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Abstract

We present a formula for the number of antichains consisting of m subsets of a

labeled n-element set, as well as a formula for the number of all m-antichain covers

of a labeled n-element set. We also give a simple formula for the number of antichain

covers that are composed of sets of the same cardinality.

1 Introduction and preliminaries

In 1897 Dedekind [7] formulated the following question:

Question 1. What is the number of antichains in the power set Pn of an n-element set
(ordered by inclusion)?

Dedekind’s problem and the related problem of determining the number of all antichain
covers of a labeled n-element set remained unsolved for a long time [20]. These are very
difficult—and still baffling—counting problems. Before we formulate these problems pre-
cisely, let us define some necessary and fundamental notions.

Definition 2. [21, Def. 1.1.1, p. 2] An ordered set (or partially ordered set or poset) is an
ordered pair (P,≤) of a set P and a binary relation ≤ contained in P × P , called the order
(or the partial order) on P , such that:
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1. The relation ≤ is reflexive, i.e., ∀p∈P (p ≤ p).

2. The relation ≤ is antisymmetric, that is,

∀p,q∈P

((
(p ≤ q) ∧ (q ≤ p)

)
=⇒ p = q

)

.

3. The relation ≤ is transitive, i.e.,

∀p,q,r∈P

((
(p ≤ q) ∧ (q ≤ r)

)
=⇒ p ≤ r

)

.

The power set Pn of an n-element set with the inclusion ⊆ relation is an example of an
order set. Another key notion is an antichain defined as follows:

Definition 3. [21, Def. 2.5.1, p. 36] An ordered set P is called an antichain iff

∀p,q∈P (p 6= q) =⇒ (¬p ≤ q ∧ ¬q ≤ p).

Now we can define the n-th Dedekind number and related numbers.

Definition 4. [21, Def. 2.6.2, p. 39] Let n ∈ N. We define

1. The n-th Dedekind number Dn to be the number of antichains in Pn.

2. Tn to be the number of antichain covers of a labeled n-element set, i.e., the number of
antichains in P({1, . . . , n}) such that the union of these antichains is {1, . . . , n}.

Since the empty set is an antichain, we obtain straightforwardly: D0 = T0 = 1, D1 = 2,
and T1 = 1. Hitherto only nine initial values of numbers Dn and Tn have been deter-
mined. They are listed in the On-Line Encyclopedia of Integer Sequences [22] as A000372
and A006126, respectively. Dedekind’s problem, in turn, is equivalent to the problem of
determining the number of elements in the free bounded distributive lattice on n generators
which is the same as the number of monotone Boolean functions in n arguments. Tn is
defined primarily in the On-Line Encyclopedia of Integer Sequences as the number of hier-
archical models on n labeled factors or variables with linear terms forced. Kilibarda and
Janovic [11] obtained the antichain cover interpretation of A006126.

An approach to solving Dedekind’s problem and related problems is to break the problem
into smaller subproblems. There is a simple relation between Dn and Tn.

Proposition 5. [21, Prop. 2.6.3, p. 40]

Dn =
n∑

k=0

(
n

k

)

Tk. (1)

Any antichain (cover) in Pn is a Sperner family. Therefore by Sperner’s theorem [23], for
every antichain (cover) C = {A1, . . . , Am} in Pn we have m ≤

(
n

⌊n/2⌋

)
, where ⌊x⌋ := max{k ∈

Z : k ≤ x} for any real number x ∈ R. It follows from the above considerations that if
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• Dm
n is the number of all m-element antichains in Pn

• Tm
n is the number of all m-element antichain covers (m-antichain covers) in Pn

then

Dn =

( n
⌊n/2⌋)
∑

m=0

Dm
n and Tn =

( n
⌊n/2⌋)
∑

m=0

Tm
n (2)

for all n ∈ N. The number T 2
n of all 2-antichain covers of a labeled n-element set coincides

with Stirling numbers of second kind S(n, 3) as one can see in Tables 1, 3, and 4 as well as
in the On-Line Encyclopedia of Integer Sequences [22] — the sequence A000392. Then T 2

n

can be easily determined by the following result.

Proposition 6. [21, Prop. 2.6.6, p. 40]

T 2
n =

1

2

n−1∑

k=1

(
n

k

)
(
2k − 1

)
, for all n ≥ 2. (3)

Similarly, numbers of 3-antichain and 4-antichain covers of a labeled n-set are listed in
the On-Line Encyclopedia of Integer Sequences [22] as the sequences A056046 and A056047,
respectively. Jovovic and Kilibarda [10] consider these sequences in detail. In particular,
they provide simple formulas for these sequences.

In contrast to the problem of determining Tn, Nelsen and Schmidt [19] relatively easily
enumerated the chains in the power set of X. Similarly, Macula [18] easily established the
number of all (proper) covers of an n-element set as well as the number of all (proper) covers
of length m of an n-element set, where 1 ≤ m ≤ 2n − 1. Clarke [6] considered this problem
more generally. In his approach, for a given n-element set X (n-set) and a positive integer
k, a k-cover of X is a collection of k (not necessarily distinct) subsets of X, whose union
is X. A k-cover is minimal if none of its proper subsets covers X. There are four cases to
consider: the element of X may be taken to be identical (X is unlabeled) or distinguishable
(X is labeled); the order of the sets comprising the k-cover of X may (cover is ordered) or
may not be material (cover is disordered). Clarke quoted formulas derived by Hearne and
Wagner [9, 24] for the number of (minimal) ordered k-covers of a labeled n-set, the number
of ordered k-covers of an unlabeled n-set, and the number of (minimal) disordered k-covers
of a labeled n-set. Moreover, Clarke [6] presented and proved a formula for the number of
disordered k-covers of an unlabeled n-set.

Kisielewicz [14] proved that

Dn =
22

n

∑

k=1

∏

0≤i<j≤2n−1

(
1 − bki · b

k
j · f(i, j)

)
, (4)
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where bni = ⌊n/2i⌋ − 2⌊n/2i+1⌋ for any i, n ≥ 0, ⌊x⌋ := max{k ∈ Z : k ≤ x} for any real
number x ∈ R,

f(i, n) =

{

1, if i ∈ S(n);

0, otherwise;
=

{

1, if i = 0;
∏log2(i)

m=0

(
1 − bim + bimb

n
m

)
, for i ≥ 1;

and sets S(n) are defined recursively as follows:

S(0) = {0} and for n ≥ 0:

S(2n) = {2s : s ∈ S(n)}

S(2n + 1) = S(2n) ∪ {2s + 1: s ∈ S(n)}.

Church [4] computed the first six elements of the sequence A000372, Ward [25] determined
D6, Church [5] calculated D7, and Wiedemann [26] computed D8. In recent years, Bakoev,
Fidytek et al. [1, 8] tried to improve the computational time. Since obtaining the exact
values of Dedekind numbers and related numbers is a very challenging task, many authors
tried to determine upper bounds on the Dedekind numbers. In 1969 Kleitman [15] found an
upper bound on the logarithm of the Dedekind number. His result was next improved by
Kleitman and Markowsky [16] in 1975. In 1981, Korshunov [17] found more sophisticated
and accurate estimates. Kahn [12] simplified proofs of these estimates using an ‘entropy’
approach.

Baumann and Strass [2] proved that the number of bipolar Boolean functions in n argu-
ments is equal to

b(n) =
n∑

i=0

2i ·

(
n

i

)

· Ti

and the number of all monotone Boolean functions in n arguments is equal to Dn. A similar
result comes from [21, Prop. 2.6.7, p. 41].

Proposition 7. Let P be a finite ordered set. Then the number of antichains in P is equal
to the number of order-preserving maps from P into the two-element chain.

De Causmaecker and De Wannemacker [3] generalized Dedekind’s problem to analysis
of the number of antichains in intervals [α, β] = {χ ∈ AN : α ≤ χ ≤ β} in a completely
distributive lattice (AN ,∧,∨) for any α, β ∈ AN , where AN is the set of all antichains in
N ⊆ N. Moreover if N = {1, 2, . . . , n} then AN is denoted by An. Antichains α, β ∈ AN are
partly ordered as

α ≤ β ⇐⇒ ∀A∈α∃B∈β : A ⊆ B.

