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Abstract

This paper discusses complementary equations, such as an = bn + b2n, in which
(an) and (bn) are strictly increasing complementary sequences for which, in addition
to the subscript n, at least one subscript in advance of n, such as n+ 1 or 2n, occurs.
Some of the equations are solved with proofs, and others are presented as conjectures
or examples based on Mathematica programs that appear in the final section of the
paper.
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1 Introduction

Let N = {1, 2, . . .} and N0 = N∪ {0}. Many sequences (an) in N are defined by an equation
that tells how to determine each term from preceding terms; e.g., the Fibonacci sequence,
(Fn), arises from the equation Fn = Fn−1 + Fn−2, starting with F1 = 1 and F2 = 1. Less
familiar are sequences generated by a complementary equation—that is, an equation that
refers to both (an) and its complement in N.

In this paper, a = (an) denotes an increasing sequence in N such that the complement
in N of the set A = {an : n ≥ 0} is infinite. We write the complement as B and denote
by b = (bn) the sequence of numbers in B in increasing order. A classic example of a
complementary equation is

bn = an + n where a1 = 1,

with solution given by
an = ⌊nτ⌋, bn = n+ ⌊nτ⌋,

where τ = (1+
√
5)/2, the golden ratio. The sequences (an) and (bn) are the lower and upper

Wythoff sequences, A000201 and A001500 in the On-line Encyclopedia of Integer Sequences

[6]; also see [4] and [5].

2 Advanced subscripts

It may seem surprising that complementary equations with advanced subscripts, such as
an = bn + b2n, make sense, since 2n comes after n. The first theorem will show that, with
initial value b0 = 1, this equation and many others make sense and have unique solutions.

Theorem 1. Suppose that f : N2 → N satisfies f(1, 1) ≥ 2 and

f(m+ 1, n) ≥ f(m,n) + 1 and f(m,n+ 1) ≥ f(m,n) + 1

for all (m,n) ∈ N
2. If g, h : N0 → N are strictly increasing functions, then the complementary

equation

an = f(bg(n), bh(n)), with b0 = 1, (1)

has a unique solution.

Proof. We assume that a solution (a, b) = ((an), (bn)) exists and then confirm inductively
that it is uniquely determined; that is, a solution is generated inductively by (1), and it is
unique. For n ≥ 0,

f(bg(n), bh(n)) ≥ f(bg(n), bh(n) − 1) + 1

≥ f(bg(n), bh(n−1)) + 1

≥ f(bg(n) − 1, bh(n−1)) + 2

≥ f(bg(n−1), bh(n−1)) + 2,
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so that
an − an−1 ≥ 2. (2)

Since b0 = 1, we have a0 = f(b0, b0) = f(1, 1) ≥ 2. Then (2) implies a1 ≥ a0 + 2, so that
by complementation, the numbers bi are uniquely determined as the consecutive integers in
[a0 + 1, a1 − 1], and inductively, the set of bi are uniquely determined as the consecutive
integers in [an + 1, an+1 − 1], for all n ≥ 0.

Following is a list of some complementary equations to which Theorem 1 applies:

an = 2bn,

an = bn + bn+2,

an = 3bn + 2bn+2 − 5,

an = 2bn + b2n + 1,

an = b2n + 2bn+1,

an = b⌊n/2⌋ + b⌊3n/2⌋,

an = bnbn+1 + 1,

an = b2n + b2n+1.

The method of proof suggests that Theorem 1 could be extended to cover many more
types of equations with advanced subscripts, such as these:

an = an−1 + bn+1,

an = bn + bn+1 + bn+2,

an = bn+1 + n+ 1,

an = bn + b2n + b3n + b4n − 1.

It appears that for many complementary equations, exact formulas for solutions are
elusive and that generating the sequences depends on the mex function (minimal excludant),
which has been described as “unwieldy” [3]. Accordingly, aside from multi-case proofs for
certain simple-looking equations (in Sections 2 and 4), we rely on Mathematica programs, as
shown in Section 7, to generate sequences that reveal both expected and unexpected results,
leading to examples and conjectures based on experimentation.

3 The equation an = b2n + b4n, where b0 = 1

In this section, we consider equations an = bhn + bkhn, where h ≥ 2. (A different method
applies to the case h = 1, as in Section 5). First, we consider the special case an = b2n+ b4n,
and then we state conjectures for general h and k.
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Lemma 2. Suppose that a sequence β is given by

βn = r(m(n)) + 21⌊n/18⌋, (3)

where m(n) = n− 18⌊n/18⌋ and

r(m) =



















1, if m = 0;

m+ 2, if 1 ≤ m ≤ 7;

m+ 3, if 8 ≤ m ≤ 13;

m+ 4, if 14 ≤ m ≤ 17.

Then

β2n+2 − β2n =

{

3, if n ≡ 0 (mod 3);

2, if n 6≡ 0 (mod 3)

and

β4n+4 − β4n =

{

4 if n ≡ 2 (mod 3);

5 if n 6≡ 2 (mod 3).

