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Abstract

A word is squarefree if it does not contain nonempty factors of the form XX. In

1906 Thue proved that there exist arbitrarily long squarefree words over a 3-letter

alphabet. It was proved recently that among these words there are infinitely many

extremal ones, that is, having a square in every single-letter extension.

We study diverse problems concerning extensions of words preserving the property

of avoiding squares. Our main motivation is the conjecture stating that there are no

extremal words over a 4-letter alphabet. We also investigate a natural recursive proce-

dure of generating squarefree words by a single-letter rightmost extension. We present

the results of computer experiments supporting a supposition that this procedure gives

an infinite squarefree word over any alphabet of size at least three.
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1 Introduction

A square is a finite nonempty word of the form XX. For instance, the word hotshots is
a square with X = hots. A word W contains a square if it can be written as W = UXXV
for some words U, V , and a nonempty word X. A word is squarefree if it does not contain any
squares. For instance, the word repetition contains the square titi, while recreation is
squarefree.

It is easy to check that there are no binary squarefree words of length greater than 3.
However, there exist ternary squarefree words of any length, as proved by Thue [16, 3]. This
result is the starting point of combinatorics on words, a wide discipline with many exciting
problems, deep results, and important applications [1, 2, 4, 6, 9, 10].

In this paper we study problems concerning squarefree extensions of words, a concept
introduced recently by Grytczuk, Kordulewski, and Niewiadomski [7]. Let A be a fixed
alphabet and let W be a finite word over A. The set of all finite words over A is denoted
by A

∗. An extension of W over A is any word of the form W ′xW ′′, where x is any letter
from A and W = W ′W ′′ (words W ′ and W ′′ are possibly empty). For instance, the word
bear is an extension of the word bar by inserting the letter e between letters b and a.
A squarefree word W ∈ A

∗ is maximal if for every x ∈ A the extensions xW and Wx contain
a square. A squarefree word W is called extremal over A if there is no squarefree extension
of W . For instance, the word

H = 1231213231232123121323123

is the shortest extremal word over the alphabet {1, 2, 3}. This means that inserting any
letter from the alphabet {1, 2, 3} at any position in the word H, including the beginning as
well as the end of H, results with a square.

A natural intuition is that extremal words should be rare or even should have bounded
length. However, in the case of a 3-letter alphabet, this intuition turned out to be faulty.

Theorem 1 (Grytczuk, Kordulewski, and Niewiadomski [7]). There exist infinitely many

extremal squarefree words over a 3-letter alphabet.

The proof of this theorem is by a recursive construction whose validity is partially based
on computer verification. Mol and Rampersad [11] determined all positive integers k for
which there exist extremal ternary words of length exactly k. In particular, they proved that
for every k ≥ 87 there exists an extremal ternary word of length k.

One may naturally wonder what the case is for larger alphabets. Actually, we do not
know if there are any extremal words over a 4-letter alphabet. Computational experiments
prompted us to state the following conjecture.

Conjecture 2 (Grytczuk, Kordulewski, and Niewiadomski [7]). Every squarefree word over
a 4-letter alphabet can be extended to a squarefree word.
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A weaker version of this statement was recently confirmed by Hong and Zhang [8] who
proved that there are no extremal squarefree words over an alphabet of size 15.

In the forthcoming sections we shall present some results and effects of computer exper-
iments inspired by Conjecture 2.

2 Nonchalant words

2.1 The main conjectures

The problem of extremal squarefree words is connected to the following recursive construc-
tion.

Given a fixed ordered alphabet A, we start with the first letter from A and continue by
inserting the earliest possible letter at the rightmost position of the previous word so that
the new word is squarefree. For instance, for the alphabet {1, 2, 3} this greedy procedure
starts with the following sequence of squarefree words:

1, 12, 121, 1213, 12131, 121312, 1213121, 12131231.