The operators ∧ and ∨ are called meet and join, respectively, and are defined in the following
way:

α ∨ β = max(α ∪ β), α ∧ β = max({A ∩ B : A ∈ α,B ∈ β})

The max-operator on an arbitrary set of sets produces an antichain containing only the
non dominated sets. For X ⊆ N , X− = {X \ {x} : x ∈ X} and for antichain α denote
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α− =
∨

X∈α X
− and α+ =

∨

X∈2N ,X−≤α{X}. For each interval [α, β] the underlying interval
poset of [α, β] is defined as follows

P[α,β] = ({X ⊆ N : α ∨ {X} ∈]α, β]},⊆).

Given an interval [α, β], with α < β so that P[α,β] 6= ∅, let l0 denote the size of the smallest
sets in P[α,β] and li = l0 + i. For any l ∈ N let λl = {X ∈ P[α,β] : |X| = l}. For χ ⊆ λl define
χ+ = {X ∈ λl+1 : X− ∩ λl ⊆ χ} and for l > l0, χ

− = {X− ∩ λl−1 : X ∈ χ}. De Causmaecker
and De Wannemacker [3] proved that with the above notation, for α ≤ β ∈ AN , the size of
the interval [α, β] is given by

|[α, β]| =
∑

χ0⊆λl0

∑

χ2⊆χ++

0

∑

χ4⊆χ++

2

· · · 2|χ+

0
|−|χ−

2
|+|χ+

2
|−|χ−

4
|... (5)

=
∑

χ1⊆λl1

∑

χ3⊆χ++

1

∑

χ5⊆χ++

3

· · · 2|λl0
|−|χ−

1
|+|χ+

1
|−|χ−

3
|... (6)

Let Bn ⊆ An denote a basic interval of dimension n, i.e.,

Bn = [{{1}, {2}, . . . , {n}}, {{1, 2, . . . , n}}].

Then from the well-known decomposition for the Dedekind numbers Dn = |An| =
n∑

k=0

|Bk|

and from (1) it follows that Tn = |Bn| for all natural numbers n. Thus both Tn and Dn can
be efficiently computed by (5) or (6) up to n = 6.

Kilibarda [13] presents another generalization of Dedekind’s problem. He defines an
antichain as a hypergraph satisfying the following property: for every pair of distinct edges,
neither one is a subset of the other. Kilibarda [13] enumerates antichains given on an n-
set having some of the following properties: being labeled or unlabeled; being ordered or
unordered; being a cover or a proper cover; and finally, being a T0-, T1- or T2-hypergraph.

The following part of this article is organized as follows. The second section is devoted
to the derivation of the new elegant result — Theorem 11, concerning numbers Dm

n and Tm
n

for all m,n ≥ 2 and m ≤
(

n
⌊n/2⌋

)
. This theorem is preceded by Example 10, which allows

easier comprehension of the intuition behind Theorem 11. Proof of Theorem 11 is divided
into four Lemmas 14–17 that explicitly and accurately explain the computational process to
obtain the formulae (39) and (40) from this theorem.

The third section concerns the number of covers of a labeled n-element set X with
antichains consisting of m equinumerous subsets of X.

The last section contains Example 20 demonstrating the use of Theorem 11 for computing
the number of all 2 and 3-antichain covers as well as the number of all 2 and 3 element
antichains in the power set Pn. In this section, some numerical experiments are also shown.
In particular, this section presents:

• values of A016269 — sequence of numbers of monotone Boolean functions of n − 2
variables with 2 mincuts, that is, sequence of numbers D2

n for n ∈ {4, . . . , 15};
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• values of sequences A047707 and A051112 of numbers of monotone Boolean functions
of n variables with 3 and 4 mincuts, respectively, that is, sequences of numbers D3

n and
D4

n for n ∈ {4, . . . , 15};

• values of sequence A000392 of Stirling numbers of second kind S(n+1, 3), i.e., sequence
of numbers T 2

n for n ∈ {4, . . . , 50};

• values of sequence A056046 of numbers T 3
n for n ∈ {4, . . . , 50};

• values of sequence A056047 of numbers T 4
n for n ∈ {4, . . . , 15};

• the numbers of covers of 7-set with antichains consisting of equinumerous sets.

2 Antichains and antichain covers consisting of m sub-

sets of a labeled n-element set

Let Zn denote the set {0, 1, . . . , n − 1}, and we let Z+
n denote the set {1, 2, . . . , n}, for all

n ∈ N. Let us denote the cardinality of a set X by #X. Let Am
n denote the set of all

m-element antichains in the power set Pn, and we let ACm
n denote the set of all m-element

antichain covers in Pn.
The following lemma will be used later in this article. In particular, the lemma allows us

to determine Tn from D0, . . . , Dn using formula (1).

Lemma 8. Let N0 = N ∪ {0} and (an)n∈N0
, (bn)n∈N0

∈ RN0 be sequences such that

bn =
n∑

k=n0

(
n

k

)

ak (7)

for some n0 ∈ N0 and for all n ≥ n0. Then

an =

n−n0∑

k=0

(
n

n− k

)

· (−1)k · bn−k (8)

for all natural numbers n ≥ n0.

This lemma follows from the following more general result: let X be a finite set, and let
f, g : 2X → N0 be two functions such that

∀A⊆X : g(A) =
∑

B⊆A

f(B).

Then
∀A⊆Xf(A) =

∑

B⊆A

(−1)#A−#Bg(B).
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We obtain Lemma 8 by putting

f(A) :=

{

0, if #A < n0;

an, if #A = n ≥ n0;

g(A) :=

{

0, if #A < n0;

bn, if #A = n ≥ n0;
,

but we can also prove this lemma by an inductive procedure.

Proof. Equation (8) is satisfied for n = n0, since by (7), bn0
= an0

. Assume inductively that
equation (8) holds for all natural numbers m such that n0 ≤ m ≤ n for some natural number
n ≥ n0. It will be shown that (8) is true for n + 1, i.e.,

an+1 = bn+1 −
n−n0∑

k=0

(
n + 1

n− k

)

· (−1)k · bn−k (9)

By (7), bn+1 =
∑n

k=n0

(
n+1
k

)
ak + an+1, and hence by the induction hypothesis, we get

an+1 = bn+1 −
n∑

k=n0

(
n + 1

k

) k−n0∑

i=0

(
k

k − i

)

· (−1)i · bk−i.

Hence after putting s := k − i we obtain

an+1 = bn+1 −
n∑

k=n0

(
n + 1

k

) k∑

s=n0

(
k

s

)

(−1)k−sbs.

After changing the order of summation, we have

an+1 = bn+1 −
n∑

s=n0

n∑

k=s

(
n + 1

k

)(
k

s

)

(−1)k−sbs.

Thus, after putting t := n− s, we obtain

an+1 = bn+1 −
n−n0∑

t=0

n∑

k=n−t

(
n + 1

k

)(
k

n− t

)

(−1)k+t−nbn−t (10)

We shall show that

n∑

k=n−t

(
n + 1

k

)(
k

n− t

)

(−1)k−n =

(
n + 1

n− t

)

, for all t ∈ {0, . . . , n− n0}. (11)
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Note that

n∑

k=n−t

(
n + 1

k

)(
k

n− t

)

(−1)k−n

=
n∑

k=n−t

(n + 1)!

k!(n + 1 − k)!
·

k!

(n− t)!(k + t− n)!
(−1)k−n

=
n∑

k=n−t

(n + 1)!

(n− t)!(t + 1)!
·

(t + 1)!

(n + 1 − k)!(k + t− n)!
(−1)k−n

=
t∑

l=0

(
n + 1

n− t

)(
t + 1

l + 1

)

(−1)l (by setting l := n− k)

=

(
n + 1

n− t

)

,

since 0 = (1 − 1)t+1 =
∑t+1

l=0

(
t+1
l

)
(−1)l. By (10) and (11), we obtain (9). So by induction,

(8) holds for all n ≥ n0.

For small numbers n, formulae (1) and (4), as well as Lemma 8 can be used to compute
Tn:

Corollary 9. We have

Tn =
n∑

k=0

(
n

n− k

)

(−1)k
22

n−k

∑

l=1

∏

0≤i<j≤2n−k−1

(
1 − bli · b

l
j · f(i, j)

)
,

where bni = ⌊n/2i⌋ − 2⌊n/2i+1⌋ for any i, n ≥ 0 and

f(i, n) =

{

1, if i = 0;
∏log2(i)

m=0

(
1 − bim + bimb

n
m

)
, for i ≥ 1.

The following theorem allows computing the number of all m-element antichains and
antichain covers in the power set Pn. Before formulating this theorem the simple example
below is presented. It allows us easier comprehension of the intuition behind Theorem 11.

