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Abstract

We consider the sequence whose nth term is the number F (n) of anti-chains in
the partially ordered set whose elements are 0, 1, . . . , n − 1 and the order relation is
coordinate-wise on the binary representation of each integer. This sequence is a sort
of “background” sequence to its more prominent subsequence of Dedekind numbers,
that is, the sequence whose terms are F (2k). We also consider the sequence of first
differences with terms F (n)− F (n− 1). We discuss, state, and prove some (recursive)
relations between the terms of these three sequences.

1 Introduction

Let Pn denote the partially ordered set (poset) whose elements are 0, 1, . . . , n − 1 and the
order relation is coordinate-wise with respect to the binary representation of the integers in

1Author’s present address: peter@koehler-weilburg.de.
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Pn. Thus, if n = 2k, then Pn is a Boolean lattice with top element 2k − 1 and atoms 2i for
0 ≤ i ≤ 2k−1.

For each n let F (n) be the number of anti-chains in Pn. So F (2k) is the number of
anti-chains in a Boolean lattice with k atoms, that is, F (2k) is a Dedekind number. The
exact values of the Dedekind numbers are known only for k ≤ 8. The computation for the
case k = 8 is described in Wiedemann [7]. The sequence of Dedekind numbers is A000372 in
the On-Line Encyclopedia of Integer Sequences [6]. The many entries in the comments and
references for this sequence there attest to the wide interest in it.

The integer sequence with terms F (n) is a background sequence for the sequence of
Dedekind numbers. It is A132581 and was authored by D. E. Knuth. The function ∆(n) =
F (n) − F (n − 1) gives the terms for the first differences of A132581; we tacitly extend the
definition by ∆(0) = 0.

The sequence of ∆ values is A132582 and is also authored by Knuth. Another way to
define this sequence would be to say that ∆(n) is the number of anti-chains containing n− 1
in the partially ordered set Pn.

In this paper we investigate the poset Pn and the two functions F and ∆. Our main
interest is in finding expressions for F (n) and for ∆(n) in terms of F or ∆ applied to integers
less than n.

In Section 2 we present the basics on posets and lattices that we will use. Section 3
contains lemmas that express the number of anti-chains in an arbitrary finite poset as the
sum of the number of anti-chains in certain subposets. We use these lemmas to find two
formulas for Dedekind numbers F (2k) for arbitrary k that involve the function F applied
to arguments less than 2k. In Section 4 we present formulas for ∆(n) that only involve the
F and ∆ functions applied to arguments less than n. The final section of the paper is a
summary that contains a list of the formulas proved in the paper. As an application, we
show how these formulas may be used to determine ∆(n) in the interval 16 ≤ n ≤ 32.

2 Basics

A semi-ideal of a poset P is a subset I ⊆ P , which is closed downwards, i.e., it satisfies the
condition p ∈ I, q ≤ p =⇒ q ∈ I. A semi-filter is a subset F , which is closed upwards, i.e.,
it satisfies the condition p ∈ F, q ≥ p =⇒ q ∈ F . An anti-chain of P is a set of mutually
incomparable elements. For a poset P and an element p ∈ P let sub(p) denote the semi-ideal
{q ∈ P | q ≤ p} and super(p) denote the semi-filter {q ∈ P | p ≤ q} and let cone(p) denote
the union sub(p) ∪ super(p) of these. To facilitate notation we will use the term cocone(p)
as an abbreviation of P \ cone(p), as well as cosub(p) for P \ sub(p) and cosuper(p) for
P \super(p). If the context of the poset P is necessary we will express this via a prefix P. as in
P. cosub(p) and P. cosuper(p). This comes in handy in expressions like P. cosub(p). cosub(q),
which of course is equal to P \ (sub(p)∪ sub(q)). We will also use cosub(p, q) as a shorthand
for this set, as well as cosuper(p, q) for the poset P \(super(p)∪super(q)). For other notation
and terminology on partially ordered sets and Boolean lattices we follow the monographs of
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Balbes and Dwinger [1] and Birkhoff [3].
It is well known that the set of semi-ideals and the set of semi-filters of a poset P form

distributive lattices I(P ) and F(P ) with set intersection and set union. Both these lattices
are isomorphic to the lattice of A(P ) of anti-chains of P , where the meet- and join-operations
are slightly more complicated. Let α(P ) denote the number of elements of A(P ).

We recall from Section 1 the definition of the poset Pn as the set {0, . . . , n−1} with binary

ordering, i.e., coordinate-wise with respect to the binary representation of the elements. In
particular, we note that P0 is the empty poset. Since the usual ordering of N is different from
the binary ordering we express the latter via ≤b and ≥b where necessary. We note for later
reference that the natural ordering is an extension of the binary ordering in the sense that
p ≤b q implies p ≤ q, as well as p ≥b q implies p ≥ q for all p, q ∈ N. To put it differently,
we have Pn. sub(p) ⊆ [0, p] and Pn. super(p) ⊆ [p, n − 1], where we use the handy interval

notation [p, q] with respect to the natural ordering, i.e., [p, q] = {x | p ≤ x ≤ q}.
Figure 1 shows the poset P16.
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✓
✓
✓
✓
✓

✉11✓
✓
✓
✓
✓

✉12❍❍❍❍❍❍❍❍❍❍

❙
❙
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❙
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✉14❍❍❍❍❍❍❍❍❍❍✉15

Figure 1: The Boolean poset B4 = P16 with 16 elements.

