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Abstract

In this paper, we establish some formulas for the noncentral Tanny-Dowling poly-

nomials, such as sums of products and explicit formulas. Some special cases are also

presented and discussed.

1 Introduction

The geometric polynomials [19], denoted by wn(x), are defined by

wn(x) =
n∑

k=0

k!

{
n

k

}
xk, (1)

where
{
n

k

}
are the celebrated Stirling numbers of the second kind [7, 18]. These polynomials

are known to satisfy the exponential generating function

∞∑

n=0

wn(x)
zn

n!
=

1

1− x(ez − 1)
(2)
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and the recurrence relation [9, Proposition 7]

wn+1(x) = x
d

dx
(wn(x) + xwn(x)) . (3)

The case when x = 1 yields

wn := wn(1) =
n∑

k=0

k!

{
n

k

}
, (4)

the geometric numbers (or ordered Bell numbers) whose values form the sequence A000670.
Recall that the numbers

{
n

k

}
count the number of partitions of a set X with n elements

into k non-empty subsets. These numbers can also be interpreted as the number of ways
to distribute n distinct objects into k identical boxes such that no box is empty. On the
other hand, the numbers k!

{
n

k

}
can be combinatorially interpreted as the number of distinct

ordered partitions of X with k blocks, or the numbers of ways to distribute n distinct objects
into k distinct boxes. It follows immediately that the geometric numbers count the number
of distinct ordered partitions of the n-set X.

The study of geometric polynomials and numbers has a long history. Aside from the
work of Tanny [19], one may also see the papers written by Boyadzhiev [4], Dil and Kurt
[9], Boyadzhiev and Dil [5], Kargın and Corcino [12], and the references therein for further
readings. Benoumhani [3] studied two equivalent generalizations of wn(x) given by

Fm,1(n; x) =
n∑

k=0

mkk!Wm(n, k)x
k (5)

and

Fm,2(n; x) =
n∑

k=0

k!Wm(n, k)x
k, (6)

where Wm(n, k) denote the Whitney numbers of the second kind of Dowling lattices [2].
These are called Tanny-Dowling polynomials and are known to satisfy the following expo-
nential generating functions:

∞∑

n=0

Fm,1(n; x)
zn

n!
=

ez

1− x(emz − 1)
, (7)

∞∑

n=0

Fm,2(n; x)
zn

n!
=

ez

1− x
m
(emz − 1)

. (8)

More properties can be seen in [2, 3]. In a recent paper, Kargın [10] established a number
of explicit formulas and formulas involving products of geometric polynomials, viz.

(x+ 1)
n∑

k=0

(
n

k

)
wk(x)wn−k(x) = wn+1(x) + wn(x), (9)
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n∑

k=0

(
n

k

)
wk(x1)wn−k(x2) =

x2wn(x2)− x1wn(x1)

x2 − x1

, (10)

wn(x) = x

n∑

k=1

{
n

k

}
(−1)n+kk!(x+ 1)k−1, (11)

and

wn(x) =
n∑

k=0

{
n

k

}
k!xk 2

n+1(x+ 1)xk + (−1)k+1

(2x+ 1)k+1
. (12)

These results were obtained by Kargın [10] with the aid of the two-variable geometric poly-
nomials wk(r; x) defined by

∞∑

n=0

wn(r; x)
zn

n!
=

erz

1− x(ez − 1)
. (13)

A natural generalization of Fm,1(n; x) and Fm,2(n; x) are the noncentral Tanny-Dolwing
polynomials introduced by Mangontarum et al. [15] defined as

F̃m,a(n; x) =
n∑

k=0

k!W̃m,a(n, k)x
k, (14)

where W̃m,a(n, k) are the noncentral Whitney numbers of the second kind. The polynomials

F̃m,a(n; x) satisfy the exponential generating function given by [15, Theorem 18]

∞∑

n=k

F̃m,a(n; x)
zn

n!
=

me−az

m− x(emz − 1)
. (15)

Looking at (15), it is readily observed that

F̃m,0(n; x) = mnwn

( x

m

)
,

F̃m,−1(n; x) = Fm,2(n; x),

and
F̃1,−r(n; x) = wn(r, x).