Proof. For 0 ≤ n ≤ 17, we have m(n) = n, and values of r(n) as shown in Table 1.

n = m(n) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
r(n) 1 3 4 5 6 7 8 9 11 12 13 14 15 16 18 19 20 21

Table 1: Values of r(n)

By (3) we have

β2n+2 − β2n = r(m(2n+ 2))− r(m(2n)) + 21

(⌊

n+ 1

9

⌋

−
⌊n

9

⌋

)

,

which leads to cases, first for β2n+2 − β2n (Cases 1.1 and 1.2), then for β4n+4 − β4n.

Case 1.1: ⌊n+1
9
⌋ − ⌊n

9
⌋ = 0. Here, m(2n+ 2)−m(2n) = 2, so that

β2n+2 − β2n = r(m(2n+ 2))− r(m(2n)),

which, as in Table 1, is 3 if n ≡ 0 (mod 3) and 2 otherwise.

Case 1.2: ⌊n+1
9
⌋−⌊n

9
⌋ = 1. Here, nmust be of the form 9j−1, so thatm(2n) = m(18j−2) =

16 and m(2n+ 2) = m(18j) = 0. Then

β2n+2 − β2n = r(0)− r(16) + 21 = 2,
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as required, since n ≡ 2 (mod 3).

Case 2.1: ⌊2n+2
9

⌋ − ⌊2n
9
⌋ = 0. Here, m(4n+ 4)−m(4n) = 4, so that

β4n+4 − β4n = r(m(4n+ 4))− r(m(4n)),

which, as in Table 1, is 4 if n ≡ 2 (mod 3) and 5 otherwise.

Case 2.2: ⌊2n+2
9

⌋ − ⌊2n
9
⌋ = 1. We recognize two exhaustive subcases:

Subcase 2.2.1: 2n = 7 + 9j for some j, so that 2n + 2 = 9(j + 1). Here, m(4n) = 14 and
m(4n+ 4) = 0, whence

β4n+4 − β4n = r(0)− r(14) + 21 = 1− 18 + 21 = 4,

as required, since n ≡ 2 (mod 3).

Subcase 2.2.2: 2n = 8 + 9j for some j, so that 2n + 2 = 1 + 9(j + 1). Then m(4n) = 16
and m(4n+ 4) = 2, whence

β4n+4 − β4n = r(3)− r(16) + 21 = 4− 20 + 21 = 5,

as required, since n ≡ 1 (mod 3).

We are now ready for the main theorem of this section.

Theorem 3. Let a = (an) and b = (bn) be the strictly increasing complementary sequences

determined by the equation

an = b2n + b4n, where b0 = 1. (4)

Then

an =











2 + 21⌊n/3⌋, if m ≡ 0 (mod 3);

10 + 21⌊n/3⌋, if m ≡ 1 (mod 3);

17 + 21⌊n/3⌋, if m ≡ 2 (mod 3).

(5)

Proof. Since b0 = 1, we have a0 = 2 by (4), and since a and b are strictly increasing and
complementary, we have

2 < b1 < b2 < b3 < b4,

which implies that bi = 2+ i for i = 1, . . . , 4. Equation (4) implies a1 = b2+ b4 = 4+6 = 10,
so that bi = 3 + i for i = 5, 6, 7. Then a2 = b4 + b8 ≥ 6 + 10 = 16, and a2 = 6 + 11 = 17.
Thus, (5) is established for n = 0, 1, 2. Before assuming (5) as an induction hypothesis, we
note that

a3 = b6 + b12 = 8 + 15 = 23
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implies b13 = 16 and bi = 4 + i for i = 14, . . . , 17, so that, in regard to the sequence βn in
Lemma 2, we have bn = βn for n = 0, . . . , 17. Moreover, since b is the complement of a, we
have, for n = 0, . . . 17,

bn = r(m(n)) + 21⌊n/18⌋, (6)

where m(n) = n− 18⌊n/18⌋ and

r(m) =



















1, if m = 0;

m+ 2, if 1 ≤ m ≤ 7;

m+ 3, if 8 ≤ m ≤ 13;

m+ 4, if 14 ≤ m ≤ 17.

For use below, we note that (4) implies

an+1 = an + b4n+4 − b4n + b2n+2 − b2n (7)

for n ≥ 0. Now, as an induction hypothesis, assume that (5) holds for arbitrary n ≥ 2. We
have three cases, according as n ≡ 0, 1, 2 (mod 3).

Case 1: n ≡ 0 (mod 3). Here, an = 2 + 21⌊n/3⌋, and by Lemma 2, b2n+2 − b2n = 3 and
b4n+4 − b4n = 5, so that by (7),

an+1 = an + 8 = 10 + 21⌊n/3⌋ = 10 + 21⌊(n+ 1)/3⌋.

By complementation, we also have (6) for the numbers bi required for the following proof for
Case 2.

Case 2: n ≡ 1 (mod 3). Here, b2n+2 − b2n = 2 and b4n+4 − b4n = 5, so that

an+1 = an + 7 = 17 + 21⌊n/3⌋ = 17 + 21⌊(n+ 1)/3⌋.