If n is of the form n = 2k, then Pn is a Boolean poset, which we also denote by Bk. The
atoms of Bk are the elements 20, 21, . . . , 2k−2, 2k−1 and the dual atoms are the elements
2k − 2, 2k − 3, . . . , 2k − 1− 2k−1. For this Boolean poset we have a slightly closer connection
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between the binary and the linear ordering. That is,

Pn. super(p) = [p, n− 1] if and only if p = 2k − 2m for some m ≤ k, (1)

Pn. sub(p) = [0, p] if and only if p = 2m − 1 for some m ≤ k. (2)

Both are immediate consequences of the sum formula 2m−1 − 1 =
i=m−1∑

i=0

2i.

Another way to see this is via the binary representation of the elements of Bk as a
0-1–sequence. So for k = 4 these elements are

2k − 20 = 15 = 1111,

2k − 21 = 14 = 1110,

2k − 22 = 12 = 1100,

2k − 23 = 8 = 1000,

2k − 24 = 0 = 0000.

In general, these elements are those, whose binary representation is a sequence with ‘leading
ones’.

Every automorphism of Bk is determined by its action on the atoms, and therefore the
automorpism group of Bk is isomorphic to the symmetric group on k elements. Of particular
interest in the following is the atom inflection β, which maps the atom 20 onto the atom
2k−1, the atom 21 onto the atom 2k−2, and so on. Figure 2 shows the order automorphism
β of B4. (Note that in order to avoid excessive arrows we restrict ourselves to indicate the
action by an appropriate labelling.) We also denote the isomorphism that exchanges the
atoms 2i and 2j and keeps all the other atoms fixed, by ρi,j.

Figure 3 shows ρ0,1 on B4.
The complementation γ defined by γ(x) = 2k − 1 − x is an order anti-automorphism.

Figure 4 shows γ on B4.
The composition δ = βγ is an order anti-automorphism that acts like a top-down inflec-

tion. Figure 5 shows δ on B4.
And since γ commutes with all the order isomorphisms, the group of all order automor-

phisms and order anti-automorphisms of Bk is is isomorphic to the (direct) product of the
symmetric group and an inflection group of order 2.

Let Dn denote the lattice I(Pn). Then for P8 as shown in Figure 6, the lattice D8 consists
of the 20 semi-ideals

∅, {0}, {0, 1}, {0, 2}, {0, 4},

{0, 1, 2}, {0, 1, 4}, {0, 2, 4}, {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 4, 5}, {0, 2, 4, 6},

{0, 1, 2, 3, 4}, {0, 1, 2, 4, 5}, {0, 1, 2, 4, 6}, {0, 1, 2, 3, 4, 5}, {0, 1, 2, 4, 6}, {0, 1, 2, 5, 6},

{0, 1, 2, 3, 4, 5, 6}{0, 1, 2, 3, 4, 5, 6, 7}

and has the lattice diagram of Figure 7.
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✉0 = β(0)❍❍❍❍❍❍❍❍❍❍
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✘✘✘✘✘✘✘✘✘✘✘✘✘✘
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❙

❙
❙

❙

✓
✓
✓
✓
✓

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉2 = β(4)❍❍❍❍❍❍❍❍❍❍

✓
✓
✓
✓
✓

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉3 = β(12)✓
✓
✓
✓
✓

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉4 = β(2)❍❍❍❍❍❍❍❍❍❍

❙
❙

❙
❙

❙

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉5 = β(10)❙
❙

❙
❙

❙

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉6 = β(6)❍❍❍❍❍❍❍❍❍❍

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉7 = β(14)✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉8 = β(1)❍❍❍❍❍❍❍❍❍❍

❙
❙

❙
❙

❙

✓
✓
✓
✓
✓

✉9 = β(9)❙
❙

❙
❙

❙

✓
✓
✓
✓
✓

✉10 = β(5)❍❍❍❍❍❍❍❍❍❍

✓
✓
✓
✓
✓

✉11 = β(13)✓
✓
✓
✓
✓

✉12 = β(3)❍❍❍❍❍❍❍❍❍❍

❙
❙

❙
❙

❙
✉13 = β(11)❙

❙
❙

❙
❙

✉14 = β(7)❍❍❍❍❍❍❍❍❍❍✉15 = β(15)

Figure 2: The action of β on B4 = P16.

If we let D01 denote the variety of all distributive lattices with 0 and 1, and FD01(n)
denote the free algebra of D01 on n generators, then it is well known that D2n

∼= FD01(n)
for all n ∈ N.

The values of A132581 and its difference sequence A132582 have been computed for the
first 212 terms (J. M. Aranda). In order to illustrate the results of the following sections, we
list the first 32 terms in Table 1.

