
23 11

Article 21.4.8
Journal of Integer Sequences, Vol. 24 (2021),2

3

6

1

47

Counting Domineering Positions

Svenja Huntemann
Department of Mathematics and Physical Sciences

Concordia University of Edmonton
Edmonton, AB T5B 4E4

Canada
svenja.huntemann@concordia.ab.ca

Neil Anderson McKay
Department of Mathematics and Statistics

University of New Brunswick
Saint John, NB E2L 4L5

Canada
neil.mckay@unb.ca

Abstract

Domineering is a two player game played on a checkerboard in which one player

places dominoes vertically and the other places them horizontally. We give bivariate

generating polynomials enumerating Domineering positions by the number of each

player’s pieces. We enumerate all positions, maximal positions, and positions where

one player has no move. Using these polynomials we count the number of positions

that occur during alternating play. Our method extends to enumerating positions from

mid-game positions and we include an analysis of a tournament game.

1 Introduction

Combinatorial games are 2-player games with perfect information and no chance devices,
such as Chess or Go. Many combinatorial games have, for a fixed starting position, a finite
number of options and the game is guaranteed to end in a finite number of moves; in theory
we could determine by computer which player would win if both players play perfectly. In
practice game theorists and computer scientists have not determined the outcomes of games
under perfect-play because of the complexity of the required search.
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Enumeration of positions has been studied, directly or indirectly, for several combinatorial
games. Papers on counting game positions consider the problem of enumerating specific types
of positions — Go end positions [6, 7, 16] and second-player win positions for specific lesser
known games [8, 9]. In the gameNode Kayles, played on a graph, the two players alternate
choosing vertices not adjacent to any previously chosen ones, thus forming an independent
set. Therefore the independence polynomial of a graph is equal to the generating polynomial
for positions of Node Kayles on that graph. Similarly, in the play of Arc Kayles the
players form a matching. The enumeration of matchings has been studied for many graphs
(see Section 1.1). In partizan games, where players may have distinct options at some point
during play, the convention is to call the two players Left (who uses bLue pieces) and Right
(who uses Red pieces). In Col, which is played on a graph, a move for Left is to color a
vertex blue, while a move for Right is to color a vertex red, and no two vertices of the same
color may be adjacent. Oh and Lee [12] call such a position a bipartite independent vertex
set and give the generating polynomial for grid graphs. Brown et al. [4] give the generating
polynomial, which they call the polynomial profile, for several games, including closed forms
for Col and the game Snort (like Col, but two vertices of different colors may not be
adjacent) played on paths.

In this paper we consider the game Domineering. This game is played on a checker-
board. The two players alternately place dominoes on adjacent empty squares; Left places
vertically and Right places horizontally. The game ends when the player whose turn it is
cannot place a piece; the player who cannot play loses — this is the normal play conven-
tion. We count all Domineering positions, as well as Domineering positions with certain
properties, following the method used by Oh and Lee [10, 12]. In newer work Oh [11] also
considers monomer-dimer tilings, thus implicitly counting Domineering positions, which
overlaps with some of our work as discussed in Section 2.

Domineering, also called Dominoes or Crosscram in older work, was introduced
by Göran Andersson and popularized by Martin Gardner in the 1970s. There has been
significant interest in this game since then [2, 3, 17, 18, 19]. Some simplification techniques
are known and can be combined with computer search for analysis, but no complete solution
is available. It is known who wins on many rectangular boards up to size 11× 11 and some
non-rectangular boards, as well as some values (essentially who has the advantage and by
how much) and temperatures (essentially the urgency of moving). For the reader further
interested in combinatorial game theory techniques we recommend Siegel’s Combinatorial
Game Theory [14].

As a game of Domineering progresses, the board often naturally breaks into smaller
components, see Figure 1, where play in one component cannot affect the available moves in
other components. A player on their turn has to decide which component they want to play
in and make their move there. A position (board) is the disjunctive sum of its constituent
components.

If the two players play in different components in the disjunctive sum a player may make
consecutive moves in the same component. For example in Figure 1, if it is Right’s turn, he
could choose to play in the third component, Left may choose the fourth, and Right choose

2



=

+ +

+

Figure 1: During play a Domineering position may decompose into a disjunctive sum of
Domineering positions that are not necessarily rectangular. The board on the left breaks
into the disjunctive sum of the components on the right.

the third again. Due to this, we are also interested in Domineering positions in which the
two players do not necessarily alternate turns, hence we consider plays where the difference
between the number of Left dominoes and Right dominoes may be larger than 1.

In Section 2 we find the generating function for the number of positions on an m × n

rectangular board which we denote by

Dm,n(x, y) =
∑

d(a, b)xayb

where d(a, b) is the number of positions with a Left dominoes and b Right dominoes. We
then demonstrate in Section 3 how to generalize the technique employed to find Dm,n(x, y)
to calculate the generating function for non-rectangular boards.

We are also particularly interested in enumerating positions at the end of the game. A
Left end is a position in which Left can no longer play a piece, while Right potentially still
has moves; a Right end is defined similarly. A maximal position is a position which is both a
Left end and a Right end — a position in which no player can place a domino. In Section 4
we find the generating function for maximal positions, which we denote by Fm,n(x, y). In
Section 5 we consider the generating function for Right ends; this is essentially the same as
the generating function for Left ends.