By complementation, we also have (6) for the numbers bi required for the following proof for
Case 3.

Case 3: n ≡ 2 (mod 3). Here, b2n+2 − b2n = 2 and b4n+4 − b4n = 4, so that

an+1 = an + 6 = 23 + 21⌊n/3⌋ = 2 + (21 + 21⌊n/3⌋).

By complementation, we also have (6) for the numbers bi required for the next application
of the proof for Case 1, so that by the principle of mathematical induction, (5) holds for all
n ≥ 0.

Corollary 4. The sequence (bn) in Theorem 3 is identical to the sequence (βn) in Lemma 2.

Proof. A proof is included in the proof of Theorem 3.
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Corollary 5. The sequence a in Theorem 3 satisfies the recurrence

an+4 = an+3 + an+1 − an.

Proof. We shall make repeated use of Corollary 4. Let

B2 = b2n+2 − b2n, B4 = b4n+4 − b4n, B8 = b2n+8 − b2n+6, B16 = b4n+16 − b4n+12,

so that
an+4 − an+3 = B16 + B8 and an+1 − an = B4 +B2.

There are three cases:

Case 1: n ≡ 0 (mod 3).

B16 = vβ4m+4 − β4m for m = n+ 3, so that m ≡ 0 (mod 3), and B16 = 5.

B8 = β2m+2 − β2m for m = n+ 3, so that m ≡ 0 (mod 3), and B8 = 3.

B4 = β2m+4 − β4m for m = n, so that m ≡ 0 (mod 3), and B4 = 5.

B2 = β2m+2 − β2m for m = n, so that m ≡ 0 (mod 3), and B2 = 3.

Case 2: n ≡ 1 (mod 3).

B16 = β4m+4 − β4m for m = n+ 3, so that m ≡ 1 (mod 3), and B16 = 5.

B8 = β2m+2 − β2m for m = n+ 3, so that m ≡ 1 (mod 3), and B8 = 3.

B4 = β2m+4 − β4m for m = n, so that m ≡ 1 (mod 3), and B4 = 5.

B2 = β2m+2 − β2m for m = n, so that m ≡ 1 (mod 3), and B2 = 3.

Case 3: n ≡ 2 (mod 3).

B16 = β4m+4 − β4m for m = n+ 3, so that m ≡ 2 (mod 3), and B16 = 4.

B8 = β2m+2 − β2m for m = n+ 3, so that m ≡ 2 (mod 3), and B8 = 2.

B4 = β2m+4 − β4m for m = n, so that m ≡ 2 (mod 3), and B4 = 4.

B2 = β2m+2 − β2m for m = n, so that m ≡ 2 (mod 3), and B2 = 2.

In all the cases,
B16 + B8 = B4 +B2,

which is equivalent to
an+4 − an+3 = an+1 − an.

Next, we give a conjecture based on Program 7.1, which was used to generated Table 2.
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Conjecture 6. Let a = (an) and b = (bn) be the strictly increasing complementary sequences
determined by the equation

an = bhn + bkhn,

where h ≥ 2, k ≥ 2, and b0 = 1. Then a is a linear recurrence sequence given by

an = an−1 + an−k−1 − an−k−2

with initial terms

a0 = 2, a1 = h(k + 1) + 4, a2 = 2h(k + 1) + 5, . . . , ak = kh(k + 1) + k + 3.

The sequence a consists of the positive integers congruent modulo (k+1)(2k+ h+1) to the
numbers in {a0, a1, . . . , ak}, and the sequence b satisfies the linear recurrence

bn = bn−1 + bn−m − bn−m−1, where m = (k + 2)hk + h− 5.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
an = b2n + b4n 2 10 17 23 31 38 44 52 59 65 73 80 86 94
an = b2n + b6n 2 12 21 30 38 48 57 66 74 84 93 102 110 120
an = b2n + b8n 2 14 25 36 47 57 69 80 91 102 112 124 135 146
an = b3n + b6n 2 13 23 32 43 53 62 73 83 92 103 113 122 133
an = b3n + b9n 2 16 29 42 54 68 81 94 106 120 133 146 158 172
an = b4n + b8n 2 16 29 41 55 68 80 94 107 119 133 146 158 172

Table 2: First fourteen terms, an = bhn + bkhn, b0 = 1

In the next section we extend our earlier attention to the special case an = b2n + b4n by
adding a nonzero constant to the right-hand side.

4 The equation an = b2n + b4n + c, where b0 = 1

Theorem 3 gives a precise solution of an = b2n + b4n, with b0 = 1, and Corollary 5 shows
that (an) is more “regular” than might be thought if (5) were the only representations. We
shall see, however, that this sort of regularity does not extend to equations of the form
an = b2n + b4n + c when c ≥ 1.

Theorem 7. Let a = (an) and b = (bn) be the strictly increasing complementary sequences

determine by the equation

an = b2n + b4n + 1, where b0 = 1.