3 Formulas for F (n)

An old result allowing a (recursive) computation of the number of anti-chains of a poset is
taken from Berman and Köhler [2, Thm. 2.1].

Lemma 1. For every poset P and every p ∈ P , we have α(P ) = α(P \ {p})+α(cocone(p)).

Applying this to the poset Pn and the element n− 1 gives

F (n) = F (n− 1) + α(cocone(n− 1)). (3)

Actually (3) is still the basis for the computation of the known sequence terms. For later
use we introduce the notion of a pivot. For a poset Q and an element q ∈ Q we say that the
poset Q pivots on the element q to produce the two smaller sets Q \ {q} and Q. cocone(q).

Using the arguments of Lemma 1 in a slightly more sophisticated way one can obtain the
following alternative from a Campo and Erné [4, Cor. 3.2].

Lemma 2. For every poset P and every p ∈ P , we have α(P ) = α(cosuper(p))+α(cosub(p)).
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✉0 = ρ0,1(0)❍❍❍❍❍❍❍❍❍❍

❙
❙

❙
❙

❙

✓
✓
✓
✓
✓

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉1 = ρ0,1(2)❙
❙

❙
❙

❙

✓
✓
✓
✓
✓

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉2 = ρ0,1(1)❍❍❍❍❍❍❍❍❍❍

✓
✓
✓
✓
✓

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉3 = ρ0,1(3)✓
✓
✓
✓
✓

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉4 = ρ0,1(4)❍❍❍❍❍❍❍❍❍❍

❙
❙

❙
❙

❙

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉5 = ρ0,1(6)❙
❙

❙
❙

❙

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉6 = ρ0,1(5)❍❍❍❍❍❍❍❍❍❍

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉7 = ρ0,1(7)✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉8 = ρ0,1(8)❍❍❍❍❍❍❍❍❍❍

❙
❙

❙
❙

❙

✓
✓
✓
✓
✓

✉9 = ρ0,1(10)❙
❙

❙
❙

❙

✓
✓
✓
✓
✓

✉10 = ρ0,1(9)❍❍❍❍❍❍❍❍❍❍

✓
✓
✓
✓
✓

✉11 = ρ0,1(11)✓
✓
✓
✓
✓

✉12 = ρ0,1(12)❍❍❍❍❍❍❍❍❍❍

❙
❙

❙
❙

❙
✉13 = ρ0,1(14)❙

❙
❙

❙
❙

✉14 = ρ0,1(13)❍❍❍❍❍❍❍❍❍❍✉15 = ρ0,1(15)

Figure 3: The action of ρ on B4 = P16.

Applying this to the Boolean poset Bn and an atom of the form 2k we get

Formula 3. For all n, k ∈ N with k ≤ n, we have F (2n) = F (2n − 2k) + F (2n − 2n−k).

This gives the following interesting special cases

F (2n) = F (2n − 1) + 1,

F (2n)F (2n − 2) + F (2n−1),

F (2n) = F (2n − 4) + F (3 · 2n−2).

In particular, the case where n is even and k = n
2
yields F (2n) = 2 · F (2n − 2k), and this is

another proof of the fact that |FD(n)| is even for even n.
Formula 3 was stated without proof by J. M. Aranda in the Formula section of A132581.
Before starting the proof of Formula 3 we begin with some general remarks about the

elements 2n−2k of Bn. As already mentioned in Section 2 (1),(2), integers of the form 2n−2k

have the unique and special property that [2n − 2k, 2n − 1] = super(2n − 2k). The elements
2n − 2k form a maximal chain in Bn that appears on the right side of the diagram of Bn.
The complement of 2n−2k is 2k−1 and all of these complements appear as a maximal chain
on the left side in the diagram of Bn. And it is also easy to see that the anti-automorphism
δ maps 2n − 2k onto 2n − 2n−k. As a result, the poset cone(2n − 2k) is dually isomorphic to
cone(2n − 2n−k). In particular, cone(2n − 2k) is isomorphic to the poset Bk placed above the
poset Bn−k with the bottom element of Bk equal to the top element of Bn−k. This can also
be expressed as

cone(2n − 2k) = [2n − 2k, 2n − 1] ∪ {i · 2k | i = 0, 1, . . . , 2n−k − 1}. (4)
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✉0 = γ(15)❍❍❍❍❍❍❍❍❍❍

❙
❙

❙
❙

❙

✓
✓
✓
✓
✓

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉1 = γ(14)❙
❙

❙
❙

❙

✓
✓
✓
✓
✓

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉2 = γ(13)❍❍❍❍❍❍❍❍❍❍

✓
✓
✓
✓
✓

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉3 = γ(12)✓
✓
✓
✓
✓

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉4 = γ(11)❍❍❍❍❍❍❍❍❍❍

❙
❙

❙
❙

❙

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉5 = γ(10)❙
❙

❙
❙

❙

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉6 = γ(9)❍❍❍❍❍❍❍❍❍❍

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉7 = γ(8)✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✉8 = γ(7)❍❍❍❍❍❍❍❍❍❍