Finally, in Section 6 we discuss some other questions related to the technique used within
and the problem of enumerating Domineering positions.

1.1 Related problems

The checkerboard corresponds to a grid graph by using a vertex for each square and con-
necting them with an edge if the two squares are horizontally or vertically adjacent. Playing
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Domineering on the checkerboard is then equivalent to forming a matching (also called an
edge independent set) on the grid graph, with a distinction made between horizontal and
vertical edges.

If we make no distinction between Left and Right dominoes, that is, we enumerate the
positions with a fixed number of dominoes, this is equivalent to enumerating the number
of matchings in a grid graph or enumerating the monomer-dimer tilings of the chessboard
(Propp [13] gives a summary of connections to physics and chemistry). In particular, this
means that Dm,n(x, x) is the generating function for matchings in an m × n grid graph,
and that Dm,n(1, 1) gives the total number of such matchings. The latter, also known as
the Hosoya index of the grid graph, is known (for example see Ahrens [1] or the OEIS [15]
sequences A030186 for 2 × n, A033506 for 3 × n, and A028420 for n × n). If a perfect
matching exists in the m×n grid graph, then the number of perfect matchings is the leading
coefficient of Dm,n(x, x) as this is the number of maximum matchings.

Similarly, Fm,n(x, x) gives the generating function for the maximal matchings in an m×n

grid graph. The total number of maximal positions Fm,n(1, 1) are known for some values of
m and n (OEIS sequences A000931 for 1 × n, A286945 for 2 × n, A288028 for 3 × n, and
A287595 for n× n).

Domineering belongs to the class of strong placement games, and thus one can assign
to each game a simplicial complex representing the legal positions (see Faridi et al. [5] for
details). The coefficients of Dm,n(x, x) are then the entries of the f -vector — the vector
counting the number of faces of a given dimension — of this simplicial complex, while the
coefficients of Fm,n(x, x) give the number of maximal faces, called facets, of a fixed dimension.
Our work in this paper was originally motivated by wanting to determine how many facets
there are with a given number of vertices representing Left or Right moves. We solve this
problem by finding Fm,n(x, y) in Section 4.

2 Counting all domineering positions

Given m and n, our goal is to count the number of Domineering positions that can occur
as the result of play in an m×n rectangle. To distinguish this problem from counting specific
types of Domineering positions later we refer to these as general Domineering positions.

We find a generating function Dm,n(x, y) such that

Dm,n(x, y) =
∑

d(a, b)xayb

where d(a, b) is the number of Domineering positions with a Left (vertical) dominoes and
b Right (horizontal) dominoes.

We extract from the generating function information on the play positions, those that
can be reached through alternating play, in Section 2.1.

In their paper, Oh [11] considers an equivalent problem to the particular problem of
counting general positions using a trivariate generating function, where the third variable
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counts the number of empty squares. The number of empty squares is not particularly
relevant to Domineering. However, this information can be deduced from the number
of dominoes of either player and the board size. We use an equivalent method, but as our
generating functions are slightly different, our recursions are different as well. We include the
recursion here for completeness, particularly as we continue using the matrices in Section 3.

To count rectangular Domineering positions we consider the tilings of rectangles using
tiles with edge labels, then count the tilings that correspond to positions.

We use the tiles in Figure 2.
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0

0

0

0 T1

1

0

0

0 T2

0

0

1

0 T3

0

0

0

1 T4

0

1

0

0

Figure 2: The tiles used to count general Domineering positions

For a rectangular tiling to form a Domineering position the tiling must satisfy the
following conditions:

1. Adjacency condition: All shared edges of adjacent tiles have the same label.

2. Boundary condition: All boundary edges of the tiling have label 0.

Together these conditions ensure that the tiling has no half-dominoes.
In turn, any Domineering position can be uniquely represented using such a tiling. See

Figure 3 for an example.
In the tiling of aDomineering position, such as in Figure 3, the number of Left (vertical)

dominoes is equal to the number of T1, and the number of Right (horizontal) dominoes is
equal to the number of T3.

We use the term mosaic for tilings that satisfy the adjacency condition, but not neces-
sarily the boundary condition. A 1 × q mosaic is called a bar mosaic, that is, a row of q
tiles.

We find generating polynomials by first counting bar mosaics. We then stack these bars to
count rectangular mosaics; in this step that we consider the adjacency condition for vertically
adjacent tiles. Finally, we restrict to those tilings that also satisfy the boundary condition.

We count mosaics instead of just Domineering tilings, since a row or column of a
Domineering rectangle is not necessarily a Domineering position itself. For example in
Figure 3 the second row from the bottom forms the bar mosaic shown in Figure 4 — it does
not correspond to a Domineering position on its own as the leftmost two tiles are unpaired
half-dominoes, but shared edges of horizontally adjacent tiles do have the same label.