Example 10. We now demonstrate the method for computing Tm
n , as well as Dm

n for m ∈
{2, 3} and for all natural numbers n ≥ 3. Theorem 11 is a generalization of this method for
all natural numbers n ≥ 2 and 2 ≤ m ≤

(
n

⌊n/2⌋

)
.

Firstly, we shall show that for all sets ∅ 6= A1, A2 ( Z+
n if

#A1 ≤ #A2, (12)
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then {A1, A2} ∈ A2
n, if and only if A2 can be decomposed into two subsets A2

1 and A2
2 of Z+

n

satisfying the following conditions:

A2 = A2
1 ∪ A2

2 (13)

A2
1 ( A1 (14)

A2
2 ⊆ Z+

n \ A1 (15)

Assume that {A1, A2} ∈ A2
n and put A2

1 := A2 ∩ A1 and A2
2 := A2 ∩ (Z+

n \ A1). Then (13)
and (15) are straightforwardly satisfied. Moreover, A2

1 ⊆ A1. If A2
1 were equal to A1, then

A1 would be included in A2 and it would contradict the assumption {A1, A2} ∈ A2
n. Thus

(14) holds. For the proof of the converse implication assume that A1, A2 satisfy conditions
(13)–(15). It follows from (14), that there exists x ∈ A1 \ A2

1. Then by (15), such x /∈ A2
2

and by (13), x /∈ A2. So A1 * A2. Similarly, A2 * A1, since otherwise by (13) and (15), A2
2

would have to be equal to ∅, but then A2 = A2
1 and by (14), #A2 < #A1 — a contradiction

to our primary assumption (12).
Analogously, for all sets ∅ 6= A1, A2 ( Z+

n if (12) is satisfied, then {A1, A2} ∈ AC2
n if

and only if A2 can be decomposed into two subsets A2
1 and A2

2 of Z+
n satisfying conditions

(13)–(14). However, instead of condition (15) A2
2 satisfies the condition:

A2
2 = Z+

n \ A1. (16)

If ∅ 6= A1, A2 ( Z+
n and A1, A2, A2

1, A
2
2 satisfy conditions (12) as well as (13)–(15) and

we denote #A1 by a1, #A2 by a2, and #A2
i by a2i for i ∈ {1, 2}, then we obtain the following

bounds: 





1 ≤ a1 ≤ a2 ≤ n− 1
0 ≤ a21 ≤ a1 − 1
0 ≤ a22 ≤ n− a1 (or a22 = n− a1 for AC2

n)
(17)

Then a21 ≥ a1 − a22 ≥ a1 − (n− a1) = 2a1 − n and a22 ≥ a1 − a21 ≥ a1 − (a1 − 1) = 1.
If a1 < a2 then the number of all families of sets {A1, A2} ∈ A2

n, such that A1, A2, A2
1,

A2
2 satisfy conditions (13)–(15) as well as a1 = #A1, a2 = #A2, a21 = #A2

1, and a22 = #A2
2,

equals
(
n
a1

)(
a1

a2
1

)(
n−a1

a2
2

)
. Otherwise, i.e., if a1 = a2 then the number of all such families of sets

{A1, A2} ∈ A2
n, equals

(
n
a1

)(
a1

a2
1

)(
n−a1

a2
2

)
/2, since {A1, A2} = {A2, A1}. However, if {A1, A2} ∈

AC2
n, then a22 = n− a1. Hence we obtain the following formulas:

D2
n =

n−1∑

a1=1

a1−1∑

a2
1
=max(0,2a1−n)

n−a1∑

a2
2
=a1−a2

1

(
n
a1

)(
a1

a2
1

)(
n−a1

a2
2

)

r(a1, a2)
(18)

T 2
n =

n−1∑

a1=1

a1−1∑

a2
1
=max(0,2a1−n)

(
n
a1

)(
a1

a2
1

)

r(a1, a2)
, (19)

where r(a, b) =

{

1, if a < b;

2, otherwise.
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Similarly, we shall show that for all sets ∅ 6= A1, A2, A3 ( Z+
n if

#A1 ≤ #A2 ≤ #A3, (20)

then {A1, A2, A3} ∈ A3
n, if and only if A2 can be decomposed into two sets satisfying condi-

tions (13)–(15) and A3 can be decomposed into four subsets A3
1, A

3
2, A

3
3, A

3
4 of Z+

n satisfying
the following conditions:

A3 = A3
1 ∪ A3

2 ∪ A3
3 ∪ A3

4 (21)

A3
1 ⊆ A2

1 (22)

A3
2 ⊆ A1 \ A2

1 (23)

A3
3 ⊆ A2

2 (24)

A3
4 ⊆ Z+

n \ A1 \ A2
2 (25)

A3
1 ∪ A3

2 ( A1 (26)

A3
1 ∪ A3

3 ( A2 (27)

Assume that {A1, A2, A3} ∈ A3
n. Then {A1, A2} ∈ A2

n. From the previous reasoning it
follows that A2 can be decomposed into two sets A2

1 and A2
2 satisfying conditions (13)–(15).

Put A3
1 := A3 ∩ A2

1, A
3
2 := A3 ∩ (A1 \ A2

1), A
3
3 := A3 ∩ A2

2 and A3
4 := A3 ∩ (Z+

n \ A1 \ A2
2).

Then straightforwardly conditions (22)–(25) are satisfied. Moreover, A3
1 ∪ A3

2 = A3 ∩ A1

and A3
3 ∪ A3

4 = A3 \ A1. So condition (21) also holds and A3
1 ∪ A3

2 ⊆ A1. Suppose that
A3

1 ∪ A3
2 = A1, then A3 ∩ A1 = A1. Hence A1 ⊆ A3 — a contradiction to the assumption

{A1, A2, A3} ∈ A3
n. Therefore (26) is true. By (13), A3

1∪A
3
3 = A3∩A2. Thus If A3

1∪A
3
3 = A2,

then A2 ⊆ A3 — a contradiction to the assumption {A1, A2, A3} ∈ A3
n. Therefore condition

(27) is also satisfied.
Assume that A2 can be decomposed into two sets satisfying conditions (13)–(15) and

A3 can be decomposed into four subsets satisfying conditions (21)–(27). We shall prove
that {A1, A2, A3} ∈ A3

n. By the previous reasoning {A1, A2} ∈ A2
n. By the assumption

#A1 ≤ #A2 ≤ #A3 it suffices to show that A1 * A3 and A2 * A3. By (15),(21), and
(24)–(26), A3 ∩ A1 = A3

1 ∪ A3
2 6= A1. So A1 * A3. Similarly, by (13)–(15), (21)–(25),

A3 ∩ A2 = A3
1 ∪ A3

3. Hence by (27), A3 ∩ A2 6= A2. So A2 * A3.
Analogously, for all sets ∅ 6= A1, A2, A3 ( Z+

n if condition (20) is satisfied, then

{A1, A2, A3} ∈ AC3
n

if and only if A2 can be decomposed into two sets satisfying conditions (13)–(15) as well as
A3 can be decomposed into four subsets A3

1, A
3
2, A

3
3, A

3
4 of Z+

n satisfying conditions (21)–(27).
However, instead of condition (25) A3

4 satisfies the condition:

A3
4 = Z+

n \ A1 \ A2
2. (28)

If A1, A2, A3, A2
1, A

2
2, A

3
1, A

3
2, A

3
3, A

3
4 satisfy conditions (20), (13)–(15) and (21)–(27), we

adopt the notation from the previous paragraph and we denote #A3
i by a3i for i ∈ {1, 2, 3, 4},
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then we obtain the following bounds for a3 and a3i :






0 ≤ a31 ≤ a21
0 ≤ a32 ≤ a1 − a21
0 ≤ a33 ≤ a22
0 ≤ a34 ≤ n− a1 − a22 (or a34 = n− a1 − a22 for AC3

n)
a31 + a32 ≤ a1 − 1
a31 + a33 ≤ a2 − 1

a2 ≤ a3 ≤ n− 1

(29)

If a1 < a2 < a3 then the number of all families of sets {A1, A2, A3} ∈ A3
n, such that A1, A2,

A3, A2
1, A

2
2, A

3
1, A

3
2, A

3
3, A

3
4 satisfy conditions (13)–(15) and (21)–(27), as well as a1 = #A1,

a2 = #A2, a21 = #A2
1, a

2
2 = #A2

2, a
3
i = #A3

i for i ∈ {1, 2, 3, 4}, equals
(
n

a1

)(
a1

a21

)(
n− a1

a22

)(
a21
a31

)(
a1 − a21

a32

)(
a22
a33

)(
n− a1 − a22

a34

)

.

