k) allows us to express the noncentral Whitney numbers of the
second kind in terms of {}}. More precisely, when a = 0 in [15, Proposition 7], we can see

that
Wm,o (n,k) = mn " {Z} )

Thus, (30) becomes

un (£) =23 CLZE L e e

m mk
k=0

when a = 0. Furthermore, when m = 1, we recover the explicit formula in (11). The
expression m”*k{’,;‘} is actually called translated Whitney numbers of the second kind and

is denoted by {Z}(m). These numbers satisfy the recurrence relation given by [1, Theorem 8]

™ (-1 (m)+ -1 (m)
T k=1 TRk

and the explicit formula [16, Proposition 2]

(i} = (o

More properties of these numbers can be seen in [14]. With these, we may also write

wn (%) — %Zn:(_mw!{;l}(m)(m+x)k-1, (32)

k=0
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an explicit formula for the geometric polynomials w,, (%) in terms of the translated Whitney
numbers of the second kind.
Now it can be shown that

y2 -1 ( e—a(2z) e—a(2z) > 6—a(2z)
_|._
2y Yy — emz Y + emz

Notice that the right-hand side is

—a(2z) —a(2z)

€ me

1— (ﬁ) (em(QZ)—l) m — <y2n11> (em(2z)—1)
= Z Q”ﬁm,a (n; _2m ) =
! y2—1) nl!

Also, in the left-hand side, we have

n

—a(2z) 1 >

(& m z
= fm a )

y—em: y—lgg ’Q(Hy—1>‘

and

—a(2z) 1 > _ n

(& m z
- Fm a ; :

Y+ em= y+1nz:% ? (n y+1> n!

Combining these equations and comparing the coefficients of ‘;—7: results to

~ 1~ — 1 ~ _
2n+1fma n; o :y+ ~F.m2a n; o +y fm2a na—m .
’ y*—1 y ’ y—1 y ’ y+1

Note that if we set © = 2 then y = ™. Hence, skipping the tedious computations allow
y—1 T

us to write

(m + 22) Fruoa(n; z) = 24 (m + 2) F, n; i —mF, n; — %
m,2a\ 't - m,a ) m+ or m,2a 3 m —+ 2 .

The next theorem is obtained by applying (14).

Theorem 6. The noncentral Tanny-Dowling polynomials satisfy the following explicit for-
mula:

~ = 2 (m, + 2)2F Wi a(n, k) + (—m)F W, 00 (0, k)
. o k m,a 9 m,2a 9
Fmoa(n;z) = g klx ( (m & 20)71 .
k=0

(33)
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Since it is already known that /vap(n, k) = {Z}(m), then the right-hand side can be

expressed in terms of the translated Whitney numbers of the second kind when a = 0. That

is,
n (m) n+1 k k+1
T 1 n 2" (m + x)a® + (—m)
2y - Ik . 4
tn <m> m"kZ:ka {k} ( (m + 2x)k+ (34)

Lastly, we recover the explicit formula in (12) when m = 1.

Finally, we will conclude this paper by mentioning an explicit formula for J%mﬁa(n;x)
established in [15, Theorem 19] that is given by

Fnalniz) = — f:( ‘ )k(mk—a)”. (35)

m+x m—+x
trig \m+

This explicit formula entails interesting particular cases. For instance, when a = 0,

o () =i () )

k=0

When m = 1 and then x = 1, we get formulas for the ordinary geometric polynomials and

numbers. That is,
 — T F n
wp(T) = P E (x—l— 1) k (37)

k=0

and
[ee]

kTL
Wn = Z k41" (38)

k=0
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