The enumeration of bar mosaics is done using matrices, called bar-state matrices. We
take care to construct these matrices so that we can count rectangular mosaics by matrix
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Figure 3: A Domineering position on a 5× 5 board and its equivalent tiling.
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Figure 4: A row of a Domineering tiling is a bar mosaic, which satisfies the (horizontal)
adjacency condition but not necessarily boundary condition.

multiplication. As we only want to count mosaics that satisfy the boundary condition in the
end, we can make due with counting only bar mosaics with label 0 on the right end. The
enumeration of the bar mosaics is done recursively — we use the enumeration of bar mosaics
to enumerate longer bar mosaics — so our matrices are recursively defined (using blocks).
We use two bar-state matrices; the matrix to count bar mosaics of length q with right label
0 and left label 0 is denoted by G0,q and the matrix to count bar mosaics of length q with
right label 0 and left label 1 is denoted by G1,q. We use G here for naming the matrices,
standing for ‘general’, to reserve M for matrices in the subsequent sections of the paper,
which include a discussion of maximal positions.

Theorem 1. The polynomial profile of Domineering on an m×n board is the (1,1) entry
of Gm

0,n where G0,0 =
[

1
]

, G1,0 =
[

0
]

,

G0,q+1 =









G0,q

+G1,q
xG0,q

G0,q 0









, and G1,q+1 =









yG0,q 0

0 0









.

Proof. We first prove that the bar-state matrices give the generating polynomials for bar
mosaics.

In a bar-state matrix the rows and columns are indexed by binary strings of length q and
thus each matrix has size 2q × 2q. We order these strings lexicographically. Thus the strings
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of length 3 are ordered as

000, 001, 010, 011, 100, 101, 110, 111.

An entry in a bar-state matrix is the generating polynomial of the bar whose top edge
labels are the column index, and whose bottom edge labels are the row index; the right edge
label is 0 and the left edge label corresponds to the matrix (the first subscript of G). The
generating polynomial of the bar is the monomial xayb where a is the number of T1 in the
bar and b is the number of T3 in the bar.

For q = 0, the length is 0, it is only possible to satisfy the adjacency condition if both
the starting and ending labels are the same. We thus have G0,0 =

[

1
]

and G1,0 =
[

0
]

.
Our construction for larger q uses blocks and we name them as in Figure 5 to avoid

proliferating subscripts. We need to show that in each matrix the four blocks are as we
claim. Our argument is recursive and follows by first considering the leftmost tile in each
bar. The block considered determines the top label and bottom label of the leftmost tile in
bar mosaics enumerated as in Figure 5.

bottom
top

0 1

0
1

[

I II

III IV

]

Figure 5: The block construction of the state-matrices for general Domineering positions.

For q = 1, the bars we are counting consist of a single tile which must have right label 0
(or cannot have right label 1), that is, one of the four tiles 0–3; you may wish to reference
Figure 2. Thus between the bar-state matrices G0,1 and G1,1 we have four nonzero blocks
— determined by the top and bottom labels of tiles 0–3. Recall that each block has a
corresponding top and bottom label of the leftmost tile. Thus

G0,1 =

[

1 x

1 0

]

and G1,1 =

[

y 0
0 0

]

,

which shows that the recursion is correct for the first step.
The bar-state matrix G0,q+1 enumerates mosaics where the leftmost tile has left label 0

(and right label 0). We consider possible leftmost tiles which are tiles 0–2 and 4, as these
are the only tiles with left label 0. Of these four tiles, those tiles that meet the conditions
for block I are tile 0 and tile 4. As the right label of tile 0 is 0, the possible completions of
our bar when the leftmost tile is tile 0 are given by G0,q. As the right label of tile 4 is 1, the
possible completions of our bar are given by G1,q. So block I is G0,q +G1,q.

The conditions for block II (that the leftmost tile has top label 1 and bottom label 0)
require the leftmost tile in the bar mosaic to be T1 and the entry is thus xG0,q because the
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right label of tile 1 is 0 and G0,q counts the bar mosaics with left label 0 and right label 0
(recall that for each T1 we have an x).

The conditions for block III force T2 as the leftmost tile, giving the entry G0,q. For block
IV, we would need a tile with bottom and top label 1 but no tiles have such labels and so
our entry is 0.

In G1,q+1, we have a left label of 1. As our recursion starts by considering possible left
tiles, we need only consider tile 3, as this is the only tile with 1 as a left label.

Thus the only block for which tile 3 has appropriate top and bottom labels is block I.
Since T3 is forced and its left label is 0, the possible completions of the bar are given by G0,q

and the entry in block one is yG0,q. All other blocks, having no possible leftmost tiles, count
no mosaics and thus their blocks are 0.

We turn our attention to rectangular m × n tilings and in particular those that satisfy
the left and right boundary conditions, so we only consider the bar mosaics of length n with
left label 0 in addition to having the right label 0; these are counted by G0,n.

First consider 2×n mosaics that satisfy the adjacency condition. Such a mosaic consists
of two bar mosaics where the string of bottom labels of one mosaic matches the string of
top labels of the other. Suppose A is the bar-state matrix for the top bar and B is the bar-
state matrix for the bottom bar. To count all the 2 × n mosaics that satisfy the adjacency
condition we need to consider all 2n strings of matched labels along the stacked bar mosaics.
That is, we take columns in A and rows in B. Since the other labels of the bar mosaics have
to match, we take the dot product of the two vectors to get the polynomial for this mosaic.
Thus the matrix for the 2× n mosaic is BA.