The last word was obtained by inserting 3 at the penultimate position of the previous word.
We conjecture that the aforementioned procedure never stops. To state it formally, let

us define recursively a sequence of nonchalant words Ni over the alphabet An = {1, 2, . . . , n}
by putting N1 = 1, and letting Ni+1 = N ′

ixN
′′

i to be a squarefree extension of Ni such that
in the first instance N ′′

i is the shortest possible suffix of Ni and then x ∈ An is the earliest
possible letter.

Conjecture 3 (Grytczuk, Kordulewski, and Niewiadomski [7]). The sequence of nonchalant
words over An is infinite for every n ≥ 3.

In other words, we believe that the nonchalant algorithm never produces an extremal
word. The results of computer experiments support this conjecture. For instance, for n = 3
a nonchalant word of length 10000 was obtained. Moreover, the new letter was never inserted
more than 20 positions from the end of the previous word (Appendix A contains more details).
Therefore the following conjecture also seems plausible.

Conjecture 4 (Grytczuk, Kordulewski, and Niewiadomski [7]). The sequence of nonchalant
words over An converges to an infinite word Nn for every n ≥ 3.

Here are the first 70 terms of the presumably infinite limit word for n = 3:

N3 = 1213123132123121312313231213123212312131231321231213123212312132123132...
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N1 0 1 2 3 4 7 9 12 14 15 20
1 9457 310 184 1 33 11 1 0 0 1 2
2 9457 309 186 1 33 11 0 0 1 0 2
3 9457 307 185 0 34 13 1 0 1 0 2
13 9454 310 185 0 34 13 1 0 1 0 2
23 9458 307 185 1 34 11 0 1 1 0 2
32 9458 309 185 1 33 11 0 0 1 0 2

3213 9455 309 185 0 34 13 1 0 1 0 2
2313213 9455 309 185 0 34 13 1 0 1 0 2

32132313213 9455 309 185 0 34 13 1 0 1 0 2

Table 1: Number of steps in which a new letter was inserted before the suffix of given length
(10000 iterations).

2.2 Playing with initial words

The above version of the nonchalant algorithm with the two corresponding conjectures were
stated by Grytczuk, Kordulewski, and Niewiadomski [7]. Our numerical experiments led us
to introduce a more general approach.

Starting with the word 1 is the most natural approach, because such word can be consid-
ered as a result of performing the nonchalant procedure on an empty word. Let us consider
starting the nonchalant algorithm with a different initial word. Namely, let the nonchalant
word N1 be some squarefree word over a fixed alphabet. From now on N1 will be called
the initial word of the nonchalant algorithm. The results of testing 10000 iterations of
the nonchalant algorithm over the ternary alphabet for various initial words are presented
in Table 1. The first column contains the initial words, while the other columns show how
many times the procedure moved back by the given number of positions (the column ini-
tialized by 0 shows how many times a new letter is inserted at the rightmost position, by
1 - at the penultimate position, etc.). These experimental results suggest that sequences of
nonchalant words still bear many similarities. For example, for each considered initial word,
a new letter is inserted 33 to 36 times right before the suffix of length 4. More data from
our experiments is presented in Appendix A.

2.3 Nonchalant words over four letters

In the case of a 4-letter alphabet the situation looks even more exciting. In our experiments
for the initial word 1 the procedure never moved back by more than one position. In fact,
through 50000 iterations the word was extended on the penultimate position only 33 times
(in other cases, the word was extended at the last position).

The squarefree word W over given alphabet A is almost extremal if for all nonempty
words W ′ and W ′′ such that W = W ′W ′′, the word W ′xW ′′ contains a square for every
x ∈ A. Given that, let us consider another variant of the nonchalant algorithm. Namely,
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let 12 be the initial word of the nonchalant algorithm over A4 and let us allow for word
extensions only at internal positions (extension of a word at the end or at the beginning is
forbidden). This procedure starts with the following sequence of squarefree words:

12, 132, 1312, 13142, 131412, 1314132, 13141312, 131413212.

The last word was obtained by inserting 2 right before the suffix 12. Through 50000 itera-
tions, the procedure never moved back by more than two positions (in this case the number
of iterations in which procedure moved back by two positions is approximately equal to 10%
of all iterations).