If a1 < a2 = a3 or a1 = a2 < a3 then the number of all such families of sets {A1, A2, A3} ∈ A3
n,

equals
(
n

a1

)(
a1

a21

)(
n− a1

a22

)(
a21
a31

)(
a1 − a21

a32

)(
a22
a33

)(
n− a1 − a22

a34

)

/2.

If a1 = a2 = a3 then the number of all such families of sets {A1, A2, A3} ∈ A3
n, equals

(
n

a1

)(
a1

a21

)(
n− a1

a22

)(
a21
a31

)(
a1 − a21

a32

)(
a22
a33

)(
n− a1 − a22

a34

)

/3!.

However, if {A1, A2, A3} ∈ AC3
n, then a34 = n − a1 − a22. Hence we obtain the following

formulae:

D3
n =

n−1∑

a1=1

a1−1∑

a2
1
=max(0,2a1−n)

n−a1∑

a2
2
=a1−a2

1

∑

(a3
1
,a3

2
,a3

3
,a3

4
) satisfying conditions (29)

(
n
a1

)(
a1

a2
1

)(
n−a1

a2
2

)(a2
1

a3
1

)(a1−a2
1

a3
2

)(a2
2

a3
3

)(n−a1−a2
2

a3
4

)

r(a1, a2, a3)
(30)

T 3
n =

n−1∑

a1=1

a1−1∑

a2
1
=max(0,2a1−n)

∑

(a3
1
,a3

2
,a3

3
,a3

4
) satisfying conditions (29)

(
n
a1

)(
a1

a2
1

)(
n−a1

a2
2

)(a2
1

a3
1

)(a1−a2
1

a3
2

)(a2
2

a3
3

)

r(a1, a2, a3)
, (31)

where r(a, b, c) =







1, if a < b < c;

2, if a < b = c or a = b < c;

3!, if a = b = c.

.
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Theorem 11. Let

Imi :=
2i−1−1⋃

k=0

[
2k · 2m−1−i + 1; (2k + 1) · 2m−1−i

]
∩ N (32)

for m ≥ 2 and i ∈ Z+
m−1. For a natural number n and sequence of sequences of natural

numbers (a1,a2, . . .) such that am = (am1 , . . . , a
m
2m−1) ∈ N2m−1

0 for m ∈ N define:

am =
2m−1

∑

k=1

amk (33)

b11 := n (34)

bmk :=

{

am−1
(k+1)/2, if 2 ∤ k

bm−1
k/2 − am−1

k/2 , if 2 | k
, for m ≥ 2 and k ∈ Z+

2m−1 (35)

Sn
m(a1, . . . ,am−1) :=







a
m ∈ N2m−1

0 : 0 ≤ amk ≤ bmk , for k ∈ Z+
2m−1&

am−1 ≤ am ≤ n− 1 &
∑

k∈Imi
amk ≤ ai − 1, for i ∈ Z+

m−1






, (36)

for m ≥ 2

Sn
m(a1, . . . ,am−1) :=

{
a
m ∈ Sn

m(a1, . . . ,am−1) : am2m−1 = bm2m−1

}
, for m ≥ 2 (37)

For a non-decreasing sequence of natural numbers (a1, . . . , am), natural numbers m1, . . . ,mk,
and M1, . . . ,Mk such that:

1. m1 + m2 + · · · + mk = m

2. M1 = 0

3. Mi := m1 + · · · + mi−1 for 2 ≤ i ≤ k

4. ∀i∈Z+

k
∀j∈Z+

mi
aMi+j = aMi+1

5. ∀i∈{2,...,k}aMi
< aMi+1.

define function

r(a1, . . . , am) :=
k∏

i=1

mi!. (38)

With the above notation, for all natural numbers m,n ≥ 2 if m ≤
(

n
⌊n/2⌋

)
then:

Dm
n =

n−1∑

a1=1

∑

a
2∈Sn

2
(a1)

. . .
∑

a
m−1∈Sn

m−1
(cm−2)

∑

a
m∈Sn

m(cm−1)

m∏

i=1

2i−1

∏

j=1

(bij
aij

)

r(a1, . . . , am)
(39)

Tm
n =

n−1∑

a1=1

∑

a
2∈Sn

2
(a1)

. . .
∑

a
m−1∈Sn

m−1
(cm−2)

∑

a
m∈Sn

m(cm−1)

m∏

i=1

2i−1

∏

j=1

(bij
aij

)

r(a1, . . . , am)
(40)
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where c
k =

(
a
1,a2, . . . ,ak

)
.

Remark 12. The set Imi defined in (32) for m ≥ 2 and i ∈ Z+
m−1 is intuitively the set of

indices of sets belonging to the partition {Am
1 , . . . , A

m
2m−1} of set Am, which are included in

Ai. Properties of these partitions are described by (13)–(15) and (21)–(27) in Example 10
for A2 and A3, respectively, as well as in Lemma 17 occurring later in this article. So the
condition

∑

k∈Imi
amk ≤ ai − 1 from (36) can be translated in the context of these partitions

as
⋃

k∈Imi
Am

k ( Ai and it prevents Ai ⊆ Am for all i ∈ Z+
m−1. Thus this condition guarantees

that sets A1, . . . , Am, consisting of these partitions form an antichain.

The following proposition gives an explicit formula for expressions defined recursively by
(34) and (35).

Proposition 13. Let m,n ∈ N, a01 := n and bmk be defined by (34) and (35). Then

bmk = am−l−1
(r+1)/2 −

l∑

i=1

am−i
2l−ir

. (41)

for all r ∈ N and l ∈ Zm such that 2 ∤ r, k = 2l · r, and k ≤ 2m−1.

Proof. The proof is by induction on m. For the base step of the induction, assume that
m = 1. Then k = 1 = 20 and by (34), b11 = n = a01 = am−l−1

(r+1)/2 for l = 0 and r = 1.

Assume that (41) holds for some m ∈ N. We shall show that (41) holds for m + 1. We
shall consider two cases. Firstly, let us assume that 2 ∤ k. Then by (35), bm+1

k = am(k+1)/2 =

am+1−l−1
(r+1)/2 for l = 0 and r = k. Therefore in this case (41) is true.

Assume that k = 2l · r, where 0 < l ≤ m and 2 ∤ r. Then by (35),

bm+1
k = bm2l−1·r − am2l−1·r. (42)

By the induction hypothesis,

bm2l−1·r = a
m−(l−1)−1
(r+1)/2 −

l−1∑

i=1

am−i
2l−1−ir

. (43)

Therefore by (42) and (43),

bm+1
k = a

m−(l−1)−1
(r+1)/2 −

l−1∑

i=1

am−i
2l−1−ir

− am2l−1·r

= am+1−l−1
(r+1)/2 −

l∑

i=1

am+1−i
2l−ir

.

So (41) holds for m + 1, and by an inductive procedure, (41) is true for all m ∈ N.

13



Proof of Theorem 11.

Lemma 14. Let Imi be defined by (32). Then

⋃

i∈Z+

m−1

Imi = Z+
2m−1 \

{
2m−1

}
(44)

for all natural numbers m ≥ 2.

Proof. Fix any natural number m ≥ 2 and x ∈ Z+
2m−1 \ {2m−1}. Let

i := m− 1 − ⌊log2(2
m−1 − x)⌋ (45)

and k := 2i−1 − 1. Note that i ∈ Z+
m−1. We shall show that

k · 2m−i < x ≤ k · 2m−i + 2m−i−1 :

Note that
k · 2m−i = 2m−1 − 2 · 2⌊log2(2

m−1−x)⌋, (46)

and

2m−1 − 2 · 2⌊log2(2
m−1−x)⌋ < 2m−1 − 2 · 2log2(2

m−1−x)−1 = x (47)

2m−1 − 2 · 2⌊log2(2
m−1−x)⌋ ≥ 2m−1 − 2 · 2log2(2

m−1−x) = 2x− 2m−1 (48)

Thus by (46) and (47) we have k · 2m−i < x and

x ≤ 2m−1 − 2⌊log2(2
m−1−x)⌋, by (48)

= k · 2m−i + 2⌊log2(2
m−1−x)⌋, by (46)

= k · 2m−i + 2m−i−1, by (45)

Therefore x ∈ Imi .