The numbers W̃m,a(n, k) admit a variety of combinatorial properties which can be seen in
[15]. One of these properties is the triangular recurrence relation [15, Proposition 8]

W̃m,a(n+ 1, k) = W̃m,a(n, k − 1) + (mk − a)W̃m,a(n, k) (16)
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with W̃m,a(n, 0) = (−a)n and W̃m,a(n, k) = 1 when k = n. Using this recurrence relation,
the following noncentral Tanny-Dowling polynomials can be derived for n = 0, 1, 2, 3, 4:

F̃m,a(0; x) = 1

F̃m,a(1; x) = x− a

F̃m,a(2; x) = 2x2 +mx+ a2

F̃m,a(3; x) = 6x3 + 2(3m− a)x2 + (m2 −ma2a)x− a3

F̃m,a(4; x) = 24x4 + 6(6m− 2a)x3 + 2(7m2 − 6ma+ 2a2)x2

+ (m3 − 2m2a+ 2ma2 − 2a3)x+ a4.

These noncentral Whitney numbers of the second kind appear to be a common generalization
of
{
n

k

}
and Wm(n, k), as well as other notable numbers reported by the respective authors

in [1, 6, 13, 14, 16]. It is important to note that the noncentral Whitney numbers of the
second kind are equivalent to the (r, β)-Stirling numbers by Corcino [8] and the r-Whitney
numbers of the second kind by Mező [17]. On the other hand, the higher order generalized
geometric polynomials, an even more generalized polynomial, were introduced in the paper of
Kargın and Corcino [11]. However, the said polynomials and the noncentral Tanny-Dolwing
polynomials were defined using different motivations. Moreover, the results obtained in this
paper do not appear as particular cases of the ones seen in [11].

In the present paper, we establish some formulas for the noncentral Tanny-Dowling poly-
nomials such as sums of products and explicit formulas. These formulas are shown to gener-
alize the above-mentioned identities obtained by Kargın [10] for the geometric polynomials
when the parameters are assigned with specific values. We also discuss some other identities
resulting from the said formulas.

2 Formulas for sum of products

Now the exponential generating function in (15) can be rewritten as

∞∑

n=0

F̃m,a(n; x)
zn

n!
=

1

1− x
m
(emz − 1)

· e−az.

Hence, by applying (2) and using Cauchy’s product for two series, we obtain

∞∑

n=0

F̃m,a(n; x)
zn

n!
=

∞∑

n=0

mnwn

( x

m

) zn

n!

∞∑

n=0

(−a)n
zn

n!

=
∞∑

n=0

(
n∑

k=0

(
n

k

)
wk

( x

m

)
mk(−a)n−k

)
zn

n!
.

Comparing the coefficients of zn

n!
yields the result in the next theorem.
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Theorem 1. The noncentral Tanny-Dowling polynomials F̃m,a(n; x) satisfy the following

identity:

F̃m,a(n; x) =
n∑

k=0

(
n

k

)
mkwk

( x

m

)
(−a)n−k. (17)

Alternative proof of Theorem 1. From [15, Theorem 10], the noncentral Whitney numbers of
the second kind satisfy the following formula in terms of the Stirling numbers of the second
kind:

W̃m,a(n, k) =
n∑

j=0

(
n

j

)
(−a)n−jmj−k

{
j

k

}
.

Multiplying both sides by k!xk and summing over k gives the desired result.

Before proceeding, we see that when m = 1 and a = −r, (17) becomes

F̃1,−r(n; x) =
n∑

k=0

(
n

k

)
wk(x)r

n−k := wn(r; x),

which is precisely an identity obtained by Kargın [10, Equation (13)].
By applying the exponential generating function in (15),

∞∑

n=0

(
F̃m,a−m(n; x)− F̃m,a(n; x)

) zn

n!
=

me−(a−m)z

m− x(emz − 1)
−

me−az

m− x(emz − 1)

=
m

x

(
me−az

m− x(emz − 1)
− e−az

)

=
m

x

∞∑

n=0

F̃m,a(n; x)
zn

n!
−

∞∑

n=0

(−a)n
zn

n!