Then

an = 7n+

{

3, if n ≡ 0 (mod 3);

3 or 4, if n 6≡ 0 (mod 3).
(8)
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Proof. We have [2] inductively

b6n+3 ≥ 7n+ 5 and b6n+1 ≤ 7n+ 2,

so that
t+ ⌊(t+ 3)/6⌋+ 1 ≤ bt ≤ t+ ⌈(t− 1)/6⌉+ 1 (9)

for t = 6k + 3, . . . , 6k + 7. Thus, bt = t+ ⌈(t− 1)/6)⌉+ 1 except for

7k + 3 ≤ b6k+2 ≤ 7k + 4.

Consequently, 7n+ 3 ≤ an ≤ 7n+ 4, as desired.

To illustrate the “irregularity” of (8) when n 6≡ 0 (mod 3), let r = (rn) be the increasing
sequence of numbers n for which an = 7n+ 4:

r = (1, 5, 7, 10, 13, 14, 17, 19, 23, 25, 28, 32, 34, 37, 41, 44, 46, 47, 49, 50, . . .). (10)

Conjecture 8. The sequence r is not linearly recurrent, and

{an − an−1 : n ≥ 1} = {1, 2, 3, 4, 5}.

The five differences shown in 10 all occur as n ranges from 1 to 28. No other difference
occurs as n ranges up to 10000. Similar mysteries are found for other choices of c. Initial
terms of (an) are shown in Table 3, which was used to construct Table 3. Looking ahead,
it appears that the sequences (an) are much more “regular” for c ∈ {2, 3, 5}, than for some
other values of c; see Conjectures 14-16.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
an = b2n + b4n + 0 2 10 17 23 31 38 44 52 59 65 73 80 86 94
an = b2n + b4n + 1 3 11 17 24 31 39 45 53 59 66 74 80 87 95
an = b2n + b4n + 2 4 11 18 25 32 39 46 53 60 67 74 81 88 95
an = b2n + b4n + 3 5 12 19 26 33 40 47 54 61 68 75 82 89 96
an = b2n + b4n + 4 6 12 19 27 34 41 48 54 62 69 75 82 90 96
an = b2n + b4n + 5 7 13 20 28 34 41 49 55 62 70 76 83 91 97
an = b2n + b4n + 6 8 14 21 28 35 42 50 56 63 71 77 84 92 98
an = b2n + b4n + 7 9 15 22 28 36 43 50 57 64 70 78 85 92 99
an = b2n + b4n + 8 10 16 22 29 36 44 50 58 65 71 79 86 92 100

Table 3: an = b2n + b4n + c, for c = 0, 1, . . . , 8

With one exception, the data in Table 3, generated by Program 7.2, show nondecreasing
columns. It turns out that this exception is indicative of many others. In order to describe
them, we introduce some notation: for each c ≥ 1 and the equations

an = b2n + b4n + c and a∗n = b∗2n + b∗4n + c+ 1,where b0 = b∗0 = 1, (11)
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throughout this section let

N = an upper bound for n, depending on context;

m(c) = min{a∗n − an} for 0 ≤ n ≤ N = 5000;

M(c) = max{a∗n − an} for 0 ≤ n ≤ N = 5000;

T (c, i) = sequence of indices n for which a∗n − an = i;

∆(c, i) = set of distinct differences in T (c, i).

The choice of N varies as an experimental upper bound when sampling various (presumably)
unbounded sequences.

Note that the sets T (c, i) for i = m(c), . . . ,M(c) partition N0. We shall refer to m,M, T,
and ∆ in the following examples, which show various sorts of unwieldiness that appear when
comparing the sequences (an) and (a∗n) given by (11).

Example 9. For c = 0, we have m(c) = 0,M(c) = 1, and

T (0, 0) = (2, 4, 8, 11, 16, 20, . . .); ∆(0, 0) = {1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13};
T (0, 1) = (0, 1, 3, 5, 6, 7, 9, . . .); ∆(0, 1) = {1, 2, 3}.

In Example 9, ∆(0, 0) consists of 11 integers in the interval [1, 13], with 6 and 11 missing.
Table 4, generated by Program 7.3, shows the frequency of each difference a∗n − an, for n up
to N = 10000.

1 2 3 4 5 6 7 8 9 10 11 12 13
316 581 737 461 188 0 45 129 129 23 0 8 53

Table 4: Frequencies of differences in ∆(0, 0), n = 1, 2, . . . , N = 10000

Example 10. For c = 1, we have m(c) = 0,M(c) = 1, and

T (1, 0) = (1, 5, 7, 10, 13, 14, 17, 19 . . .),

∆(1, 0) = {1, 2, 3, 4, 5};
T (1, 1) = (0, 2, 3, 4, 6, 8, 9, 11, 12 . . .),

∆(1, 1) = {1, 2, 3}.

Example 11. For c = 2, we have m(c) = M(c) = 1, so that T (2, 1) = N0 and ∆(2, 1) = {1}.
Regarding Example 11, we pose this question: is 2 the only value of c for which m(c) =

M(c)? (Program 7.3, with c = 2 in the first instance and c = 3 in the second, confirms that
a∗n − an = 1 for n up to N = 10000).