❙
❙

❙
❙

❙

✓
✓
✓
✓
✓

✉9 = γ(6)❙
❙

❙
❙

❙

✓
✓
✓
✓
✓

✉10 = γ(5)❍❍❍❍❍❍❍❍❍❍

✓
✓
✓
✓
✓

✉11 = γ(4)✓
✓
✓
✓
✓

✉12 = γ(3)❍❍❍❍❍❍❍❍❍❍

❙
❙

❙
❙

❙
✉13 = γ(2)❙

❙
❙

❙
❙

✉14 = γ(1)❍❍❍❍❍❍❍❍❍❍✉15 = γ(0)

Figure 4: The action of γ on B4 = P16.

In addition

Bn. cosuper(2
n − 2k) is isomorphic to P2n−2k (5)

Bn. cosub(2
n − 2k) is dually isomorphic to P2n−2n−k . (6)

We also note that (5) and (6) hold for every element of rank n − k, i.e., for every element
above exactly n− k atoms.

Proof. (of Formula 3) Combining (5), (6), and Lemma 2 gives the result.

Using the principle of inclusion and exclusion one can easily extend the result of Lemma
2 to a summation of more terms.

Lemma 4. For every poset P and every p, q ∈ P , we have α(P ) = α(cosuper(p, q)) +
α(cosub(p)) + α(cosub(q))− α(cosub(p, q)).

Lemma 5. For every poset P and every p, q ∈ P , we have α(P ) = α(cosub(p, q)) +
α(cosuper(p)) + α(cosuper(q))− α(cosuper(p, q)).

With the help of Lemma 4 and and two conveniently chosen elements of Bn we get

Formula 6. For k, n ∈ N with 1 ≤ k < n, we have F (2n) = F (2n−2n−k−2n−k−1)+2F (2n−
2k)− F (2n − 2k − 2k−1).

E.g., for n = 5, k = 2 we have F (32) = F (20) + 2 · F (28) − F (26) and for n = 5, k = 3
we have F (32) = F (26) + 2 · F (24)− F (20).

Proof. Let P = Bn. We consider the two elements a1 = 2n−2n−k and a2 = 2n−2n−k−2n−k−1

and note that a2 is the image of a1 under the automorphism ρn−k,n−k−1, that exchanges the
atoms 2n−k and 2n−k−1 and keeps the other atoms fixed.
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✓
✓
✓
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❙
❙

❙
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❙
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Figure 5: The action of δ on B4 = P16.

✉ 7

✉ 6◗
◗

◗◗

✉ 5✉ 3✑
✑
✑✑

✉ 4◗
◗

◗◗

✉ 2◗
◗

◗◗

✑
✑
✑✑

✉ 1✑
✑
✑✑

✉ 0◗
◗

◗◗

✑
✑
✑✑

Figure 6: The Boolean poset B3 = P8 with 8 elements.

By Lemma 4 we have F (2n) = α(P. cosuper(a1, a2))+α(P. cosub(a1))+α(P. cosub(a2))−
α(P. cosub(a1, a2)). We first observe that P. cosuper(a1, a2) = Pa2 , which accounts for the
first term in the formula.

Moreover α(P. cosub(a1)) = F (2n − 2k) by (5). And as a1 is mapped onto a2 by the
automorphism ρn−k,n−k−1, we have the same result for P. cosub(a2). This accounts for the
second term in the formula.

To account for the subtraction of the last term we use the anti-automorphism δ as in
the derivation of (4). Let bi = δ(a1) for i = 1, 2. Then P. cosub(a1, a2) is dually isomorphic
to P. cosuper(b1, b2) and by the argument of the first part this shows that α(cosub(a1, a2) =
α(P. cosuper(b1, b2)) = F (b2).

In addition, it would be possible to formulate an analog to Lemma 4 for three elements.
There was, however, no immediate application of that to gain another recursion formula
involving F -terms.

Other recursions are possible, but they are more conveniently formulated using the terms
of the ∆-sequence—we will discuss that in the following section.
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✑
✑✑

✉◗
◗
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✑
✑
✑✑

✉

Figure 7: The lattice D8.

4 Formulas for ∆(n)

Let d(n) denote the poset Pn. cosub(n − 1). As n − 1 is a maximal element of Pn we have
Pn. cosuper(n − 1) = Pn \ {n − 1} and Pn. cosub(n − 1) = Pn. cocone(n − 1) and therefore
∆(n) = α(d(n)) by Lemma 1 and Lemma 2.

We wish to find formulas for ∆(n) that involve the functions ∆ and F applied to argu-
ments that are less than n.

Formula 7. For all n, k ∈ N with 0 ≤ k ≤ n, we have ∆(2n − 2k + 1) = ∆(2n − 2n−k + 1).

E.g., for n = 5, k = 2 we have ∆(29) = ∆(25).

Proof. In order to prove the formula it suffices to show that the poset d(2n−2k+1) is dually
isomorphic to d(2n + 2n−k + 1). By definition, we have

d(2n − 2k + 1) = P2n−2k+1. cocone(2
n − 2k).