2.4 Extensions close to the ends

The above experiments led us to the following two suppositions: (1) every quaternary square-
free word can be extended at the end or at the penultimate position, and (2) every quaternary
squarefree word (of length at least 3) can be extended at one of the two rightmost internal
positions. However, both suppositions turned out not to be true.

Proposition 5. There exists a quaternary squarefree word S which cannot be extended,

neither at the last, nor at the penultimate position.

Proof. Let A = 1213121 and B = 121312. Next, let Y = 3B4 and Z = 41Y A4Y B341.
Finally, put S = ZY A4Y A, which gives the word

S = 4231213124121312143121312412131231423121312412131214312131241213121.

It can be verified (by a computer) that S is indeed squarefree. Now, Ax contains a square
for every x ∈ {1, 2, 3}. Also S4 = Z(Y A4)(Y A4) is not squarefree. For the penultimate
position it suffices to check only letters 3 and 4. So, the suffix A in S will turn to one of
the forms, B31 or B41, respectively. In the latter case we get the word

ZY A4Y B41 = ZY A43(B4)(B4)1. (1)

In the former case we obtain

ZY A4Y B31 = (41Y A4Y B3)(41Y A4Y B3)1. (2)

The assertion is proved.

The proof of Proposition 5 could be verified entirely with the use of a computer. However,
we decided to include some explanations to give a better insight into the structure of the
word S.

In the case of the second supposition, we will present a more general result. We use
the well known Zimin words Zn, defined recursively over an infinite alphabet of variables
{1, 2, 3, . . .} by Z1 = 1 and Zn = Zn−1nZn−1 for every n ≥ 2. Let us notice that the Zimin
word Zn is maximal over the alphabet {1, 2, . . . , n}. In the following proposition, the con-
struction in the proof is more clear when we analyze the leftmost internal positions instead
of the rightmost ones. Obviously, the result holds in the latter case as well.
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Theorem 6. For all natural numbers n and t, with n ≥ 4 and 1 ≤ t < n, there exists

a squarefree word W over the alphabet An, which cannot be extended at any of its t leftmost

internal positions.

Proof. Let A = 12 · · · n be a word over alphabet An. This word has exactly N = (n−1)(n−2)
distinct internal squarefree extensions. Let ZN be the Zimin word over the alphabet AN .
Consider the homomorphism ϕ : A∗

N → A
∗

n defined so that the image of every letter in AN

is a unique internal extension of the word A assigned in a natural way as follows:

ϕ(1) = 1323 · · · n,

ϕ(2) = 1423 · · · n,

...

ϕ(n− 2) = 1n23 · · · n,

ϕ(n− 1) = 1213 · · · n,

ϕ(n) = 1243 · · · n,

...

ϕ(N) = 123 · · · (n− 1)(n− 2)n.

For every i ∈ AN the word ϕ(i) has a unique factor je(j + 1), where e is the inserted letter
that extended the word A. Moreover, if j 6= 1, then ϕ(i) has also a unique factor (j− 1)je
and if j + 1 6= n, then ϕ(i) has a unique factor e(j + 1)(j + 2).

Let us assume that the word ϕ(ZN) contains a square XX. It is not hard to verify that
for any x, y ∈ AN\{1}, x 6= y, the words ϕ(1x), ϕ(x1), ϕ(1x1), ϕ(x1y), ϕ(1x1y) and ϕ(x1y1)
are squarefree. It follows that the length of XX has to be greater than 3n + 2 and XX has
to contain a block ϕ(u) for possibly the largest u 6= 1. Moreover, this block is unique in
XX since every factor of a Zimin word contains a unique single letter of the greatest value
(in that factor). In consequence, the square XX contains a unique factor je(j + 1), which
must occupy the middle of the word XX. This fact gives us two possible cases for the form
of the word X, namely

X = (j + 1)Y je or X = e(j + 1)Y j,

for some nonempty word Y . We may also assume that j = 1 or j + 1 = n, since otherwise
one of the parts of the square XX would have to contain another unique factor, which is
clearly impossible.