Let m,n ≥ 2 be natural numbers and

A
n
m :=

{
{(

A1, A2, . . . , Am
)
,
{(

Ak
1, . . . , A

k
2k−1 , B

k
1 , . . . , B

k
2k−1

)
: k ∈ Z+

m

}}
: (49)

∀k∈Z+
m

(

∅ 6= Ak ( Z+
n ∧ #Ak−1 ≤ #Ak ∧ ∀i∈Z+

2k−1

:
(
Ak

i ⊆ Bk
i ⊆ Z+

n

))
}

,

where A0 := ∅.
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Lemma 15. Let m,n ≥ 2 be natural numbers and A ∈ A
n
m. If A satisfies condition

Bk
i =

{

Ak−1
(i+1)/2, if 2 ∤ i;

Bk−1
i/2 \ Ak−1

i/2 , otherwise;
(50)

for all k ∈ {2, . . . ,m} and i ∈ Z+
2k−1, where B1

1 = Z+
n and A1

1 = A1. Then for all k ∈
{2, . . . ,m}:

⋃

i∈Z+

2k−1

Bk
i = Z+

n (51)

Bk
i ∩Bk

j = ∅, for all distinct i, j ∈ Z+
2k−1 (52)

Proof. The proof is by induction on k. For k = 2 by (50), B2
1 = A1

1 = A1 and B2
2 = B1

1 \A
1
1 =

Z+
n \ A1. Thus (51) and (52) hold.

Assume that (51) and (52) are satisfied for some natural number 2 ≤ k < m. We shall
show that (51) holds for k + 1: By (50) and the induction hypothesis we have

⋃

i∈Z+

2k

Bk+1
i =

⋃

i∈Z+

2k−1

(
Bk+1

2i−1 ∪Bk+1
2i

)

=
⋃

i∈Z+

2k−1

(
Ak

i ∪
(
Bk

i \ A
k
i

))
=

⋃

i∈Z+

2k−1

Bk
i = Z+

n .

We shall show that (52) holds for k + 1: Assume that i, j ∈ Z+
2k

and i 6= j.

1. If 2 ∤ i and 2 ∤ j then by (50) and finally by the induction hypothesis,

Bk+1
i ∩ Bk+1

j = Ak
(i+1)/2 ∩ Ak

(j+1)/2 ⊆ Bk
(i+1)/2 ∩ Bk

(j+1)/2 = ∅.

2. If 2 ∤ i and 2 | j then

• if (i + 1)/2 = j/2 then by (50), we have

Bk+1
i ∩Bk+1

j = Ak
j/2 ∩ (Bk

j/2 \ A
k
j/2) = ∅;

• if (i + 1)/2 6= j/2, then by (50) and the induction hypothesis we have

Bk+1
i ∩ Bk+1

j = Ak
(i+1)/2 ∩ (Bk

j/2 \ A
k
j/2) ⊆ Bk

(i+1)/2 ∩Bk
j/2 = ∅.

3. If 2 | i and 2 | j then by (50) and the induction hypothesis we have

Bk+1
i ∩ Bk+1

j = (Bk
i/2 \ A

k
i/2) ∩ (Bk

j/2 \ A
k
j/2) ⊆ Bk

i/2 ∩ Bk
j/2 = ∅.
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Lemma 16. Let m,n ≥ 2 be natural numbers and A ∈ A
n
m. If A satisfies condition (50)

and the following condition:

Ak =
2k−1

⋃

i=1

Ak
i (53)

for all k ∈ {2, . . . ,m}. Then

⋃

i∈Ikj

Bk
i = Aj, for all j ∈ Z+

k−1 (54)

Bk
2k−1 = Z+

n \
k−1⋃

i=1

Ai (55)

for all natural numbers 2 ≤ k ≤ m.

Proof. The proof of (54) is by induction on k. For k = 2, by (32), I21 = {1}. Hence
⋃

i∈I2
1
B2

i = B2
1 = A1. Therefore (54) holds.

Assume that(54) is satisfied for some natural number k such that 2 ≤ k < m. Firstly we
shall prove that

⋃

i∈Ik+1

k
Bk+1

i = Ak: By (32), Ik+1
k = {2i + 1: i ∈ Z2k−1}. Thus, by (50) and

(53),
⋃

i∈Ik+1

k

Bk+1
i =

⋃

i∈Z
2k−1

Bk+1
2i+1 =

⋃

i∈Z+

2k−1

Ak
i = Ak

Fix any j ∈ {1, . . . , k − 1}. Then by (32), Ik+1
j is a union of 2j−1 2k−j-element sets, further-

more {(i + 1)/2: i ∈ Ik+1
j & 2 ∤ i} = Ikj . Therefore by (50) and the induction hypothesis,

⋃

i∈Ik+1

j

Bk+1
i =

⋃

i∈Ik+1
j
2∤i

(
Bk+1

i ∪ Bk+1
i+1

)

=
⋃

i∈Ik+1
j
2∤i

(
Ak

(i+1)/2 ∪
(
Bk

(i+1)/2 \ A
k
(i+1)/2

))
=
⋃

i∈Ikj

Bk
i = Aj.

To prove (55), firstly we utilize (51) and (52) from Lemma 15, from which it follows that

Bk
2k−1 = Z+

n \
2k−1−1⋃

i=1

Bk
i .
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By (44) from Lemma 14, and next by (54) from Lemma 16 we have

Bk
2k−1 = Z+

n \
⋃

i∈
⋃

j∈Z+
k−1

Ikj

Bk
i

= Z+
n \

⋃

j∈Z+

k−1

⋃

i∈Ikj

Bk
i

= Z+
n \

⋃

j∈Z+

k−1

Aj

Lemma 17. Let m,n ≥ 2 be natural numbers, m ≤
(

n
⌊n/2⌋

)
, Ak ⊆ Z+

n for all k ∈ Z+
m, and

1 ≤ #A1 ≤ . . . ≤ #Am ≤ n− 1, then

1. A = {A1, . . . , Am} ∈ Am
n if and only if for each k ∈ {2, . . . ,m} there exist sets

Ak
1, . . . , A

k
2k−1 and Bk

1 , . . . , B
k
2k−1 such that conditions (50), (53), and

Ak
i ⊆ Bk

i , for all i ∈ Z+
2k−1 (56)

⋃

i∈Ikj

Ak
i ( Aj, for all j ∈ Z+

k−1 (57)

are satisfied for all k ∈ {2, . . . ,m}.

2. A = {A1, . . . , Am} ∈ ACm
n if and only if for each k ∈ {2, . . . ,m} there exist sets

Ak
1, . . . , A

k
2k−1 and Bk

1 , . . . , B
k
2k−1 such that conditions (50), (53), (56), (57) are satisfied

for all k ∈ {2, . . . ,m} and Am
2m−1 = Bm

2m−1.

Proof. The proof is by induction on m. Firstly we shall prove this fact for m = 2. Assume
that {A1, A2} ∈ A2

n. Define A1
1 := A1, B1

1 := Z+
n , B2

1 := A1, B2
2 := Z+

n \ A1, A2
1 := A1 ∩ A2,

and A2
2 := A2 \ A1. Then conditions (50), (53), and (56) are straightforwardly satisfied.

Moreover I21 = {1}. Hence
⋃

i∈I2
1
A2

i = A2
1 ( A1, since A1 * A2. Thus condition (57) is also

true. If additionally {A1, A2} ∈ AC2
n, then Z+

n \ A1 ⊆ A2. Hence A2
2 = B2

2 .
Now assume that conditions (50), (53), (56), (57) are satisfied. It follows from (57) that

A2
1 ( A1, and by (56) and (50), A2

2 ⊆ Z+
n \ A1. Therefore by (53), A1 * A2. Moreover,

#A1 ≤ #A2. Hence A2 * A1, since otherwise A2 = A1 which contradicts A1 * A2. So
{A1, A2} ∈ A2

n. If A2
2 = B2

2 , then by (53) and (50), A1 ∪ A2 = A1 ∪ A2
2 = A1 ∪ B2

2 = Z+
n .

Thus {A1, A2} ∈ AC2
n and Lemma 17 is true for m = 2.