In connection with Table 4, the difference a∗n − an is never 6 or 11 for N = 10000, and is
12 relatively rarely; indeed, the least n for which a∗n − an = 12 is n = 1325.

10



Example 12. For c = 6, we have m(c) = −1,M(c) = 1, and

T (6,−1) = (9, 18, 24, 27, 36, 45, 48 . . .),

∆(6,−1) = {3, 6, 9};
T (6, 0) = (3, 6, 12, 31, 33, 39, 51 . . .),

∆(6, 0) (see note below);

T (6, 1) = (0, 1, 2, 4, 5, 7, 8, 10, . . .),

∆(6, 1) = {1, 2}.

It appears that ∆(6, 0) is a much larger set, for large n, than all other sampled ∆(c, i).
Indeed, it seems possible that if n is not restricted to an upper bound, then ∆(6, 0) is infinite,
as suggested by the following data, in which “newcomers” are bolded:

For n = 1, . . . , N = 6000,

T (6, 0) = {3, 6, 9, 12, 18, 24, 27, 36, 39, 42, 48, 51, 54, 57, 66, 75, 81, 93, 99,
111, 117, 120, 123, 156, 162, 198, 237, 279, 354, 360, 480, 531, 660}.

For n = 1, . . . , N = 12000,

T (6, 0) = {3, 6, 9, 12, 18, 24, 27, 36, 39, 42, 48, 51, 54, 57, 66, 75, 81, 93, 99,
111, 117, 120, 123, 156, 162,171,180, 198, 237, 279, 354, 360, 480,

531, 660,711,849,1065}.
For n = 1, . . . , N = 16000,

T (6, 0) = {3, 6, 9, 12, 18, 24, 27, 36, 39, 42, 48, 51, 54, 57, 66, 75, 81, 93, 99,
111, 117, 120, 123, 156, 162, 171,174, 180, 198,225, 237,270, 279,

354, 360, 480, 531, 660, 711, 849,1062, 1065,1092}.

Example 13. For c = 9, we have m(c) = −1,M(c) = 2, and

T (9,−1) = (6),∆(9,−1) = (empty);

T (9, 0) = (8, 10, 11, 13, 16, 20, . . .),∆(9, 0) = {1, 2, 3, 4, 6, 7};
T (9, 1) = (0, 1, 2, 3, 4, 5, 6, 7, 9, . . .),∆(9, 1) = {1, 2, 3};
T (9, 2) = (20),∆(9, 2) = (empty).

In Example 13, T (9,−1) = (6) comes from a∗6 − a6 = 44− 45 = −1, and T (9, 2) = (2, 0)
comes from a∗20 − a20 = 144 − 142 = 2. Otherwise, for 0 ≤ n ≤ N = 5000, we have
0 ≤ a∗n − an ≤ 1.
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For 0 ≤ n ≤ N = 5000, and perhaps for all n > N = 5000,

(m(c),M(c)) = (0, 1) for c = 0, 1, 3, 4, 5, 7, 8, 10, 11, 12, 13, 15, 16, 17, 24, 25,

27, 28, 32, 33, 36, 48, 50, 56, 57;

(m(c),M(c)) = (−1, 1) for c = 6, 14, 18, 19, 20, 21, 23, 26, 34, 37, 39, 40, 44,

45, 47, 55, 58;

(m(c),M(c)) = (−1, 2) for c = 9, 29, 30, 31, 35, 38, 41, 42, 43, 49, 51, 52, 53,

54, 59, 60;

(m(c),M(c)) = (−1, 3) for c = 22, 46.

The next three conjectures, based on N = 10000, suggest that a∗n − an is “regular” for
c = 2, 3, 5, (whereas, it appears, the regularity does not extend to c = 4 or c = 6).

Conjecture 14. Suppose that c ≥ 0, and let (an) and (ân) be solutions of

an = b2n + b4n and ân = b̂2n + b̂4n + 2,

respectively. Then

ân − an =

{

2, if n ≡ 0 (mod 3);

1, if n 6≡ 0 (mod 3).

Conjecture 15. Suppose that c ≥ 0, and let (an) and (ân) be solutions of

an = b2n + b4n and ân = b̂2n + b̂4n + 3,

respectively. Then

ân − an =

{

3, if n ≡ 0 (mod 3);

2, if n 6≡ 0 (mod 3).

Conjecture 16. Suppose that c ≥ 0, and let (an) and (ân) be solutions of

an = b2n + b4n and ân = b̂2n + b̂4n + 5,

respectively. Then

ân − an =

{

5, if n ≡ 0 (mod 3);

3, if n 6≡ 0 (mod 3).

5 The equation an = bn + b2n

In contrast to results in Section 3, we find less “regularity” in the present section.
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Theorem 17. The solution of the complementary equation an = bn + b2n, with b0 = 1,
satisfies the following conditions for all n ≥ 0 and i ≥ 0:

4n+ 2 ≤ an ≤ 4n+ 3,

b3i = 4i+ 1,

4i+ 2 ≤ b3i+1 ≤ 4i+ 3,

b3i+2 = 4i+ 4.