To get mosaics that also satisfy the boundary conditions and thus correspond to Dom-

ineering positions we can start with bar mosaics that satisfy the left and right boundary
conditions; in our case A = B = G0,n, so the state matrix for 2 × n mosaics where the left
and right boundary conditions are also satisfied is G2

0,n.
For larger mosaics this works the same way; we stack more bars and find that the matrix

for a m× n mosaic is Gm
0,n.

Fixing the string of top labels and of bottom labels for the 2 × n mosaic corresponds
to specifying an entry in the matrix. Finally, to satisfy the boundary condition on top and
bottom we need to restrict to all top and bottom labels being 0. This means we take the
entry in the top left corner, entry (1, 1).

Example 2. Now we compute the number of general positions on a 4 × 3 Domineering

board. We need the bar-state matrix for bar mosaics of length 3 satisfying the left and right
boundary conditions, G0,3, which we find recursively to be as follows:

G0,1 =

[

1 x

1 0

]

G1,1 =

[

y 0
0 0

]
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G0,2 =









y + 1 x x x2

1 0 x 0
1 x 0 0
1 0 0 0









G1,2 =









y xy 0 0
y 0 0 0
0 0 0 0
0 0 0 0









G0,3 =

























2y + 1 xy + x x x2 xy + x x2 x2 x3

y + 1 0 x 0 x 0 x2 0
1 x 0 0 x x2 0 0
1 0 0 0 x 0 0 0

y + 1 x x x2 0 0 0 0
1 0 x 0 0 0 0 0
1 x 0 0 0 0 0 0
1 0 0 0 0 0 0 0

























Calculating G4
0,3 gives the state matrix for 4× 3 boards and taking the (1, 1) entry, gives

the generating function for 4× 3 Domineering positions as follows:

D4,3(x, y) = x6 + 9x5 + 6x4y2 + 20x4y + 30x4 + 46x3y2 + 84x3y + 45x3

+ 4x2y4 + 24x2y3 + 100x2y2 + 100x2y + 30x2 + 24xy4

+ 72xy3 + 90xy2 + 48xy + 9x+ 16y4 + 32y3 + 24y2 + 8y + 1.

For example, on a 4 × 3 Domineering board there are 90 positions with 1 vertical
domino and 2 horizontal dominoes as shown by the term 90xy2 and there is 1 position with
6 vertical dominoes as shown by the term x6.

2.1 Play positions

The polynomials we have found count all legal Domineering positions. As mentioned
previously, we do not assume alternating play. Positions which may occur during alternating
play are called play positions. To enumerate play positions we restrict Dm,n(x, y) to include
only terms where the difference in the powers of x and y is at most 1.

Example 3. Using Example 2 we can see that the polynomial for the play positions on a
4× 3 board is

46x3y2 + 24x2y3 + 100x2y2 + 100x2y + 90xy2 + 48xy + 9x+ 8y + 1.

Setting x = y = 1 in this polynomial we get the total number of play positions, which in
this case is 426.

The number of play positions on an n× n board is in the OEIS as A332714. The terms
up to n = 10 are given in Table 1. We also include the ratio of all positions that are play
positions, truncated to 5 decimals. Recall that the number of all positions is the number of
matchings in a grid graph, which is given in the OEIS as A028420.
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n Number of play positions Ratio to all positions

1 1 1
2 5 0.71428
3 75 0.57251
4 4,632 0.46264
5 1,076,492 0.38299
6 963,182,263 0.32222
7 3,317,770,165,381 0.27774
8 43,809,083,383,524,391 0.24367
9 2,209,112,327,971,366,587,064 0.21689
10 424,273,291,301,040,427,702,718,109 0.19532

Table 1: The number of play positions and ratio of play positions to all positions on small
square boards.

The ratios computed in Table 1 give a sense of the cost of considering all plays from a
position, as is standard in combinatorial game theory, compared to considering only plays
reachable in alternating play, which is common in practice.

We expect that the ratio of play positions decreases as the board size increases because
on larger boards there are an increasing number of ways to have a board with the number
of dominoes for the two players differing by more than one. The ratios apparently do not
follow an arithmetic or geometric sequence.

We expect the ratios of play positions to general positions to approach 0. While it is
interesting to consider how this ratio changes as the board size grows, it is also potentially
interesting to observe how this ratio changes during play.

3 Non-rectangular boards

The techniques we use to find the generating polynomials of rectangular boards can be used
to find the generating polynomials of non-rectangular boards as well.

We think of a non-rectangular board as being a rectangular board with missing squares
and treat the missing squares as squares forced to be empty. For example, the board on the
left in Figure 6 we think of as being contained in a 2 × 3 board with forced empty squares
in the top left and top middle.

We create a (bar-state) matrix Ri for each row, then multiply these matrices to get
the state matrix for the entire mosaic. For the board in Figure 6 the matrix for row 1 is
R1 = G0,1. For row 2 we use G0,3, but restrict those columns which have 0 in the first and
second position of the top label. We denote this as R2 = G0,3|

00 . For restrictions on bottom
labels we use a subscript. Example 5 shows this procedure, but before that we consider rows
with missing squares in the middle as in Example 4. If a row contains an missing square
in the middle, the Kronecker product of the bar-state matrices of the shorter strips is the
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←→ 0 0
0

Figure 6: The equivalence of a non-rectangular board and a rectangular board with forced
empty squares.

bar-state matrix for the row. The Kronecker product of two matrices A and B is

A⊗B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






.