=
∞∑

n=0

m

x

(
F̃m,a(n; x)− (−a)n

) zn

n!
.

Comparing the coefficients of zn

n!
gives

F̃m,a−m(n; x)− F̃m,a(n; x) =
m

x

(
F̃m,a(n; x)− (−a)n

)
.

The result in the next theorem follows by solving for xF̃m,a−m(n; x).

Theorem 2. The noncentral Tanny-Dowling polynomials F̃m,a(n; x) satisfy the following

recurrence relation:

xF̃m,a−m(n; x) = (m+ x)F̃m,a(n; x)− (−a)nm. (18)
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Setting m = 1 and a = −r in (18) gives

xF̃1,−r−1(n; x) = (1 + x)F̃1,−r(n; x)− rn

which is exactly the following identity [10, Equation (14)]:

xwn(r + 1; x) = (1 + x)wn(r; x)− rn.

On the other hand, when a = 0 and a = m in (18), we get

xF̃m,−m(n; x) = (m+ x)mnwn

( x

m

)
(19)

and
(m+ x)F̃m,m(n; x) = xmnwn

( x

m

)
− (−m)n+1, (20)

respectively. Substituting (17) to the right hand sides of these equations yields

x

n∑

k=0

(
n

k

)
wk

( x

m

)
= (m+ x)wn

( x

m

)
(21)

and

(m+ x)
n∑

k=0

(
n

k

)
wk

( x

m

)
(−1)n−k = xwn

( x

m

)
−m(−1)n+1. (22)

These identities are generalizations of the results obtained by Dil and Kurt [9, Proposition
3] using the Euler-Seidel matrix method and by Kargın [10, Equations (8) and (9)]. That is,
setting x = 1 and m = 1 gives

n∑

k=0

(
n

k

)
wk = 2wn

and

2
n∑

k=0

(
n

k

)
(−1)kwk = (−1)nwn + 1.

The next theorem contains a formula for the sum of product of noncentral Tanny-Dowling
polynomials for different values of a.

Theorem 3. The noncentral Tanny-Dowling polynomials satisfy the following relation:

x

n∑

k=0

(
n

k

)
F̃m,a1(k; x)F̃m,a2(n− k; x) = F̃m,Ā(n+ 1; x) + ĀF̃m,Ā(n; x), (23)

where Ā = a1 + a2 +m for real numbers a1 and a2.
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Proof. We start by taking the derivative of (15) with respect to z. That is,

∂

∂z

(
me−az

m− x(emz − 1)

)
=

me−az

m− x(emz − 1)
·

xmemz

m− x(emz − 1)
−

ame−az

m− x(emz − 1)
.

Replacing a with Ā = a1 + a2 +m yields

∂

∂z

(
me−Āz

m− x(emz − 1)

)
=

∞∑

n=k

F̃m,Ā(n+ 1; x)
zn

n!

in the left-hand side while we get

me−Āz

m− x(emz − 1)
·

xmemz

m− x(emz − 1)
=

me−a1z

m− x(emz − 1)
·

me−a2z

m− x(emz − 1)

= x

∞∑

n=k

n∑

k=0

(
n

k

)
F̃m,a1(k; x)F̃m,a2(n− k; x)

zn

n!

and
Āme−Āz

m− x(emz − 1)
= Ā ·

∞∑

n=k

F̃m,Ā(n; x)
zn

n!

in the right-hand side. Combining the above equations and comparing the coefficients of zn

n!

gives the desired result.

When a1 = a2 = 0 in (23),

xmn

n∑

k=0

(
n

k

)
wk

( x

m

)
wn−k

( x

m

)
= F̃m,m(n+ 1; x) +mF̃m,m(n; x).