Let us consider the case j = 1. Then we have

ϕ(u) = 1e23 · · · n.

To avoid a second unique factor, the word X has to be of the form

X = e23 · · · nB1
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for some nonempty word B, which gives

XX = e23 · · · nBϕ(u)B1.

Let us notice that XX is a factor of the word

ϕ(u)Bϕ(u)B1,

since the only word of form ϕ(y) with the suffix e23 · · · (n− 1)n is ϕ(u). Between any
two occurrences of the same letter in the Zimin word there is a letter of greater value,
so the word XX contains a factor ϕ(z) for some z greater than u, and this fact creates
a contradiction.

The reasoning in the case j + 1 = n goes analogously.
Thus we have proved that the word ϕ(ZN) is squarefree. In a similar way one may prove

that the word Aϕ(ZN) is also squarefree. Inserting a single letter at one of the internal
positions of the prefix A in the word Aϕ(ZN) generates a square (by the fact that Zimin
words are maximal).

The above results lead naturally to the following question.

Question 7. Is it true that there is some constant t ≥ 3 such that every quaternary squarefree
word can be extended at one of its rightmost t positions?

We can only prove that the answer is negative over a 5-letter alphabet for sufficiently
large t and provided that we omit the very last position in the process of extension.

Proposition 8. For every t ≥ 87 there exists a squarefree word over a 5-letter alphabet

which cannot be extended at any of its t rightmost internal positions.

Proof. Let A = a1a2 · · · at be any extremal word of length t over the alphabet {1, 2, 3}.
Consider the morphism α : A∗

2t−2 → A
∗

5 defined similarly as in the previous proof, that is, its
blocks are all possible extensions of the word A by the letters 4 or 5 at the internal positions
of A. Let us denote Ai = 4α(i)5 for all i = 1, 2, . . . , 2t− 2, and additionally A2t−1 = 4A45.
Now, consider the word W obtained as an effect of a substitution i → Ai of words Ai for
the corresponding letters of the Zimin word Z2t−1. Finally, let us denote S = 4A5 and let
P = WS.

We claim that the word P satisfies the assertion of the proposition. Indeed, consider
any extension of P at any of its t final internal positions. If the inserted letter is from
the alphabet {1, 2, 3}, then we get a square by the extremality of A. Otherwise, if the inserted
letter is from {4, 5}, then the suffix S of P becomes one of the words Ai and we get a square
by the structure of the Zimin word Z2t−1.

It is also not hard to demonstrate that the word P is indeed squarefree, by a reasoning
similar to the one in the proof of Theorem 6.
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3 The number of squarefree extensions

3.1 The squarefree potential

The problem of squarefree extensions leads to some naturally defined functions on words.
For instance, given a squarefree word W over alphabet A, let Æ(W ) and æ(W ) denote1,
respectively, the number of different squarefree extensions and the number of different inter-
nal squarefree extensions of W . The quantities Æ(W ) and æ(W ) will be called a squarefree

potential and an internal squarefree potential of the word W , respectively. We can rephrase
some definitions in the terms of squarefree potentials: the squarefree word W is extremal if
Æ(W ) = 0, almost extremal if æ(W ) = 0, and maximal if Æ(W ) = æ(W ).

Let us notice that for every squarefree word W over the alphabet An, the inequality

Æ(W ) ≤ æ(W ) + 2(n− 1)

holds.
As we already know, Æ(W ) = 0 for infinitely many squarefree ternary words. But how

large can values of this function be for words of length n?
Let Sn denote the set of all finite squarefree words over the alphabet An. Let Æn(k) and

æn(k) be the maximum values of Æ(W ) and æ(W ) for words of length k in Sn. Clearly,
Æ3(k) ≤ k + 3 and æ3(k) ≤ k − 1 for all k ≥ 1, by definition (every ternary squarefree
word can be potentially extended at every internal position by just one letter, and at any of
the border positions by at most two distinct letters). However, notice that the number of
internal positions where such word may be extended is limited by the number of palindromic
factors of the form xyx, with x, y ∈ A. Indeed, if W = UxyxV is a squarefree ternary word,
then it cannot be extended at the bordering positions of xyx, unless U or V is the empty
word. Such palindromic factors occur very often in squarefree ternary words, at least once
in every factor of length 7, which gives the following upper bound on the function Æ3(k).