Proof. We paraphrase a proof given in MathOverflow [1]. Clearly the inequality

4n+ 2 ≤ an ≤ 4n+ 3 (12)

holds for n ∈ {0, 1, 2}. We assume (12) as an induction hypothesis for n ≥ 2. For convenience
the phrase “is in a” will refer to terms of the sequence a, and likewise for b. We have three
cases.

Case 1: n = 3i. By the induction hypothesis,

4i− 2 ≤ ai−1 ≤ 4i− 1, (13)

so that the number of terms am that are ≤ 4i − 1 is i. (Specifically, these i numbers are
a0, a1, . . . , ai−1.) Since every integer in [1, 4i − 1] is in a or b, the number of terms bm that
are ≤ 4i − 1 is (4i − 1)i − i = 3i − 1. By (13), the numbers 4i and 4i + 1 are also in b, so
that the number of terms bm in [1, 4i+1] is 3i+1. These numbers are b0, b1, . . . , b3i, so that
b3i = 4i+ 1.

Case 2: n = 3i+ 1. By the induction hypothesis,

4i+ 2 ≤ ai ≤ 4i+ 3,

and ai+1 ≥ 4i+6, so that there are exactly i+1 terms am in [1, 4i+3]. Therefore, there are
exactly 4i+ 5− (i+ 1) = 3i+ 4 terms bm that are ≤ 4i+ 5, specifically, b0, b1, . . . b3i+3. By
the induction hypothesis,

4i+ 6 ≤ ai+1 ≤ 4i+ 7, (14)

so that there are at most i + 1 terms am in [1, bi+3]. (Otherwise, ai+1 ∈ [1, bi+3], so that
ai+1 ≤ b3i+3, contrary to the already proved inequality b3i+3 ≤ 4i + 5 < ai+1). Since
b3i+3 ≤ 4i + 5, and since, by (14), 4i + 4 and 4i + 5 are in b, we have b3i+2 = 4i + 4 and
b3i+3 = 4i+ 5, so that

b3i+1 ≤ 4i+ 3. (15)
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We turn now to a proof that b3i+1 ≥ 4i+2. Every integer in [1, 4i] is in a or b, and since
(by the induction hypothesis) ai−1 ≤ 4i− 1, there are at least i terms am that are ≤ 4i− 1,
hence at most (4i− 1)− i = 3i− 1 terms bm in [1, 4i− 1]. Since

ai−1 ≤ 4i− 1 < 4i+ 2 ≤ ai,

the numbers 4i and 4i+1 are in b. There are, therefore, at most 3i+1 terms bm in [1, 4i+1].
We have

b0 < b1 < b2 < · · · b3i ≤ 4i+ 1

and b3i+1 > 4i+ 1. Thus, b3i+1 ≥ 4i+ 2.

Case 3: n = 3i+ 2. By the induction hypothesis, ai+1 ≥ 4i+ 6, so that, since

4i+ 2 ≤ ai ≤ 4i+ 3,

the number of terms am that are ≤ 4i + 3 is i + 1. Since every integer in [1, 4i + 3] is in a
or b, the number of terms bm that are ≤ 4i + 3 is 4i + 3 − (i − 1) = 3i + 2. The induction
hypothesis implies

ai ≤ 4i+ 3 < 4i+ 6 < ai+1,

so that 4i+4 is in b. We have thus counted a total of 3i+3 terms bm in [1, 4i+4]; they are

b0, b1, . . . , b3i+2,

so that b3i+2 = 4i+ 4.
We now finish the induction for establishing (12):

4(k + 1) +
10

3
=

4(k + 1) + 5

3
+

4(2k + 2) + 5

3
≥ bk+1 + b2k+2

= ak+1

≥ 4(k + 1) + 2

3
+

4(2k + 2) + 2

3

= 4(k + 1) +
4

3
.

Since ak+1 is an integer, the inequality

4(k + 1) +
10

3
≥ ak+1 ≥ 4(k + 1) +

4

3

implies
4(k + 1) + 2 ≤ ak+1 ≤ 4(k + 1) + 3.
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The irregular subsequence of the sequence

b = (1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, . . .

in Theorem 17 is

s(i) := (b3i+1) = (3, 6, 11, 15, 19, 22, 27, 30, 35, 39, 42, 47, 51, 54, 67, . . .), (16)

for which 4i+ 2 ≤ s(i) ≤ 4i+ 3; indeed,

si =

{

4i+ 2, if i = 2, 6, 8, 11, 14, 15, 18, 20, 24, 26, 29, 33, 35, 38, 42, . . .

4i+ 3, if i = 1, 3, 4, 5, 7, 9, 10, 12, 13, 16, 17, 19, 21, 22, 23, 25, . . . .

Following are two conjectures based on Program 7.4, with n ranging from 1 to 50000.

Conjecture 18. The difference sequence of the above sequence

(2, 6, 8, 11, 14, 15, 18, . . .)

has only five distinct terms: 1, 2, 3, 4, 5.