If missing squares in a row break it into three or more parts we use the Kronecker product
multiple times.

The tiling (and the play) in the left part of the broken row is independent of the tiling
(and play) in the right part. The state-matrix for the whole row is a block matrix where the
blocks are determined by possible labels of the first part of the row, while the order of the
second part in each block is the same and determined by the possible top and bottom labels
in that part. Thus, taking the Kronecker product of the matrix for the first strip with the
matrix for the second strip is exactly what we need here.

Example 4. Consider the strip

0

which is the center row of the board in Figure 7.
The matrix for this row is

G0,1 ⊗G0,2| 0 =

[

1 x

1 0

]

⊗

[

y + 1 x x x2

1 x 0 0

]

=









y + 1 x x x2 xy + x x2 x2 x3

1 x 0 0 x x2 0 0
y + 1 x x x2 0 0 0 0
1 x 0 0 0 0 0 0









.

Finally, we multiply the matrices for each row such that the bottom row matrix is the
left-most one, while the top row matrix is the right-most one, allowing us to match the
top/column label of each row with the bottom/row label of the row above.
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Figure 7: An example non-rectangular board

Example 5. Consider the board in Figure 7.
For row 1 we have

R1 = G0,4| 0 ;

for row 2, as in Example 4,
R2 = G0,1 ⊗G0,2| 0;

and for row 3
R3 = G0,3|

0 .

The matrix for the entire mosaic is then G = R3 × R2 × R1. To apply the restriction of
having only 0s for top and bottom labels we take only the (1, 1) entry of the matrix. Thus
we get the generating polynomial

D = 2x3y2 + 8x3y + 4x3 + 12x2y2 + 22x2y + 8x2 + xy4 + 10xy3 + 26xy2

+ 21xy + 5x+ 2y4 + 9y3 + 12y2 + 6y + 1.

Using this technique for non-rectangular boards, we are thus able to find the generating
polynomial counting positions that can be reached from a partially played board. We do so
in Example 7, where we also use the following simplification for disjunctive sums.

Proposition 6. Suppose G is the game of Domineering on the board B1 and H is Dom-

ineering on B2. Then the generating polynomial of G+H is the product of the generating
polynomials of G and H.

Proof. Let the coefficient of xiyj in the generating polynomial of G be ai,j, of H be bi,j , and
of G+H be ci,j.

Consider a position in G + H with u Left pieces and v Right pieces. Say i Left pieces
and j Right pieces of these have been played in G and the rest in H. There are ai,jbu−i,v−j

such positions, and thus

cu,v =
∑

0≤i≤u
0≤j≤v

ai,jbu−i,v−j.

Therefore, the generating polynomial of G+H is the product of those of G and H.
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This proposition again emphasizes that it makes sense to enumerate all positions, not
just play positions, due to disjunctive sums allowing a difference in the number of pieces
larger than 1.

Example 7. The position in Figure 8 occurred partway through Game 1 of the finals of the
Domineering tournament at the 1994 workshop “Games of No Chance” at MSRI (see the
tournament report by West [18, Fig. 3]). We determine the polynomial for all play positions
that follow from this position.

Figure 8: A board position from Game 1 of the 1994 tournament finals with disjunctive
components highlighted.

We start by finding the generating polynomials for general positions of each of the three
disjunctive sum component as we have done in Example 5.

The “bottom” component, bordered in blue, as a mosaic has the matrix

G0,6|
00 00 ×G3

0,2

(recall that we multiply the matrices for each row from the bottom up). Thus the generating
polynomial, the (1, 1) entry of this matrix, is

x4y2 + 2x4y + x4 + 10x3y2 + 16x3y + 6x3 + 3x2y4 + 24x2y3 + 58x2y2

+ 46x2y + 11x2 + 8xy4 + 42xy3 + 62xy2 + 34xy + 6x+ y6 + 9y5

+ 26y4 + 35y3 + 24y2 + 8y + 1.

13



The “top” component, bordered in red, has the matrix

(G0,1 ⊗G0,1)× (G0,1 ⊗G0,1)× (G0,2| 0 ⊗G0,2|0 )× (G0,6|
000
00 )

× (G0,2 ⊗G0,1)× (G0,6|00 00 ⊗G0,1).

The generating polynomial is

x9y3 + 3x9y2 + 3x9y + x9 + 23x8y3 + 62x8y2 + 55x8y + 16x8 + 4x7y5

+ 43x7y4 + 291x7y3 + 555x7y2 + 401x7y + 98x7 + 60x6y5 + 539x6y4

+ 1874x6y3 + 2564x6y2 + 1469x6y + 295x6 + 4x5y7 + 71x5y6 + 650x5y5

+ 2908x5y4 + 6250x5y3 + 6303x5y2 + 2885x5y + 481x5 + 34x4y7

+ 467x4y6 + 2590x4y5 + 7406x4y4 + 11148x4y3 + 8637x4y2 + 3218x4y

+ 452x4 + x3y9 + 20x3y8 + 222x3y7 + 1421x3y6 + 4991x3y5

+ 9909x3y4 + 11109x3y3 + 6812x3y2 + 2098x3y + 251x3 + 3x2y9 + 55x2y8

+ 437x2y7 + 1909x2y6 + 4790x2y5 + 7083x2y4 + 6172x2y3 + 3063x2y2

+ 789x2y + 81x2 + 3xy9 + 50xy8 + 330xy7 + 1123xy6 + 2181xy5

+ 2533xy4 + 1774xy3 + 726xy2 + 158xy + 14x+ y9 + 15y8 + 85y7 + 237y6

+ 373y5 + 353y4 + 204y3 + 70y2 + 13y + 1.