Assume that Lemma 17 is true for some natural number m such that 2 ≤ m <
(

n
⌊n/2⌋

)
. We

shall show that it holds for m + 1. Assume {A1, . . . , Am+1} ∈ Am+1
n . Then {A1, . . . , Am} ∈

Am
n and by the induction hypothesis, for each k ∈ {2, . . . ,m} there exist sets Ak

1, . . . , A
k
2k−1

and Bk
1 , . . . , B

k
2k−1 such that conditions (50), (53), (56), (57) are satisfied for all k ∈ {2 . . . ,m}.
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Let Am+1
i := Am+1∩Bm+1

i , where Bm+1
i defined by (50) exist by the induction hypothesis, for

all i ∈ Z+
2m . Then conditions (50) and (56) are also straightforwardly satisfied for k = m+ 1.

By (51) from Lemma 15,

2m⋃

i=1

Am+1
i = Am+1 ∩

2m⋃

i=1

Bm+1
i = Am+1;

thus (53) is also satisfied for m+1. Therefore by (54) from Lemma 16, we have
⋃

i∈Im+1

j
Bm+1

i =

Aj for all j ∈ Z+
m. So

⋃

i∈Im+1

j

Am+1
i = Am+1 ∩

⋃

i∈Im+1

j

Bm+1
i = Am+1 ∩ Aj ( Aj,

since otherwise Aj ⊆ Am+1 which would contradict with assumption {A1, . . . , Am+1} ∈
Am+1

n . It follows from the above reasoning that (57) is satisfied for all k ∈ {2, . . . ,m + 1}.
Assume now that {A1, . . . , Am+1} ∈ ACm+1

n . Then by the previous part of the proof,
conditions (50), (53), (56), (57) are satisfied for all k ∈ {2, . . . ,m + 1}. We shall prove
that Am+1

2m = Bm+1
2m . By (56), Am+1

2m ⊆ Bm+1
2m . Suppose that Am+1

2m ( Bm+1
2m . Then by (55),

Am+1
2m ( Z+

n \
⋃m

i=1 A
i, and hence

Am+1
2m ∪

m⋃

i=1

Ai ( Z+
n . (58)

On the other hand, by (57),
⋃

j∈Z+
m

⋃

i∈Im+1

j
Am+1

i ⊆
⋃

j∈Z+
m
Aj. So by Lemma 14 and (53),

Am+1 \ Am+1
2m ⊆

⋃

j∈Z+
m
Aj. Therefore

⋃

j∈Z+

m+1

Aj =
⋃

j∈Z+
m

Aj ∪ Am+1
2m . (59)

We see that (58) and (59) contradict assumption {A1, . . . , Am+1} ∈ ACm+1
n .

Now assume that conditions (50), (53), (56), (57) are satisfied for all k ∈ {2, . . . ,m +
1}. We shall show that {A1, . . . , Am+1} ∈ Am+1

n . By assumption #Ai ≤ #Ai+1 for
all i ∈ Z+

m and the induction hypothesis, it suffices to prove that Aj * Am+1 for all
j ∈ Z+

m. Fix any j ∈ Z+
m. Then: by (54), Am+1 ∩ Aj = Am+1 ∩

⋃

i∈Im+1

j
Bm+1

i ; by (53),

Am+1 ∩
⋃

i∈Im+1

j
Bm+1

i =
⋃

i∈Z+

2m
Am+1

i ∩
⋃

i∈Im+1

j
Bm+1

i ; by Lemma 14, (51), (52), and (56),
⋃

i∈Z+

2m
Am+1

i ∩
⋃

i∈Im+1

j
Bm+1

i =
⋃

i∈Im+1

j
Am+1

i ; hence by (57), Am+1 ∩ Aj ( Aj. Therefore

Aj * Am+1.
If additionally Am+1

2m = Bm+1
2m , then by (55), we have Am+1

2m ∪
⋃

i∈Z+
m
Ai = Z+

n . So by (53),
⋃

i∈Z+

m+1
Ai = Z+

n . Thus {A1, . . . , Am+1} ∈ ACm+1
n .
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Using Lemma 17 we can determine the number of all antichains as well as the number of
all antichain covers of an n-element set X which consist of m subsets of X. Let

C
n
m :=

{
(A1, . . . , Am) : ∃A∈An

m
: (A1, . . . , Am) ∈ A & A satisfies conditions (50), (53), (57)

}

and
D

n
m :=

{
(A1, . . . , Am) ∈ C

n
m : Am

2m−1 = Bm
2m−1

}

By Lemma 17, if #A1 ≤ . . . ≤ #Am, then {A1, . . . , Am} ∈ Am
n iff (A1, . . . , Am) ∈ C

n
m and

{A1, . . . , Am} ∈ ACm
n iff (A1, . . . , Am) ∈ D

n
m.

If (A1, . . . , Am) ∈ C
n
m, then A1 can be chosen in

(
b1
1

a1

)
ways, where b11 = n, a1 = #A1,

and a1 can differ from 1 to n − 1. Generally, it follows from Lemma 17, that for fixed sets

A1, . . . , Ak of cardinality a1, . . . , ak, respectively, set Ak+1
i can be chosen in

(bk+1

i

ak+1

i

)
ways, for

all i ∈ Z+
2k

, where bk+1
i are defined by (35),

(
ak+1
1 , . . . , ak+1

2k

)
∈ Sn

m

(
a1, . . . , ak

)
, and Sn

m is
defined by (36). Moreover if (A1, . . . , Am) ∈ D

n
m, then by Lemma 17, Am

2m−1 = Bm
2m−1 . So

it can be chosen in one way. Furthermore, note that for any set {A1, . . . , Am} ∈ Am
n if

ai = #Ai for all i ∈ Z+
m and

a1 = · · · = am1
︸ ︷︷ ︸

m1

< am1+1 = · · · = am1+m2
︸ ︷︷ ︸

m2

< · · · < aMk+1 = · · · = aMk+mk
︸ ︷︷ ︸

mk

where Mi := m1 + · · · + mi−1 for all 1 < i ≤ k, then the number of all (B1, . . . , Bm) ∈ C
n
m

such that {B1, . . . , Bm} = {A1, . . . , Am} is equal to
∏k

i=1 mi!. Therefore (39) and (40) are
true.

3 Covers of labeled sets with antichains consisting of

equinumerous sets

Let X be an n-element set and numbers k,m ∈ N be such that n
k
≤ m ≤

(
n
k

)
. We let

ACm,k(X) denote the set of all m-antichain covers {A1, . . . , Am} in the power set P(X)
such that #Ai = k for all i ∈ Z+

m. If X = Z+
n , then ACm,k(X) is denoted by ACm,k

n and
Tm,k
n = #ACm,k

n .
Note that the assumption n

k
≤ m ≤

(
n
k

)
is a necessary condition for the correctness of

this notion, since for any n-element set X and {A1, . . . , Am} ∈ ACm,k(X):

n = #X = #

(
m⋃

i=1

Ai

)

≤
m∑

i=1

#Ai = m · k

and A1, . . . , Am are distinct k-element subsets of X whose total number equals
(
n
k

)
.

Lemma 18. Let X be an n-element set, m, k ∈ N be such that m ≤
(
n
k

)
,

Cm
k (X) :=

{
{A1, . . . , Am} : Ai ⊆ X and #Ai = k for all i ∈ {1, . . . ,m}

}
,
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n0 := min
{

n′ ∈ N :
(
n′

k

)
≥ m

}

. Then:

Cm
k (X) =

⋃

Y⊆X : n0≤#Y≤min(n,m·k)

ACm,k(Y ) (60)

#Cm
k (X) =

((n
k

)

m

)

(61)

min(n,m·k)
∑

l=n0

(
n

l

)

· Tm,k
l =

((n
k

)

m

)

. (62)

Proof.

1. Fix any {A1, . . . , Am} ∈ Cm
k (X). Let Y :=

⋃m
i=1 Ai. Then {A1, . . . , Am} ∈ ACm,k(Y ),

Y ⊆ X; moreover, we have, n′ := #Y ≤ min(n,m · k) and
(
n′

k

)
≥ m. Thus n′ ≥ n0.

The converse inclusion is obvious.

2. The number of all k-element subsets of an n-element set equals
(
n
k

)
. Thus #Cm

k (X)
as the number of all m-element subsets of the family of all k-element subsets of an

n-element set equals
((nk)

m

)
.

3. It follows straightforwardly from (60) and (61), since

#ACm,k(Y ) = #ACm,k(Y ′) = Tm,k
l

for all Y, Y ′ ⊆ X such that n0 ≤ l := #Y = #Y ′ ≤ min(n,m · k) and the number of
all l-element subsets of X equals

(
n
l

)
.