And by (5) we have Bn = [0, 2n − 2k] ∪ super(2n − 2k). Therefore

Bn. cocone(2
n − 2k) = P2n−2k+1. cocone(2

n − 2k) = d(2n − 2k + 1).

And as δ(2n − 2k) = 2n − 2n−k, we get

δ(d(2n − 2k + 1)) = δ(Bn. cocone(2
n − 2k)) = Bn. cocone(2

n − 2n−k) = d(2n − 2n−k + 1).
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n F (n) ∆(n) n F (n) ∆(n)

1 2 1 17 335 167

2 3 1 18 483 148

3 5 2 19 765 282

4 6 1 20 849 84

5 11 5 21 1466 617

6 14 3 22 1681 215

7 19 5 23 1988 307

8 20 1 24 2008 20

9 39 19 25 3700 1692

10 53 14 26 4414 714

11 78 25 27 5489 1075

12 84 6 28 5573 84

13 134 50 29 7265 1692

14 148 14 30 7413 148

15 167 19 31 7580 167

16 168 1 32 7581 1

Table 1: F (n) and ∆(n).

The fact that Bn. cocone(2
n − 2k) = d(2n − 2k + 1) allows for a description of the poset

d(2n−2k+1) as follows. The minimal elements of this poset are the k atoms 20, 21, . . . , 2k−1

of Bn. The maximal elements of this poset are the n− k co-atoms

(2n − 1)− 2n−1, (2n − 1)− 2n−2, . . . , 2k

of Bn. An element b of Bn is in d(2n − 2k + 1) if and only if there exist elements a and c

such that a ≤ b ≤ c with a one of the k atoms in this list of minimal elements and c one
of the n − k co-atoms in this list of maximal elements. Despite this description, we do not
have a direct formula for the number of anti-chains in this poset.

We do have, however, a sum formula, which can be proven along the same lines as Formula
6.

Formula 8. For all k, n ∈ N with 1 ≤ k ≤ n− 1, we have

∆(2n − 2k + 1) = ∆(2n − 2k − 2k−1 + 1) + ∆(2n − 2n−k − 2n−k−1 + 1).

E.g., for n = 5, k = 2 we have ∆(29) = ∆(27)+∆(21) and, combining this with Formula
7, ∆(27) = ∆(25)−∆(21).

Proof. Let a = 2n − 2k and P = Pa+1, Then d(a+ 1) = P. cosub(a). Let

x = ρk−1,k(a) = 2n − 2k − 2k−1.
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Then P. super(x) = {i | x ≤ i < a}, since x is covered by the k−1 elements x+20, . . . , x+2k−2.
As a result, P. cosuper(x) = P \ {i | x ≤ i < a} and that is easily seen to be isomorphic to
Px+1 via the isomorphism ρk−1,k.

We form d1 = d(a + 1). cosub(x) and d2 = d(a + 1). cosuper(x). By Lemma 2 we have
∆(a+ 1) = α(d1) + α(d2). So it remains to show that α(d2) = α(d(2n − 2k − 2k−1 + 1)) and
α(d1) = α(d(2n − 2n−k − 2n−k−1 + 1)).

For d2 this is rather immediate, since d2 = P. cosuper(x). cosub(a) and that is, by the
remark above, isomorphic to Px+1. cosub(x), which is d(x+ 1).

For d1 this is not as obvious, but we can make use of the dual isomorphism between
d(a + 1) and d(2n + 2n−k + 1) of the proof of Formula 7. In fact, δ(a) = 2n − 2n−k and
δ(x) = 2n − 2n−k − 2n−k−1. This implies that d1 is dually isomorphic to

d(2n + 2n−k + 1). cosuper(2n − 2n−k − 2n−k−1).

And this finally is, by the same reasoning as for d2 above, isomorphic to d(2n − 2n−k −
2n−k−1 + 1).

Applying Formula 8 for specific combinations of n, k gives some interesting connections.
For even n, say n = 2q, we get

∆(22q − 2q + 1) = 2 ·∆(22q − 2q − 2q−1 + 1),

e.g., ∆(13) = 2 ·∆(11) or ∆(57) = 2 ·∆(53).
An additional curiosity here is that ∆(13) = 50 and 50 is the largest ∆ value among all

∆(i) for i ≤ 24 and ∆(57) = 2453690 is the largest ∆ value among all ∆(i) for 1 ≤ i ≤ 26.
This suggests the general result for n = 2q that ∆(22q − 2q + 1) is the largest value of ∆(i)
for i ≤ n.

If we continue to speculate in this way for n odd, say, n = 2q − 1 and if we look for the
value of ∆(i) that is largest among all i ≤ 2n, then

for n = 2 · 2− 1 = 3 the largest value is 5 = ∆(5) = ∆(7),

for n = 2 · 3− 1 = 5 the largest value is 1692 = ∆(25) = ∆(29),

for n = 2 · 4− 1 = 7 the largest value is 510955171111 = ∆(113) = ∆(121).