Finally, the component on the left, bordered in green, is simply a 6×1 board, thus having
matrix G6

0,1 and generating function D1,6(x, y) = x3 + 6x2 + 5x+ 1.
Multiplying all three generating polynomials we get the generating polynomial for the

entire position. Restricting to only play positions this is

17x10y11 + 410x10y10 + 7690x10y9 + 6769x9y10 + 76829x9y9 + 532379x9y8

+ 436560x8y9 + 2217847x8y8 + 7453953x8y7 + 6030494x7y8

+ 16049771x7y7 + 29420257x7y6 + 23698832x6y7 + 36239078x6y6

+ 38789964x6y5 + 31354701x5y6 + 29013063x5y5 + 18784523x5y4

+ 15287335x4y5 + 8768628x4y4 + 3451191x4y3 + 2830886x3y4

+ 1004132x3y3 + 232953x3y2 + 192647x2y3 + 40779x2y2 + 5086x2y

+ 4240xy2 + 487xy + 25x+ 21y + 1.

In this polynomial we see from the small degree terms the number of possible paths of
the game from this position. The high degree terms give some sense of the state at the end
of the game provided play continues in such a way that the game lasts as long as possible. In
this game Left played first; we see that Left (vertical) has played 6 times, whereas Right has
played 5 times, and thus it is Right’s turn from this position. Right has 21 possible moves.
Right would likely have been happy to see terms in the polynomial where the degree of y is
greater than the degree of x as these indicate the possibility of Right winning; of note then
is the term 17x10y11 with a relatively small coefficient. The actual winner of this game was
Left.
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Further, by setting x = y in all matrices, we are also able to count the number of
matchings of a subgraph of a grid using this technique.

4 Counting maximal Domineering positions

Recall that a maximalDomineering position is one in which neither player has any available
moves. In this section we count maximal Domineering positions. We find the generating
function

Fm,n(x, y) =
∑

f(a, b)xayb

where the board has size m× n and f(a, b) is the number of maximal Domineering posi-
tions with a Left (vertical) dominoes and b Right (horizontal) dominoes. We use F for the
generating polynomial of the maximal positions as these correspond to the facets (maximal
faces) of the simplicial complex representing the position.

We use the same technique as for the general Domineering positions of counting bar
mosaics, multiplying the matrices, and then restricting to tilings, with only a few small
differences. In particular, the tiles are different so that with only using adjacency and
boundary conditions we can force the tiling to be equivalent to a maximal position, i.e., no
two empty spaces may be adjacent, and in turn a position corresponds to a unique tiling.
The tiles for the maximal positions are in Figure 9.
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0 T11
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1 T12

1

2

0

1

Figure 9: The tiles used to count maximal Domineering positions.

Having different labels on opposite edges of empty spaces forces adjacent empty spaces to
violate the adjacency condition. We arbitrarily assign the label 0 to the left and top edges,
and 1 to the right and bottom edges. This determines the labels on the empty tile. On the
other tiles, we label edges of domino centers with 2. A domino tile to the left or above an
empty tile or adjacent to another domino tile (but not its other half) has label 0. A domino
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tile to the right or below an empty tile (or tiles) has to have label 1 on the appropriate
edge(s). These constraints lead to repeated half-domino tiles with various labels. Top-half
and left-half dominoes can be adjacent to an empty space label 1 in two ways, so there are
4 such tiles in each case. Bottom-half and right-half dominoes can be adjacent to an empty
space label 1 in one way, so there is a second tile of that half-domino with the label 1. The
tiles in Figure 9 are determined by these constraints.

For a rectangular tiling to form a maximal Domineering position the tiling must satisfy
the following conditions:

1. Adjacency condition: All shared edges of adjacent tiles have the same label.

2. Boundary condition: The left and top boundary edges of the tiling have label 0; the
right and bottom boundary edges have label 0 or 1.

In turn, any maximal Domineering position can be uniquely represented using a such
a tiling. To decide between the different tiles representing domino halves one simply has to
check for empty squares above and to the left. As an example, see the position and equivalent
tiling in Figure 10.

T0

0
1

1
0

T0

0
1

1
0

T0

0
1

1
0

T0

0
1

1
0

T0

0
1

1
0

T0

0
1

1
0

T0

0
1

1
0

T0

0
1

1
0

T1

2
0

0
0 T1

2
0

0
0

T1

2
0

0
0

T2

2
0

0
1

T2

2
0

0
1T7

0
0

0
2

T7

0
0

0
2

T7

0
0

0
2

T7

0
0

0
2

T7

0
0

0
2

T8

1
0

0
2T3

0
0

2
0

T3

0
0

2
0

T4

1
0

2
0

T5

0
0

2
1

T6

1
0

2
1 T9

0
2

0
0

T9

0
2

0
0

T10

1
2

0
0

T11

0
2

0
1

T11

0
2

0
1

T12

1
2

0
1

Figure 10: A maximal Domineering position on a 5× 6 board and its equivalent tiling.