Proposition 9. For every sufficiently large k, we have Æ3(k) ≤ 5
7
k + 2.

This upper bound can be easily improved by a more careful counting of palindromic
factors in words of S3. For instance, by using structural observations made by Shur [14], one
may improve the multiplicative constant to at least 4/7. We omit the details since we feel
that it is still far from the optimum, as suggested by Table 2. Also, any non-trivial lower
bound for Æ3(k) would be interesting.

Conjecture 10. There exists a constant η > 0 such that Æ3(k) ≥ ηk holds for all sufficiently
large k.

A position in a squarefree word W at which it can be extended will be called extensible.
We will also say that W is extensible at that position. Let us consider the following squarefree

1Such designation of the functions, borrowed from the Norwegian alphabet, was chosen in order to honor

Axel Thue.

8



k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
æ3(k) 2 3 4 3 2 3 3 3 4 4 4 5 5 5 6 6
Æ3(k) 6 7 6 6 6 6 6 6 6 7 7 7 8 8 8 9

k 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
æ3(k) 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11
Æ3(k) 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 14

k 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
æ3(k) 12 11 11 11 12 12 12 12 12 13 13 13 14 14 14 15
Æ3(k) 14 15 14 15 16 15 14 15 15 15 16 16 16 17 17 17

Table 2: Values of the functions æ3(k) and Æ3(k) for k ≤ 50.

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
æ(Ni) 1 2 2 2 2 2 3 3 3 3 3 2 2 1 1 1 2 2 2

i 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
æ(Ni) 3 3 3 3 3 4 4 4 4 4 4 5 4 4 4 4 5 5 5

Table 3: Values of the function æ for nonchalant words Ni for i ≤ 39.

word M of length 35

M = 1 213 123 132 312 321 231 213 123 132 312 321 2,

where the symbol “ ” stands for an extensible position in M . It is worth noticing that for
every k ∈ {7, 8, . . . , 35}, the prefix Mk of length k of the word M satisfies æ(Mk) = æ3(k).
Moreover, the internal positions at which the words Mk are extensible coincide with internal
extensible positions of the word M .

Analogously, one may consider the minimum values of the functions æ and Æ for words
of given length k. Theorem 1 implies that over the alphabet {1, 2, 3} these values are equal
to 0 for infinitely many k. In the case of a 4-letter alphabet, minimum values for words of
small lengths seem to support Conjecture 2.

It is also interesting to look for the values of the function Æ or æ for the nonchalant
words Ni. For instance, our numerical experiments shows that in the first 1000 iterations of
the procedure, the values of æ(Ni) are “gradually increasing” in the sense that when the new
maximal value is obtained for the nonchalant word Ni, then the value of æ for the following
words is never less than æ(Ni) − 2 (more details are presented in Tables 3 and 4).

This fact led us to the following version of Conjecture 3.

Conjecture 11. If æ(N1) > 2 for the starting word N1 of the nonchalant algorithm, then
the respective sequence of nonchalant words is infinite.
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i 2 3 8 26 32 40 46 64 79 100 108 111 117 135 172
æ(Ni) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i 175 183 189 222 243 251 254 260 279 286 314 338 346 352 370
æ(Ni) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

i 385 406 414 417 423 445 469 477 489 496 524 548 556 562 580
æ(Ni) 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

i 595 616 624 627 633 655 687 706 712 737 740 743 764 779 800
æ(Ni) 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

i 808 811 817 835 850 872 875 878 881 902 917 938 967 973 997
æ(Ni) 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

Table 4: Indices i < 1000 for which the nonchalant procedure gave new maximum values of
æ(Ni).