This suggests that in general the largest ∆(i) value for i ≤ n = 2q − 1 is obtained by
∆(22q−1 − 2q−1 + 1) and by ∆(22q−1 − 2q + 1). Proving this may be quite difficult.

We also note that from Table 1 we see that the equalities

∆(25 − 3) = 6∆(24 + 3) and

∆(24 − 3) = 2 ·∆(23 + 3)

hold. But ∆(26 − 3) = 580655 = 5 · 116131, and 116131 is prime and is not a ∆ or an F

value.
Here are some other recursion formulas.
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Formula 9. For all k, n ∈ N with 0 ≤ k ≤ n− 1, we have ∆(2n − 2k) = F (2n−1 − 2k).

Proof. Let P = P2n and a = 2n − 2k. Then by (5) P. cosuper(a) = Pa and therefore
d(a) = P. cosuper(a). cosub(a− 1). We now observe that a− 1 = 2n − 1− 2k is a dual atom
of P and, as noted right after (6), this implies that the poset Q with

Q = P. cosub(a− 1)

is dually isomorphic to P2n−1 . If φ is this dual isomorphism then

φ(Q. cosuper(a)) = P2n−1 . cosuper(φ(a))

and φ(a) has rank k in P2n−1 . As a result, φ(Q. cosuper(a)) is isomorphic to P2n−1
−2k , which

proves Formula 9.

Formula 10. For all n, k ∈ N with 0 ≤ k ≤ n− 1, we have ∆(2n + 2k) = F (2n − 2k).

Proof. ∆(2n + 2k) = α(P2n+2k . cocone(2
n + 2k − 1)). The element 2n + 2k − 1 is the join

in the lattice Bn+1 of the atom 2n and 2k − 1. So 2k − 1 is covered by 2n + 2k − 1. Thus,
the semi-ideal sub(2n + 2k − 1) is the union of the interval [0, 2k − 1] and the interval
[2n, 2n+2k − 1]. Therefore, the poset P2n+2k . cocone(2

n+2k − 1) consists of P2n \P2k , which
is dually isomorphic to P2n−2k .

We next find formulas for ∆(2n + i) for i ≤ 7 that only involve the functions ∆ and
F applied to arguments less than 2n + i. By virtue of Formula 10 we need only consider
i = 3, 5, 6, 7. The proofs will involve frequent use of the pivot notion introduced right after
Lemma 1.

Let Q denote P2n+i. cocone(2
n + i − 1). Then ∆(2n + i) = α(Q) and for any p ∈ Q by

Lemma 1 we have α(Q) is the sum α(Q \ {p}) + α(Q. cocone(p)). If both summands are
known then we are done. If not then choose a poset for which the α value is not known and
apply Lemma 1. Continue in this way until all the α values are known and add up these
values. This will be a formula for ∆(2n + i).

In the context in which we are working a poset S has the value of α(S) known if S or its
dual is isomorphic to a Pk for k < 2n + i or to a poset whose α value was determined at an
earlier stage in the proof.

An important fact to consider in choosing the element on which a poset is to pivot is
that for any j ≤ i the poset [0, 2n − 1]∩ cocone(2n + j) is dually isomorphic to P2n−j, which
is a poset with a known α value. We use the heuristic of choosing pivot elements of the form
2n + j wherever possible so as to obtain posets that are either entirely in [0, 2n − 1] that are
dually isomorphic to Pr for r ≤ 2n or are isomorphic to a Pr for r = 2n + j for which α(Pr)
has already been determined. This method suffices in our proofs for i = 3, 6, and 7. For
determining α(Q) for Q ⊆ [0, 2n − 1] that are not isomorphic or dually isomorphic to a Pk

we look for a poset Q′ for which α(Q′) had been determined by the use of Lemma 1 earlier
in the proof. This is the case for our proof of the formula for ∆(2n + 5).
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Formula 11. For every n ∈ N with n ≥ 2, we have ∆(2n + 3) = F (2n − 2) + F (2n − 3).

Proof. The poset Q = P2n+3. cocone(2
n+2) consists of [0, 2n+2]\{0, 21, 2n, 2n+2}. Pivoting

it with p = 2n +1 yields Q \ {p} = P2n \ {0, 1} and Q. cocone(p) = P2n \ {0, 1, 2}. And these
posets are dually isomorphic to P2n−2 and P2n−3 as desired.

Formula 12. For every n ∈ N with n ≥ 1, we have

∆(2n + 5) = 2 ·∆(2n + 3) + ∆(2n + 4)−∆(2n−1 + 3)−∆(2n−1 + 4).

E.g., ∆(21) = 2 ·∆(19) + ∆(20)−∆(11)−∆(12) = 2 · 282 + 84− 25− 6 = 617.

Proof. Let Q = d(2n + 5). Then by definition

Q = P2n+5. cocone(2
n + 4) = P2n+5 \ {0, 4, 2

n, 2n + 4}.