Note that the number of Left (vertical) dominoes is equal to the number of T1 and T2

combined, and the number of Right (horizontal) dominoes is equal to the number of T7 and
T8 combined.

In this case we use M in the name of the bar-state matrices to represent that we are
counting maximal positions only. Also note that, since the bottom and right edge in a tiling
are allowed to have both 0 and 1 as their labels, the generating polynomial is a sum of
entries. A detailed explanation is given in the proof of the following theorem.
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Theorem 8. The generating function for the maximal position of an m× n Domineering

board is

Fm,n(x, y) =

∑

u∈{0,1}n

(

M0,n +M ′
0,n

)m

(1 +
n
∑

i=1

ui3
i, 1)

where M0,0 =
[

1
]

, M1,0 =
[

0
]

, M2,0 =
[

0
]

, M ′
0,0 =

[

0
]

, M ′
1,0 =

[

1
]

, M ′
2,0 =

[

0
]

,

M0,(q+1) =













M2,q M2,q xM0,q

M1,q 0 0

M0,q M0,q 0













, M ′
0,(q+1) =













M ′
2,q M ′

2,q xM ′
0,q

M ′
1,q 0 0

M ′
0,q M ′

0,q 0













,

M1,(q+1) =













M2,q M2,q xM0,q

0 0 0

M0,q M0,q 0













, M ′
1,(q+1) =













M ′
2,q M ′

2,q xM ′
0,q

0 0 0

M ′
0,q M ′

0,q 0













,

M2,(q+1) =

















yM0,q yM0,q 0

0 0 0

0 0 0

















, and M ′
2,(q+1) =

















yM ′
0,q yM ′

0,q 0

0 0 0

0 0 0

















.

Proof. The proof is along the same lines as the proof of Theorem 1, thus some of the details
are omitted.

The bar-state matrices count bar mosaics of length q. The matrix Mk,q counts those bars
with starting label k and ending label 0, while the matrix M ′

k,q counts those with starting
label k and ending label 1.

The labels are ternary strings, ordered lexicographically. Thus, the strings of length 2
are ordered as

00, 01, 02, 10, 11, 12, 20, 21, 22.

The column labels of the matrix again correspond to the top label of the bar mosaic, while
the row label is the bottom label. Each bar is represented by a monomial xayb where a is
the total number of T1 and T2 in the bar and b is the total number of T7 and T8 in the bar.

Each matrix has 9 blocks, which we label using roman numerals as shown in Figure 11,
where we also show the corresponding top and bottom labels for the leftmost tile.

In M0,q+1, we have a left label of 0. The only tile that meets the conditions for block I
(and M0,q+1) is T9. As the right edge label of T9 is 2, the possible completions of our bar are
given by M2,q and so our block I entry is M2,q.

The conditions for block II force T10 as the starting tile and the entry is again M2,q.
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Figure 11: The block construction of the state-matrices for maximal Domineering posi-
tions.

The conditions for block III force T1 — giving the entry xM0,q as T1 has right label of 0.
For block IV, tile T0 is the only possible starting tile, giving entry M1,q. For blocks V and
VI we would need a tile with bottom label 1 and top label 1 or 2, respectively, and no such
tiles exist so our entry is 0.

The conditions for block VII are top label of 0 and bottom label of 2; the only tile that
works is T3 and hence the entry is M0,q. The conditions for block VIII are similar but with
top label 1 so T4 is the only tile that works.

The conditions for block IX are top label of 2 and bottom label of 2 which never occurs
and thus our entry is 0.

In M1,q+1, we have a starting (left) label of 1. This forces T11 in block I; T12 in block II;
T2 in block III; T5 in block VII; and T6 in block VIII. The remaining blocks have no possible
tiles. Thus our entries for the matrix are as above.

In M2,q+1, we have a starting (left) label of 2. Thus the only possible tiles are T7 and T8.
In block I the only possible tile is T7, giving yM0,q. In block II the tile is T8, giving yM0,q.
All other blocks have no possible tiles, so are 0.

Note that the arguments for M ′
0,q+1, M

′
1,q+1, and M ′

2,q+1 are similar as the possible left-
most tile is identical and only the ending label changes, thus we skip these.

Now, restricting to tilings, we only consider the bar mosaics of length n with left label 0
and right labels 0 or 1, so M0,n + M ′

0,n. As in the general positions case, stacking the bar
mosaics corresponds to matrix multiplication. Thus the mosaics with all left labels 0 and
right labels 0 or 1 are enumerated in (M0,n + M ′

0,n)
m. Finally, we need to restrict to top

labels being all 0 and bottom labels 0 or 1. This means we need to sum the entries in the

first column which are in rows numbered 1+
n
∑

i=1

ui3
i where the ui are all 0 or 1 (the ternary

expansion of the row number−1 has no 2s), giving our result.
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Example 9. Using the recursion we find that

M0,2 =





























y y 0 y y 0 0 0 x2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x x 0
0 0 x 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 x 0 0 x 0 0 0
0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0





























.

Taking the third power and summing the relevant entries, we get that

F3,2(x, y) = 2x2y + 2x2 + y3.