Applying (20) to the right-hand side of this equation gives

xmn

n∑

k=0

(
n

k

)
wk

( x

m

)
wn−k

( x

m

)
=

xmn+1wn+1

(
x
m

)
− (−m)n+2

m+ x
+m

xmnwn

(
x
m

)
− (−m)n+1

m+ x

which can be simplified into the following identity:

m+ x

m

n∑

k=0

(
n

k

)
wk

( x

m

)
wn−k

( x

m

)
= wn+1

( x

m

)
+ wn

( x

m

)
. (24)

Obviously, this identity boils down to the result obtained by Kargın [10] in (9) when m = 1.

Theorem 4. For x1 6= x2, the following formula holds:

n∑

k=0

(
n

k

)
F̃m,a1(k; x1)F̃m,a2(n− k; x2) =

x2F̃m,a1+a2(n; x2)− x1F̃m,a1+a2(n; x1)

x2 − x1

. (25)
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Proof. Note that we can write

me−a1z

m− x1(emz − 1)
·

me−a2z

m− x2(emz − 1)
=

1

x2 − x1

(
x2me−(a1+a2)z

m− x2(emz − 1)
−

x1me−(a1+a1)z

m− x1(emz − 1)

)
.

Following the same method used in the previous theorem leads us to the desired result.

This theorem contains a formula for the sums of products of noncentral Tanny-Dowling
polynomials for different values of x. When a1 = a2 = 0, (25) reduces to

n∑

k=0

(
n

k

)
wk

(x1

m

)
wn−k

(x2

m

)
=

x2wn

(
x2

m

)
− x1wn

(
x1

m

)

x2 − x1

. (26)

It is clear to see that when m = 1, we recover the sum of products of geometric polynomials
in (10).

3 Explicit formulas

In Theorem 1, we obtained an explicit formula that expresses the noncentral Tanny-Dowling
polynomials in terms of the geometric polynomials. Now, with gn = 1

an
F̃m,a(n; x) and

fj =
(
m
a

)j
wj

(
x
m

)
, the binomial inversion formula

fn =
n∑

j=0

(
n

j

)
gj ⇐⇒ gn =

n∑

j=0

(−1)n−j

(
n

j

)
fj (27)

allows us to express the geometric polynomials wn

(
x
m

)
in terms of the noncentral Tanny-

Dowling polynomials as follows:

wn

( x

m

)
=

1

mn

n∑

j=0

(
n

j

)
an−jF̃m,a(j; x). (28)

In this section, we will derive more explicit formulas for both polynomials.
Using x−m in place of x in (15) gives

∞∑

n=k

F̃m,a(n; x−m)
zn

n!
=

me−(−a−m)(−z)

m+ x(e−mz − 1)

=
∞∑

n=k

F̃m,−a−m(n;−x)
(−z)n

n!
.

By comparing the coefficients of zn

n!
, we get

F̃m,a(n; x−m) = (−1)nF̃m,−a−m(n;−x). (29)
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Applying (18) to the right-hand side gives

F̃m,a(n; x−m) = (−1)n

(
(m− x)F̃m,−a(n;−x)− anm

−x

)
.

Replacing −x and −a with x and a, respectively, and solving for F̃m,a(n; x) yields

F̃m,a(n; x) =
(−1)nxF̃m,−a(n;−x−m) + (−a)nm

m+ x
.

By (14), we get the next theorem.

Theorem 5. The noncentral Tanny-Dowling polynomials satisfy the following explicit for-

mula:

F̃m,a(n; x) = x

n∑

k=0

(−1)n+kk!W̃m,−a(n, k)(m+ x)k−1 +
(−a)nm

m+ x
. (30)

Setting a = 0 in W̃m,a(n, k) allows us to express the noncentral Whitney numbers of the
second kind in terms of

{
n

k

}
. More precisely, when a = 0 in [15, Proposition 7], we can see

that

W̃m,0(n, k) = mn−k

{
n

k

}
.