The least n for which all five differences occur in Conjecture 18 is 111.

Conjecture 19. The limiting proportion of si’s of the form 4i+ 2 is 2/5.

6 The equation an = ubn + vbn+k + c

The preceding sections show that some complementary equations with advanced subscripts
are easily solved, whereas others involve a multitude of cases and irregularities. Here we
consider equations of the form

an = ubn + vbn+k + c, where b0 = 1, (17)

where u, v, and c are integers satisfying k ≥ 1 and 1 ≤ u ≤ v, and we find the same sort of
regularities and irregularities. Let

x = lim
n→∞

an/n and y = lim
n→∞

bn/n.

Then (17) together with 1/x+ 1/y = 1, yields

x = u+ v + 1 and y = (u+ v + 1)/(u+ v).

Table 5, generated by Program 7.5, shows in columns 4 and 5 the minimum and maximum
values of an−(u+v+1)n for n = 0, 1, . . . , 100000. Also, Table 5 indicates that for u = v = 1,

max{an − 3n} = a0 = k + 2,
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but that the sequence (m(n)) = (min{an − 3n}) is not so predictable, as indicated by its
first 22 terms:

3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16.

u v k min max a0
1 1 1 3 3 3
1 2 1 −1 10 5
1 3 1 −3 15 7
1 4 1 −5 18 9
1 5 1 −5 23 11
2 1 1 −1 9 4
3 1 1 −3 13 5
4 1 1 −6 15 6
5 1 1 −6 19 7
2 3 1 −6 17 8
3 2 1 −6 16 7
2 2 1 −3 14 6
3 3 1 −5 21 9
1 1 2 3 4 4
1 1 3 4 5 5
1 1 4 4 6 6
1 1 5 5 7 7
1 1 6 6 8 8
1 1 7 6 9 9

Table 5: an = ubn + vbn+k, b0 = 1

As already noted, Table 5 and further explorations suggest that if u > 1 or v > 1,
then both min and max are unbounded. Taking (u, v, k) = (1, 2, 1) as an example, we have
(min,max) = (−1, 10) when N = 100000. The appearance of (N,m,M) in the following list
means that as n ranges from 1 to N , the minimal and maximal differences an − (u+ v+1)n
are m and M :

(100, 2, 7), (300, 1, 7), (600, 1, 7), (700, 1, 8),

(1900, 1, 8), (2000, 0, 8), (5000, 0, 8), (6000, 0, 9),

(20000,−1, 9), (10000,−1, 10), (200000,−2, 10)

Theorem 1, with f(x, y) = ux+ vy+ c, ensures a unique solution of (17) if c ≥ 2−u− v.
This is the case, for example, for the equation an = bn+2bn+1+ c when c = −1. It is easy to
check, however, that this equation also has a unique solution for c = −2, but not for c = −3.
This example raises a question to which we respond with another conjecture:
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Conjecture 20. The equation (17), where b0 = 1, has a unique solution if and only if

c ≥ 2− u− v + k − vk.

Results shown in Table 5 and experimentation suggest that if (u, v) = (1, 1), then
min{an − (u + v + 1)n} and max{an − (u + v + 1)n} are as indicated in Table 5 and that
otherwise, both are unbounded.

We turn now to equations in which c 6= 0. Indeed, we take c to be the least value for which
the equation (17) has a solution; i.e., c = 2−u− v+ k− vk. Table 6, generated by Program
7.6, shows the minimum and maximum values of an − (u+ v + 1)n for n = 0, 1, . . . , 100000.

u v k c min max a0
1 2 1 −2 −2 9 3
1 2 2 −3 −1 10 4
1 2 3 −4 0 10 5
2 1 1 −1 −2 8 3
2 2 1 −3 −5 12 3
2 2 2 −4 0 9 4
2 1 3 −1 0 10 5
3 3 1 −6 −9 17 3
3 3 2 −8 −5 15 4
3 3 3 −10 −1 13 5

Table 6: an = ubn + vbn+k + c, b0 = 1

As might be expected from the discussion about Table 5, it appears likely that minimum
and maximum values represented in columns 5 and 6 of Table 6 are unbounded.

7 Mathematica programs

The examples and conjectures in the preceding sections are based on six Mathematica

programs in which the parameters h, k, c, u, v, and z can be varied. Each program depends
on the mex function mentioned near the end of Section 2.