Remark 10. As for the general positions case, we can use these matrices to find the generating
polynomial for non-rectangular boards. As the technique is the same, we do not demonstrate
it here.

5 Counting Left and Right ends

Similar to maximal positions, we are also able to count Left or Right ends by choosing the
tiles appropriately so that the adjacency condition alone forces such an end. We only count
the Right ends in this section as it results in bar-state matrices of size 2q×2q, while the Left
ends, using a similar argument, would need bar-state matrices of size 3q×3q (although fewer
matrices). Alternatively, the generating polynomial for Left ends on an m× n board can be
found using the generating polynomial of Right ends on an n×m board by switching x and
y. Furthermore, to find the number of Left or Right ends (ends for exactly one player), add
the number of Right ends and Left ends and subtract the number of maximal positions (the
positions that are Left and Right ends).

For Right ends, we may have two empty squares vertically adjacent as Left may poten-
tially still play a domino. But we must not have two empty squares horizontally adjacent as
Right must have no moves. To achieve this using the adjacency condition, we use the tiles
given in Figure 12.

The two conditions for a tiling to be a Domineering Right end are as follows:

1. Adjacency condition: All shared edges of adjacent tiles have the same label.

2. Boundary condition: The left, top, and bottom edges of the tiling have labels 0; the
right edge has labels 0 or 1.
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Figure 12: The tiles used to count Right ends in Domineering .
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Figure 13: A Right end on a 5× 5 board in Domineering and its equivalent tiling.

Figure 13 contains an example of a position and the corresponding tiling.
We use RE for naming the bar-state matrices. The matrix REk,q counts those bar mosaics

of length q with starting label k and ending label 0, while the matrix RE ′
k,q counts those

with starting label k and ending label 1.

Theorem 11. The generating polynomial of Domineering Right ends on an m× n board
is the (1,1) entry of (RE0,n + RE ′

0,n)
m where RE0,0 =

[

1
]

, RE1,0 =
[

0
]

, RE2,0 =
[

0
]

,

RE ′
0,0 =

[

0
]

, RE ′
1,0 =

[

1
]

, RE ′
2,0 =

[

0
]

,

RE0,q+1 =









RE1,q

+RE2,q
xRE0,q

RE0,q 0









, RE ′
0,q+1 =









RE ′
1,q

+RE ′
2,q

xRE ′
0,q

RE ′
0,q 0









,
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RE1,q+1 =





RE2,q xRE0,q

RE0,q 0



 , RE ′
1,q+1 =





RE ′
2,q xRE ′

0,q

RE ′
0,q 0



 ,

RE2,q+1 =









yRE0,q 0

0 0









, and RE ′
2,q+1 =









yRE ′
0,q 0

0 0









.

We give no proof here as the argument is simply a combination of the arguments for the
general and maximal positions.

In Table 2 we give the total number of Right ends on an m× n board (the table for Left
ends is the transpose of Table 2). Table 2 is in the OEIS, read by antidiagonals, as A332862.

m

n
1 2 3 4 5

1 1 1 2 2 3
2 2 4 11 25 61
3 3 9 48 172 731
4 5 25 227 1,427 10,388
5 8 64 1,054 11,134 140,555
6 13 169 4,921 88,733 1,932,067
7 21 441 22,944 701,926 26,425,981
8 34 1,156 107,017 5,567,467 362,036,629

m

n
6 7 8

1 4 5 7
2 146 351 844
3 2,976 12,039 49,401
4 72,751 510,779 3,604,887
5 1,693,116 20,414,525 248,119,648
6 40,008,789 831,347,033 17,385,222,733
7 941,088,936 33,656,587,715 1,211,649,519,869
8 22,168,654,178 1,365,206,879,940 84,588,476,099,284

Table 2: The number of Right ends in Domineering on an m× n board.

The number of Right ends on a 1×n board is recursively given by a1 = 1, a2 = 1, a3 = 2,
an = an−2 + an−3 (the Padovan sequence shifted, OEIS sequence A000931). Consider the
leftmost square, if the square contains a domino, then the strip to the right of the domino
can contain any Right end of length n− 2. If the square is empty, then a domino has to be
immediately to the right of it, and the remaining strip of length n− 3 can contain any Right
end.
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In the positions of shape m × 1 Right cannot play, thus all positions are Right ends.
The sequence of these numbers is the Fibonacci sequence (OEIS sequence A000045) as every
position is a combination of empty squares and Left dominoes.

It appears that the number of Right ends on an m × 2 board is given by the squared
Fibonacci numbers (OEIS sequence A007598) and the number of positions on an m × 3 is
given by the recursion am = 4am−1 + 4am−2 − 4am−3 − am−4 (OEIS sequence A054894).

The main diagonal of Table 2, the number of Right ends on an n × n board, is in the
OEIS as A332865. Other sequences for the number of Right ends do not appear in the OEIS
at this point.

6 Further work

We suggest three broad avenues for continuing the work in this paper. One is to explore
our original motivation and connect the enumeration of Domineering to questions of the
algebraic structure of placement game positions. Secondly, we expect the methods demon-
strated in this paper to be useful for other placement games played on grid-like boards (such
as Cartesian products of cycles and paths). Lastly, there is the possibility of counting po-
sitions to analyze particular game situations either in theory or practice to develop better
play strategies.
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