Theorem 19. Assume that m, k ∈ N and n0 := min
{

n′ ∈ N :
(
n′

k

)
≥ m

}

. Then

Tm,k
n =

n−n0∑

t=0

(
n

n− t

)

·

((n−t
k

)

m

)

· (−1)t (63)

for all n ∈ {n0, . . . ,m · k}

Proof. Fix m, k ∈ N and put n0 := min
{

n′ ∈ N :
(
n′

k

)
≥ m

}

. Let an := Tm,k
n and bn :=

((n
k)
m

)
.

Then by (62) from Lemma 18, bn :=
∑n

k=n0

(
n
k

)
ak. Thus assumptions of Lemma 8 are

satisfied. Therefore by the same lemma, (63) holds.
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4 Numerical results

Example 20. Let us return to Example 10 and compute Dm
n for all n ≥ 3 and m ∈ {2, 3}

using Theorem 11 and Proposition 13. By formulas (39) and (40),

D2
n =

n−1∑

a1=1

∑

a
2∈Sn

2
(a1)

(b1
1

a1
1

)(b2
1

a2
1

)(b2
2

a2
2

)

r(a1, a2)

T 2
n =

n−1∑

a1=1

∑

a
2∈Sn

2
(a1)

(b1
1

a1
1

)(b2
1

a2
1

)(b2
2

a2
2

)

r(a1, a2)

D3
n =

n−1∑

a1=1

∑

a
2∈Sn

2
(a1)

∑

a
3∈Sn

3
(a1,a2)

(b1
1

a1
1

)(b2
1

a2
1

)(b2
2

a2
2

)(b3
1

a3
1

)(b3
2

a3
2

)(b3
3

a3
3

)(b3
4

a3
4

)

r(a1, a2, a3)

T 3
n =

n−1∑

a1=1

∑

a
2∈Sn

2
(a1)

∑

a
3∈Sn

3
(a1,a2)

(b1
1

a1
1

)(b2
1

a2
1

)(b2
2

a2
2

)(b3
1

a3
1

)(b3
2

a3
2

)(b3
3

a3
3

)(b3
4

a3
4

)

r(a1, a2, a3)

By (41), b11 = a01 = n, b21 = a11 = a1, b22 = a01 − a11 = n− a1, b31 = a21, b
3
2 = a11 − a21 = a1 − a21,

b33 = a22, and b34 = a01 − a22 − a11 = n− a1 − a22. Note that by (32), I21 = {1}, I31 = {1, 2}, and
I32 = {1, 3} So by (33) and (36),

Sn
2 (a1) = {(a21, a

2
2) : 0 ≤ a21 ≤ a1 − 1 & 0 ≤ a22 ≤ n− a1 & a1 ≤ a2 ≤ n− 1}

Sn
2 (a1) = {(a21, a

2
2) : 0 ≤ a21 ≤ a1 − 1 & a1 ≤ a2 ≤ n− 1 & a22 = n− a1}

Sn
3 (a1, a2) = {(a31, a

3
2, a

3
3, a

3
4) : 0 ≤ a31 ≤ a21 & 0 ≤ a32 ≤ a1 − a21 & 0 ≤ a33 ≤ a22 &

0 ≤ a34 ≤ n− a1 − a22 & a2 ≤ a3 ≤ n− 1 &

a31 + a32 ≤ a1 − 1 & a31 + a33 ≤ a2 − 1}

Sn
3 (a1, a2) = {(a31, a

3
2, a

3
3, a

3
4) : 0 ≤ a31 ≤ a21 & 0 ≤ a32 ≤ a1 − a21 & 0 ≤ a33 ≤ a22 &

0 ≤ a34 = n− a1 − a22 & a2 ≤ a3 ≤ n− 1 &

a31 + a32 ≤ a1 − 1 & a31 + a33 ≤ a2 − 1}

It follows from the system of inequalities in Sn
2 (a1), that: max(0, 2a1 −n) ≤ a21 ≤ a1 − 1 and

1 ≤ a1 − a21 ≤ a22 ≤ n− a1 ≤ n− 1 − a21.
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From the system of inequalities and equality from Sn
2 (a1) we obtain the same bound for a21

as above. Hence we obtain the same formulae (18) and (19) as in Example 10, as follows:

D2
n =

n−1∑

a1=1

a1−1∑

a2
1
=max(0,2a1−n)

n−a1∑

a2
2
=a1−a2

1

(
n
a1
1

)(
a1

a2
1

)(
n−a1

a2
2

)

r(a1, a2)

T 2
n =

n−1∑

a1=1

a1−1∑

a2
1
=max(0,2a1−n)

(
n
a1
1

)(
a1

a2
1

)

r(a1, a2)
.

Note that the systems of inequalities in Sn
3 (a1, a2) and Sn

3 (a1, a2) are the same as in (29)
from Example 10. Solving these systems we obtain the following formulas:

D3
n =

n−1∑

a1=1

a1−1∑

a2
1
=max(0,2a1−n)

min(n−a1,n−2)
∑

a2
2
=a1−a2

1

min(a2
1
,n−a2

2
−2)

∑

a3
1
=max(0,a2+a2

1
−n)

min(a1−a2
1
,a1−1−a3

1
)

∑

a3
2
=max(0,a1+a2

2
−n+1,a1+a2−n−a3

1
)

min(a2
2
,a2−1−a3

1
)

∑

a3
3
=max(0,a2+a2

2
−n,a1+a2+a2

2
−n−a3

1
−a3

2
)

min(n−a1−a2
2
,n−1−a3

1
−a3

2
−a3

3
)

∑

a3
4
=max(0,a2−a3

1
−a3

2
−a3

3
)

(
n
a1
1

)(
a1

a2
1

)(
n−a1

a2
2

)(a2
1

a3
1

)(a1−a2
1

a3
2

)(a2
2

a3
3

)(n−a1−a2
2

a3
4

)

r(a1, a2, a3)

T 3
n =

n−1∑

a1=1

a1−1∑

a2
1
=max(0,2a1−n)

min(n−a1,n−2)
∑

a2
2
=a1−a2

1

min(a2
1
,n−a2

2
−2)

∑

a3
1
=max(0,a2+a2

1
−n)

min(a1−a2
1
,a1−1−a3

1
)

∑

a3
2
=max(0,a1+a2

2
−n+1,a1+a2−n−a3

1
)

min(a2
2
,a2−1−a3

1
)

∑

a3
3
=max(0,a2+a2

2
−n,a1+a2+a2

2
−n−a3

1
−a3

2
)

(
n
a1
1

)(
a1

a2
1

)(
n−a1

a2
2

)(a2
1

a3
1

)(a1−a2
1

a3
2

)(a2
2

a3
3

)

r(a1, a2, a3)
.

Table 1 gives the number of all summands in the sums (39) denoted by Nm
A (n), the

number of all summands in the sums (40) denoted by Nm
AC(n), as well as values of Dm

n and

Tm
n for n ∈ {4, 5} and m ∈

{

2, . . . ,
(

n
⌊n/2⌋

)
− 1
}

. Trivial cases when m ∈
{

0, 1,
(

n
⌊n/2⌋

)}

are

omitted in the table. They are considered in the following remark.

Remark 21. For all natural numbers n ∈ N0:

1. D0
n = T 0

n = 1;

2. D1
n = 2n and T 1

n = 1;

3. if m =
(

n
⌊n/2⌋

)
, then Dm

n = Tm
n =

{

1, if 2 | n;

2, if 2 ∤ n;
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4. if m =
(

n
⌊n/2⌋

)
− 1, then Tm

n =

{(
n

⌊n/2⌋

)
, if 2 | n;

2
(

n
⌊n/2⌋

)
, if 2 ∤ n;

5. if
(

n−1
⌊(n−1)/2⌋

)
< m ≤

(
n

⌊n/2⌋

)
, then Tm

n = Dm
n ;

n m Nm
A (n) Nm

AC(n) Dm
n Tm

n

4 2 7 4 55 25
3 11 9 64 56
4 19 19 25 25
5 30 30 6 6

5 2 13 6 285 90
3 40 29 1090 790
4 164 145 2020 1895
5 760 730 2146 2116
6 3180 3150 1380 1375
7 11148 11148 490 490
8 31104 31104 115 115
9 60480 60480 20 20

Table 1: The number of all summands in the sums (39) — Nm
A (n), (40) — Nm

AC(n), Dm
n , and

Tm
n for n ∈ {4, 5} and m ∈

{

2, . . . ,
(

n
⌊n/2⌋

)
− 1
}

.