7.1 Program for Table 2

The parameters z, c, h, k are set by the first two lines of code. Keep c = 0. Decrease z to
100 for a first run. To see row 4 of Table 2, for example, use h = 3 and k = 6. When
experimenting, use larger z for larger h and k.

z = 1000; c = 0;
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h = 2; k = 4;

mex[list_, start_] := (NestWhile[# + 1 &, start,

MemberQ[list, #] &]);

a = {}; b = {1}; AppendTo[a, c + mex[Flatten[{a, b}], 1]];

Do[Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]], {k}];

AppendTo[a, c + Last[b] + b[[1 + (Length[b] - 1)/k h]]], {z}];

"Sequence (a(n)), from a(n)=a(h*n)+b(k*n):"

a ; Take[a, 100]

7.2 Program for Table 3

The parameters are set to generate row 7 of Table 3. When experimenting, use larger z for
larger h, k, and c.

z = 1000;

h = 2; k = 4; c = 6;

mex[list_, start_] := (NestWhile[# + 1 &, start,

MemberQ[list, #] &]);

a = {}; b = {1}; AppendTo[a, c + mex[Flatten[{a, b}], 1]];

Do[Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]], {k}];

AppendTo[a, c + Last[b] + b[[1 + (Length[b] - 1)/k h]]], {z}];

"Sequence (a^*(n)), from a(n)=a(h*n)+b(k*n)+c, where c = 1:"

a ; Take[a, 100]

Data supporting Conjecture 8 can be obtained by adding the following lines at the end
of this program:

r = Select[Range[400], Mod[a[[# + 1]], 7] ==4 &]

(* r is the sequence just before Conjecture 8. *)

d = Differences[s]

Union[d]

7.3 Program for Table 4

The parameters are set to show frequencies 27, 61, 73, . . ., with z = 1000. The runtime is
considerably longer for z = 10000, as in Table 4.

z = 1000; c = 0;

mex[list_, start_] := (NestWhile[# + 1 &, start,

MemberQ[list, #] &]);

h = 2; k = 4; a = {}; b = {1};

AppendTo[a, c + mex[Flatten[{a, b}], 1]];

Do[Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]], {k}];
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AppendTo[a, c + Last[b] + b[[1 + (Length[b] - 1)/k h]]], {z}];

"Sequence (a(n)), from a(n)=a(h*n)+b(k*n)+c, where c = 0:"

a; a1 = a; Take[a, 50]

c = 1; a = {}; b = {1};

AppendTo[a, c + mex[Flatten[{a, b}], 1]]; 90

Do[Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]], {k}];

AppendTo[a, c + Last[b] + b[[1 + (Length[b] - 1)/k h]]], {z}];

"Sequence (a^*(n)), from a(n)=a(h*n)+b(k*n)+c"

a ; Take[a, 50]

"Distinct differences, a(n)^* - a(n):"

Union[a - a1]

p = Differences[Flatten[Position[a - a1, 0]]]; Take[ p, 100]

"Number of occurrences of each difference:"

t = Table[Count[p, k], {k, 1, 13}]

7.4 Program for Conjectures 18 and 19

The parameters are set to output the sequence on Conjecture 18. The code can be easily
extended to support Conjecture 19.

mex[list_, start_] := (NestWhile[# + 1 &, start,

MemberQ[list, #] &]);

h = 1; k = 2; a = {}; b = {1}; z = 2000;

AppendTo[a, mex[Flatten[{a, b}], 1]];

Do[Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]], {k}];

AppendTo[a, Last[b] + b[[1 + (Length[b] - 1)/k h]]], {z}];

Take[b, 50]

bb = b; Clear[b];(*next,re-index b with offset 0*)

b[n_] := bb[[n + 1]]; u = Table[b[3 i + 1],

{i, 0, -1 + Length[bb]/3}];

Take[u, 100]

t = Mod[u, 4]; p = Flatten[Position[t, 2]];

Take[p, 100]

d = Differences[p];

Union[d] (* set of distinct differences *)

7.5 Program for Table 5

The parameters u, v, k, c, and z are set to show {0, 9} as minimal and maximal differences;
to get {−1, 10},m as in row 2 of Table 5, use z = 100000, and wait.

z = 10000;

mex[list_, start_] := (NestWhile[# + 1 &, start,
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MemberQ[list, #] &]);

{u, v, k, c} = {1, 2, 1, 0}; {a, b} = {{}, {1}};

Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]], {k}];

AppendTo[a, u b[[1]] + v b[[k + 1]] + c];

Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]];

AppendTo[a, u b[[n]] + v b[[k + n]] + c], {n, 2, z}];

Take[a, 60];

Take[b, 60];

Intersection[a, b];

aa[n_] := a[[n + 1]];

t = Table[aa[n] - (u + v + 1) n, {n, 0, z - 2}];

{Min[t], Max[t]}

7.6 Program for Table 6

The parameters u, v, k, c, and z are set to show {−1, 8} as minimal and maximal differences;
to get {−2, 9},m as in row 1 of Table 6, use z = 100000, and wait.

z = 10000;

mex[list_, start_] := (NestWhile[# + 1 &, start,

MemberQ[list, #] &]);

{u, v, k, c} = {1, 2, 1, -2}; {a, b} = {{}, {1}};

Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]], {k}]

AppendTo[a, u b[[1]] + v b[[k + 1]] + c];

Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]];

AppendTo[a, u b[[n]] + v b[[k + n]] + c], {n, 2, z}];

Take[a, 60]

Take[b, 60]

Intersection[a, b]

aa[n_] := a[[n + 1]];

t = Table[aa[n] - (u + v + 1) n, {n, 0, z - 2}];

{Min[t], Max[t]}

Flatten[Position[t, Min[t]]]

Flatten[Position[t, Max[t]]]
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