Thus, (30) becomes

wn

( x

m

)
= x

n∑

k=0

(−1)n+kk!

mk

{
n

k

}
(m+ x)k−1 (31)

when a = 0. Furthermore, when m = 1, we recover the explicit formula in (11). The
expression mn−k

{
n

k

}
is actually called translated Whitney numbers of the second kind and

is denoted by
{
n

k

}(m)
. These numbers satisfy the recurrence relation given by [1, Theorem 8]

{
n

k

}(m)

=

{
n− 1

k − 1

}(m)

+mk

{
n− 1

k

}(m)

and the explicit formula [16, Proposition 2]

{
n

k

}(m)

=
1

mkk!

k∑

j=0

(−1)k−j

(
k

j

)
(mj)n.

More properties of these numbers can be seen in [14]. With these, we may also write

wn

( x

m

)
=

x

mn

n∑

k=0

(−1)n+kk!

{
n

k

}(m)

(m+ x)k−1, (32)
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an explicit formula for the geometric polynomials wn

(
x
m

)
in terms of the translated Whitney

numbers of the second kind.
Now it can be shown that

y2 − 1

2y

(
e−a(2z)

y − emz
+

e−a(2z)

y + emz

)
=

e−a(2z)

1−
(

1
y2−1

)
(em(2z)−1)

.

Notice that the right-hand side is

e−a(2z)

1−
(

1
y2−1

)
(em(2z)−1)

=
me−a(2z)

m−
(

m
y2−1

)
(em(2z)−1)

=
∞∑

n=0

2nF̃m,a

(
n;

m

y2 − 1

)
zn

n!
.

Also, in the left-hand side, we have

e−a(2z)

y − emz
=

1

y − 1

∞∑

n=0

F̃m,2a

(
n;

m

y − 1

)
zn

n!

and
e−a(2z)

y + emz
=

1

y + 1

∞∑

n=0

F̃m,2a

(
n;

−m

y + 1

)
zn

n!
.

Combining these equations and comparing the coefficients of zn

n!
results to

2n+1F̃m,a

(
n;

m

y2 − 1

)
=

y + 1

y
F̃m,2a

(
n;

m

y − 1

)
+

y − 1

y
F̃m,2a

(
n;

−m

y + 1

)
.

Note that if we set x = m
y−1

, then y = m+x
x

. Hence, skipping the tedious computations allow
us to write

(m+ 2x)F̃m,2a(n; x) = 2n+1(m+ x)F̃m,a

(
n;

x2

m+ 2x

)
−mF̃m,2a

(
n;

−mx

m+ 2x

)
.

The next theorem is obtained by applying (14).

Theorem 6. The noncentral Tanny-Dowling polynomials satisfy the following explicit for-

mula:

F̃m,2a(n; x) =
n∑

k=0

k!xk

(
2n+1(m+ x)xkW̃m,a(n, k) + (−m)k+1W̃m,2a(n, k)

(m+ 2x)k+1

)
. (33)
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Since it is already known that W̃m,0(n, k) =
{
n

k

}(m)
, then the right-hand side can be

expressed in terms of the translated Whitney numbers of the second kind when a = 0. That
is,

wn

( x

m

)
=

1

mn

n∑

k=0

k!xk

{
n

k

}(m)(
2n+1(m+ x)xk + (−m)k+1

(m+ 2x)k+1

)
. (34)

Lastly, we recover the explicit formula in (12) when m = 1.

Finally, we will conclude this paper by mentioning an explicit formula for F̃m,a(n; x)
established in [15, Theorem 19] that is given by

F̃m,a(n; x) =
m

m+ x

∞∑

k=0

(
x

m+ x

)k

(mk − a)n. (35)

This explicit formula entails interesting particular cases. For instance, when a = 0,

wn

( x

m

)
=

m

m+ x

∞∑

k=0

(
x

m+ x

)k

kn. (36)

When m = 1 and then x = 1, we get formulas for the ordinary geometric polynomials and
numbers. That is,

wn(x) =
1

x+ 1

∞∑

k=0

(
x

x+ 1

)k

kn (37)

and

wn =
∞∑

k=0

kn

2k+1
. (38)
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