3.2 The squarefree potential of Zimin words

Let us consider the squarefree potential of Zimin words Zn. Since Zimin words are non-
extensible on the external positions, we have Æ(Zn) = æ(Zn). It is easy to verify that
Æ(Z1) = Æ(Z2) = 0 and Æ(Z3) = 2. Let n ≥ 4. Since Zn = Zn−1nZn−1, we get that
the only extensions of Zn by the letters 1, 2, . . . , n− 1 are those induced by the prefix or
suffix Zn−1 (the letter n in the center of the word Zn occurs only once). Thus

Æ(Zn) = 2 · Æ(Zn−1) + t(n),

where t(n) stands for the number of different squarefree extensions of the word Zn by inserting
the letter n. Let us notice that the extension of Zn by the letter n would generate a square
if and only if we insert this letter right after the last appearance of any other letter in the
prefix Zn−1n or, analogously, right before the first appearance of any other letter in the suffix
nZn−1. Since there are 2n − 2 internal positions in the word Zn, we have

t(n) = (2n − 2) − 2(n− 1).

This leads us to the following statement.

Proposition 12. Let Zn be a Zimin word over the alphabet An. Then Æ(Z1) = Æ(Z2) = 0,
Æ(Z3) = 2, and

Æ(Zn) = 2n − 2n + 2 · Æ(Zn−1), (3)

for all n ≥ 4.

Before we came up with the presented formula, our computer calculations gave us the fol-
lowing sequence of the squarefree potentials of Zimin words:

0, 0, 2, 12, 46, 144, 402.
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Excluding the first two 0’s, there is only one sequence A006742 in Sloane’s OEIS [15] which
is initialized by such integers. The sequence is described as series for second perpendicular

moment of hexagonal lattice, which sounds rather distant from combinatorics on words.
Needless to say, the next term of the OEIS sequence is equal to 1040 and, as it turned out,
the next term of our sequence is equal to 1044. Thus, for a brief moment, the authors became
victims of the well known Strong Law of Small Numbers.

4 Final discussion

Let us conclude the paper with some remarks and more general open problems.
First notice that one may consider extremal words and nonchalant words with respect

to any avoidable pattern. For instance, a close relative to the notion of the square is that
of the overlap, which is a word consisting of two identical intersecting factors. Equivalently,
this is any word of the form xBxBx, where x is a single letter and B is an arbitrary word.
A word is overlap-free if none of its factors is an overlap. Such word is called extremal (over
a fixed alphabet) if any of its extensions (by a single letter) contains an overlap.

A classical result of Thue [17] asserts that there exist arbitrarily long overlap-free bi-
nary words. Recently, Mol, Rampersad, and Shallit [12] proved that among them there
are infinitely many extremal ones. Moreover, they determined exactly the set of possible
lengths of such extremal overlap-free words, which, unlike in the case of squares, does not
contain all sufficiently large integers. In analogy to the case of squarefree words one may ask
the following questions.

Question 13. Is there any extremal overlap-free word over a 3-letter alphabet?

Question 14. Is the sequence of nonchalant overlap-free binary words infinite?

Another generalization of squares is that of k-powers, which are words of the form
XX · · ·X consisting of k copies of any nonempty word X. By the mentioned result of
Thue [17], there exist infinitely many cube-free words over a 2-letter alphabet. Is the se-
quence of cube-free nonchalant binary words infinite? Is it true that every cube-free ternary

word is extensible?
To state a general conjecture let us recall briefly some basic notions of pattern avoidance

as introduced independently by Bean, Ehrenfeucht, and McNulty [2] and Zimin [18]. Let V be
an alphabet of variables. A pattern P = p1p2 · · · pr, with pi ∈ V, is any nonempty word over
V. A word W realizes a pattern P if it can be split into nonempty factors W = W1W2 · · ·Wr

so that Wi = Wj if and only if pi = pj, for all i, j = 1, 2, . . . , r. A word W avoids a pattern
P if no factor of W realizes P . For instance, a squarefree word avoids a pattern P = xx.
The pattern P is avoidable if there exist arbitrarily long words avoiding P over some finite
alphabet. The least size of such an alphabet is denoted by µ(P ) and called the avoidability

index of P . For instance, µ(xx) = 3. A complete characterization of avoidable patterns was
provided independently by Zimin [18] and Bean, Ehrenfeucht, and McNulty [2].
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Now, given a fixed pattern P , we may define extremal P -avoiding words and P -nonchalant

words analogously as in the case of squares. The following conjectures are worth considera-
tion.