First pivot Q on the element 2n +3. Then we get the pivot components Q1 and Q2 with
Q1 = Q \ {2n+3} and Q2 = Q. cocone(2n+3) = [5, 2n− 1], which is easily seen to be dually
isomorphic to P2n−5. This pivot of Q gives

α(Q) = α(Q1) + α(Q2) (7)

α(Q2) = F (2n − 5). (8)

Another pivoting of Q1 at 2n + 2 leads to the components Q11 = Q1 \ {2
n + 2} and Q12 =

Q1. cocone(2
n+2). Now Q11 is easily seen to be isomorphic to d(2n+3) via the isomorphism

ρ1,2 of Bn that interchanges the atoms 21 and 22. This accounts for one of the occurrences
of ∆(2n + 3) in the formula.

α(Q1) = α(Q11) + α(Q12) (9)

α(Q11) = α(d(2n + 3))) (10)

To obtain the other parts, we show that they arise as pivot components of known posets. In
fact, if we pivot Q11 at 2, we get Q111 = Q11 \ {2} and Q112 = Q11. cocone(2). We see that
Q111 = Q12 and Q112 is mapped onto d(2n−1 + 3) by the automorphism η of Pn+1 that fixes
the atom 20 and cycles the other atoms via 2n 7→ · · · 7→ 22 7→ 21 7→ 2n. Figure 8 shows η on
B4.

This gives
α(Q11) = α(d(2n + 3)) = α(Q12) + α(d(2n−1 + 3)). (11)

Finally we consider d(2n+4) = {4, . . . , 2n−1} and pivot it on 4. Obviously d(2n+4)\{4} =
Q2. And d(2n + 4). cocone(4) is mapped onto d(2n−1 + 4) by the automorphism ρ2,n−1 that
exchanges the atoms 22 and 2n−1. This gives

α(d(2n + 4)) = α(d(2n−1 + 4)) + α(Q2). (12)
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Figure 8: The action of η on B4 = P16.

Combining all these intermediate results we end up with

α(Q2) = α(d(2n + 4))− α(d(2n−1 + 4)) by (12) (13)

α(Q12) = α(d(2n + 3))− α(d(2n−1 + 3)) by (11) (14)

α(Q1) = 2α(d(2n + 3))− α(d(2n−1 + 3)) by (9), (10) and (14) (15)

α(Q) = 2α(d(2n + 3)) + α(d(2n + 4)) − (16)

α(d(2n−1 + 4)− α(d(2n−1 + 3)) by (7), (13) and (15),

and this is Formula 12.

Formula 13. For every n ∈ N with n ≥ 3, we have

∆(2n + 22 + 21) = ∆(2n + 6) = F (2n − 4) + F (2n − 5) + F (2n − 6).

E.g., ∆(22) = F (12) + F (11) + F (10) = 53 + 78 + 84 = 215.

Proof. By definition the poset d(2n + 22 + 21) is P2n+22+21 . cocone(2
n + 22 + 20), which is

P2n+22 \ {0, 1, 4, 5, 2
n, 2n + 1}. Let P denote d(2n + 22 + 21). First pivot P on the element

2n+2+1. We have P. cocone(2n+2+1) = P2n \ {0, 1, 2, 3, 4, 5}, which is dually isomorphic
to P2n−6.

Let Q denote P \ {2n + 2 + 1}. We pivot Q on the element 2n + 2. We have

Q. cocone(2n + 2) = P2n \ {0, 1, 2, 4, 5},

which is dually isomorphic to P2n−5. We also have Q \ {2n + 2} = P2n \ {0, 1, 4, 5}, which is
dually isomorphic to P2n−4. Thus, ∆(2n + 22 + 21) is the sum of F (2n − 6), F (2n − 5), and
F (2n − 4).
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Formula 14. For every n ∈ N with n ≥ 3, we have

∆(2n + 22 + 21 + 20) = ∆(2n + 7) = F (2n − 7) + F (2n − 6) + ∆(2n + 6).

E.g., ∆(23) = F (9) + F (10) + ∆(22) = 39 + 53 + 215 = 307.
Note that this formula for a ∆ value involves both F values and a ∆ value.

Proof. Let P be the poset

P = d(2n + 22 + 21 + 20) = d(2n + 7) = P2n+7. cocone(2
n + 6)

= (P2n \ {0, 2, 4, 6}) ∪ {2n + 1, 2n + 3, 2n + 5}.

We pivot P on the element 2n + 5.
Then P. cocone(2n+5) = (P2n \{0, 1, 2, 4, 5, 6})∪{2n+3}. We pivot P. cocone(2n+5) on

the element 2n + 3 to get the posets P2n \ {0, 1, 2, 4, 5, 6} and P2n \ {0, 1, 2, 3, 4, 5, 6}. These
are dually isomorphic to P2n−6 and P2n−7, respectively.