Tables 2 and 3 depict the number of all summands in the sums (39) and (40) — Nm
A (n)

and Nm
AC(n), respectively, as well as values of Dm

n and Tm
n , respectively, for n ∈ {6, . . . , 15}

and m ∈ {2, 3, 4}.

n N2
A(n) D2

n N3
A(n) D3

n N4
A(n) D4

n

6 22 1351 113 14000 913 82115
7 34 6069 272 153762 3889 2401910
8 50 26335 585 1533504 13850 58089465
9 70 111645 1154 14356610 43157 1245331920
10 95 465751 2129 128722000 121243 24625121455
11 125 1921029 3718 1119607522 313162 460316430970
12 161 7859215 6208 9528462944 754557 8266174350005
13 203 31964205 9976 79817940930 1714126 144171200793620
14 252 129442951 15520 660876543600 3702041 2461016066613195
15 308 522538389 23470 5424917141282 7650964 41343340015862430

Table 2: The number of all summands in the sums (39) — Nm
A (n) and values of Dm

n for
n ∈ {6, . . . , 15} and m ∈ {2, 3, 4}.
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n N2
AC(n) T 2

n N3
AC(n) T 3

n N4
AC(n) T 4

n

6 9 301 73 8380 749 70370
7 12 966 159 76482 2976 1868650
8 16 3025 313 638736 9961 41062035
9 20 9330 569 5043950 29307 802349205
10 25 28501 975 38390660 78086 14514339340
11 30 86526 1589 285007162 191919 249104207000
12 36 261625 2490 2079779416 441395 4120588431245
13 42 788970 3768 14995363110 959569 66392465654515
14 49 2375101 5544 107204473740 1987915 1049608974433110
15 56 7141686 7950 761823557042 3948923 16365222591176550

Table 3: The number of all summands in the sums (40) — Nm
AC(n) and values of Tm

n for
n ∈ {6, . . . , 15} and m ∈ {2, 3, 4}.

Table 4 presents values of Tm
n for n ∈ {16, . . . , 50} and m ∈ {2, 3}.

Table 5 presents values of Tm,k
n for n = 7, m ∈ {2, . . . , 35}, and all possible k, i.e., k ≥ 7

m

and
(
7
k

)
≥ m.

Methods enabling the computation of Tm
n , Dm

n for all n ∈ N and 1 ≤ m ≤
(

n
⌊n/2⌋

)
, as well

as a method allowing the determination of Tm,k
n , for all m,n, k ∈ N such that n

k
≤ m ≤

(
n
k

)

were programmed in R. These methods were used to obtain results from Tables 1–3, 5, and
6. Methods permitting the determination of Tm

n for m ∈ {2, 3, 4} and all natural numbers
n ≥ 4 were programmed in Maple, and were used to obtain the results in Table 4. All
methods written in R were implemented on a PC with Intel Core i7-8750H 2.20-GHz CPU
and 16 GB of RAM. However, methods written in Maple were implemented on a PC with
Intel Core i5-3230M 2.60-GHz CPU and 6 GB of RAM.

Table 6 presents the running time of the method Ind(n,m, ind(n,m−1)) determining the
list ind(n,m) of all possible sequences a1, . . . , am for m ∈ {2, 3, 4} and n ∈ {12, 13, 14, 15}
such that ak ∈ Sn

k (a1, . . . , ak−1), where Sn
k (a1, . . . , ak−1) are defined by (36), as well as the

method AC(n,m, ind(n,m)) computing Dm
n and Tm

n according to (39) and (40) for m ∈
{2, 3, 4}, n ∈ {12, 13, 14, 15}, and the list of sequences ind(n,m). The list indc(n,m) of all
possible sequences a1, . . . , am suitable for (40) can be easily and quickly obtained from the
list ind(n,m) of all possible sequences a1, . . . , am suitable for (39). Therefore the running
time of the procedure convToCl, converting one list into another, is omitted.

It can be seen in Table 6 that methods Ind and AC, based on Theorem 11, allow us to
effectively compute Dm

n and Tm
n for small m ∈ {2, 3} and relatively large n.
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n T 2
n T 3

n

16 21457825 5390550296096
17 64439010 38026057186270
18 193448101 267656481977620
19 580606446 1881017836414122
20 1742343625 13204444871932776
21 5228079450 92618543463601430
22 15686335501 649270263511862300
23 47063200806 4549607376865786402
24 141197991025 31870882201493713456
25 423610750290 223214539710301456590
26 1270865805301 1563094445025734127780
27 3812664524766 10944627831536630201882
28 11438127792025 76627241923504206742136
29 34314651811530 536464983051964328959750
30 34314651811530 3755626545565209968614060
31 308834550658326 26291245004929410021308562
32 926505799458625 184048014423958633597002816
33 2779521693343170 1288382611752502969073278910
34 8338573669964101 9018910891539127690443801140
35 25015738189761486 63133539508515093365692674442
36 75047248929022825 441940593783822075229938159496
37 225141815506545210 3093613246149811622777248142070
38 675425583958589101 21655438185531666666398473609020
39 2026277026753674246 151588794667806792127575720587522
40 6078831630016836625 1061125199746752166787452564356176
41 18236495989562137650 7427894584494498851907618171437230
42 54709490167709668501 51995353026424486474819809382197700
43 164128474901175516606 363967925874293633608399150016855802
44 492385433499619572025 2547777754624695453699489227563016856
45 1477156318091044760490 17834455650128183338493646918462812390
46 4431468989457506370301 124841246390602318150989020114676767180
47 13294407038741263288566 873889008936455232899697038492373607282
48 39883221256961278221025 6117224483581236975434924744272427645536
49 119649664052358811373730 42820578490258331781970654161998901275550
50 358948992720026387542501 299744084957994372050034044992597868357460

Table 4: Values of Tm
n for n ∈ {16, . . . , 50} and m ∈ {2, 3}.
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m k Tm,k
7 m k Tm,k

7 m k Tm,k
7 m k Tm,k

7

2 4 70 8 2 159390 15 2 54257 22 3 1476337800
5 105 3 22654975 3 3247834632 4 1476337800
6 21 4 23490775 4 3247943153 23 3 834451800

3 3 945 5 203490 5 54264 4 834451800
4 3570 9 2 259105 16 2 20349 24 3 417225900
5 1190 3 69431950 3 4059895035 4 417225900
6 35 4 70572425 4 4059928950 25 3 183579396

4 2 315 5 293930 5 20349 4 183579396
3 22820 10 2 331716 17 2 5985 26 3 70607460
4 42910 3 182286125 3 4537559670 4 70607460
5 5880 4 183558375 4 4537567650 27 3 23535820
6 35 5 352716 5 5985 4 23535820

5 2 4410 11 2 343161 18 2 1330 28 3 6724520
3 221396 3 416050180 3 4537566320 4 6724520
4 303632 4 417216345 4 4537567650 29 3 1623160
5 20307 5 352716 5 1330 4 1623160
6 21 12 2 290745 19 2 210 30 3 324632

6 2 23604 3 833570010 3 4059928810 4 324632
3 1356250 4 834448615 4 4059928950 31 3 52360
4 1588125 5 293930 5 210 4 52360
5 54257 13 2 202755 20 2 21 32 3 6545
6 7 3 1475795160 3 3247943153 4 6545

7 1 1 4 1476337065 4 3247943160 33 3 595
2 73755 5 203490 5 21 4 595
3 6184400 14 2 116175 21 2 1 34 3 35
4 6679475 3 2319688080 3 2319959400 4 35
5 116280 4 2319959295 4 2319959400 35 3 1
6 1 5 116280 5 1 4 1

Table 5: Values of Tm,k
n for n = 7, m ∈ {2, . . . , 35}, and all possible k.
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Computational time (s)
n m Ind(n,m, ind(n,m− 1)) AC(n,m, ind(n,m)) AC(n,m, indc(n,m))
12 2 0.01 0.01 0

3 0.19 0.05 0.01
4 205.98 12.89 7.76

13 2 0 0 0
3 0.24 0.11 0.03
4 536.09 29.55 17.03

14 2 0 0 0
3 0.32 0.18 0.06
4 1668.4 65.19 34.6

15 2 0 0 0
3 0.47 0.25 0.079
4 5217.23 136.77 73.77

Table 6: The running time of methods Ind(n,m), AC(n,m,A) for m ∈ {2, 3, 4}, n ∈
{12, 13, 14, 15}, and A ∈ {ind(n,m), indc(n,m)}.
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