We also have P2n+5 = (P2n \ {0, 2, 4, 6}) ∪ {2n + 1, 2n + 3}. But then

d(2n + 6) = P2n+6. cocone(2
n + 5) = (P2n \ {0, 1, 4, 5}) ∪ {2n + 2, 2n + 3},

which is isomorphic to the poset P2n+5 by the automorphism ρ0,1 of the Boolean lattice
B2m+1 that interchanges the atoms 20 and 21 and leaves all the other atoms fixed. Hence
the number of anti-chains in the poset P2n+5 is equal to ∆(2n + 6). Thus ∆(2n + 7) =
∆(2n + 6) + F (2n − 6) + F (2n − 7).

The proof of our final formula does not involve pivots but does make use of the inclusion-
exclusion argument of Lemma 5.

Formula 15. For every n ∈ N with n ≥ 1, we have

∆(2n + 2n−1 + 1) = F (2n + 2n−1 − 1)− 2 · F (2n − 2).

E.g., ∆(25) = F (23)− 2 · F (14).

Proof. Let a = 2n + 2n−1, and let Q be the poset Pa. Then Q = {0, . . . , a − 1} and it is
easily seen that d(a+ 1) = Q \ {0, 2n−1, 2n} = Q. cosub(2n−1, 2n).

From Lemma 5 we infer that

α(Q) = α(Q. cosub(2n−1, 2n)) + α(Q. cosuper(2n−1) +

α(Q. cosuper(2n))− α(Q. cosuper(2n−1, 2n)).

Again it is easily seen that Q. cosuper(2n) is equal to P2n and via the isomorphism ρn−1,n of
Pn+1 we see that Q. cosuper(2n−1) is isomorphic to P2n .

Similarly we infer that Q. cosuper(2n−1, 2n) is equal to P2n−1 .
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Combining all these observations we see that

F (a) = ∆(a+ 1) + 2 · F (2n)− F (2n−1). (17)

Now by the definition of ∆, we have

F (a) = F (a− 1) + ∆(a) (18)

and by Formula 10
∆(a) = F (2n − 2n−1) = F (2n−1). (19)

Substituting first (18) and then (19) into (17) we get

∆(a+ 1) = F (a− 1) + 2 · F (2n−1)− 2 · F (2n). (20)

By Formula 3 we have

F (2n) = F (2n − 21) + F (2n − 2n−1) = F (2n − 2) + F (2n−1) (21)

Finally substituting (21) into (20) we arrive at

∆(a+ 1) = F (a− 1)− 2 · F (2n − 2), (22)

which is Formula 15.

5 Summary

These are the formulas obtained so far.
For k, n ∈ N with 0 < k < n

Formula 3: F (2n) = F (2n − 2k) + F (2n − 2n−k),

Formula 6: F (2n) = F (2n − 2n−k − 2n−k−1) + 2F (2n − 2k)− F (2n − 2k − 2k−1),

Formula 7: ∆(2n − 2k + 1) = ∆(2n − 2n−k + 1),

Formula 8: ∆(2n − 2k + 1) = ∆(2n − 2k − 2k−1 + 1) + ∆(2n − 2n−k − 2n−k−1 + 1),

Formula 9: ∆(2n − 2k) = F (2n−1 − 2k),

Formula 10: ∆(2n + 2k) = F (2n − 2k),

Formula 11: ∆(2n + 21 + 20) = F (2n − 2) + F (2n − 3),

Formula 12: ∆(2n +22 +20) = 2 ·∆(2n +3)+∆(2n +4)−∆(2n−1 +3)−∆(2n−1 +4),

Formula 13: ∆(2n + 22 + 21) = F (2n − 4) + F (2n − 5) + F (2n − 6),
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Formula 14: ∆(2n + 22 + 21 + 20) = F (2n − 7) + F (2n − 6) + ∆(2n + 6),

Formula 15: ∆(2n + 2n−1 + 1) = F (2n + 2n−1 − 1)− 2 · F (2n − 2).

An application of these formulas gives numerical values for the values of ∆ for n =
16, . . . , 32—with the exception of ∆(26), where we leave it as an open question whether the
formula given there is a special case of a more general one. Thus we have

∆(16) = 1 by Formula 3,

∆(17) = F (15) = 167 by Formula 10,

∆(18) = F (14) = 148 by Formula 10,

∆(19) = F (13) + F (14) = 282 by Formula 11,

∆(20) = F (12) = 84 by Formula 10,

∆(21) = 2 ·∆(19) + ∆(20)−∆(11)−∆(12) = 617 by Formula 12,

∆(22) = F (12) + F (11) + F (10) = 215 by Formula 10,

∆(23) = F (9) + F (10) + ∆(22) = 307 by Formula 14,

∆(24) = F (8) = 20 by Formula 10,

∆(25) = F (23)− 2 · F (14) = 1692 by Formula 15,

∆(26) = F (18) + F (13) + F (11) + F (7) = 714,

∆(27) = ∆(25)−∆(21) = 1075 by Formulas 7 and 8,

∆(28) = F (12) = 84 by Formula 9,

∆(29) = ∆(25) = 1692 by Formula 7,

∆(30) = F (14) = 148 by Formula 9,

∆(31) = F (15) = 167 by Formula 9,

∆(32) = 1 by Formula 3.
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