Conjecture 15. For every avoidable pattern P , there are no extremal P -avoiding words
over an (µ(P ) + 1)-letter alphabet.

Conjecture 16. For every avoidable pattern P and any integer n ≥ µ(P ), the sequence of

P -nonchalant words over An is infinite and converges to a unique infinite word N (P )
n .

The avoidability index µ(P ) is quite a mysterious parameter. A pattern P with µ(P ) = 4
was found already by Bean, Ehrenfeucht, and McNulty in [2]. A current record is only slightly
better and belongs to Clark [5], who found a pattern P with µ(P ) = 5. It is not known if
there exist patterns with avoidability index six or more. Is it possible that every avoidable
pattern can be avoided over just 5-letter alphabet?

Actually, one may consider similar problems with respect to any reasonable “property” of
words. For instance, Ter-Saakov and Zhang [13] considered extremal words avoiding abelian

squares (these are words of the form XY , where Y is a permutation of X). They conjecture
that there are infinitely many such words over a 4-letter alphabet. It is however not true
that every abelian squarefree word over a sufficiently large alphabet is extensible. Indeed,
every Zimin word Zn is extremal. This implies that the nonchalant procedure (starting from
the empty word) stops over any finite alphabet.
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A 10000 iterations of the nonchalant procedure

We consider a 3-letter alphabet. Let p be the number of positions that the procedure moved
back in the i-th iteration. Tables 5 and 6 contain information about the first 10000 iterations
of the procedure with initial word 1. For example, in the seventh iteration, the 8-letter long
word was obtained by inserting a single letter in the penultimate position of the previous,
7-letter long, word. The three iterations with the biggest number of positions moved back
are bolded (in fact, these are the only iterations in which the procedure moved back more
than 9 positions (cf. Table 1).

Table 7 contains an example of more detailed common results for various initial words.
Let us focus on the distances between consecutive iterations, in which the procedure moved
back by exactly four positions (the number 4 was chosen arbitrarily). We present the number
of occurrences of such distances with respect to various initial words (for each initial word we,
again, analyze the first 10000 iterations of the procedure). For example, for initial word 1,
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procedure moves back by four positions in iteration 480. It happens again 659 iterations later,
i.e., in iteration 1139 (Table 5). Such number of steps between two consecutive iterations
does not happen again, so for the initial word 1 we have a number 1 in the column started
by 659. As we can see, the most common distances among considered iterations are about
210-211 steps.

i p i p i p i p i p i p i p i p
7 1 640 1 1307 2 1965 1 2592 4 3253 1 3861 1 4436 20

25 2 648 2 1338 1 1986 1 2625 1 3256 2 3883 2 4453 1
32 1 676 1 1349 7 1994 2 2657 1 3279 4 3890 2 4485 1
64 1 698 2 1382 1 2025 1 2662 1 3312 1 3921 1 4490 1
69 1 705 2 1387 1 2036 4 2665 2 3344 1 3953 1 4493 2
72 2 764 1 1390 2 2040 7 2696 1 3349 1 3958 1 4524 1

103 1 769 1 1421 1 2067 2 2728 1 3352 2 3961 2 4556 1
135 1 772 2 1453 1 2074 2 2730 2 3383 1 3992 1 4558 2
140 1 803 1 1458 1 2105 1 2732 2 3415 1 4013 1 4560 2
143 15 835 1 1461 2 2137 1 2761 2 3417 9 4021 2 4589 2
144 2 840 1 1484 4 2142 1 2792 1 3438 2 4052 1 4620 1
175 1 843 2 1517 1 2145 2 2824 1 3445 2 4063 4 4652 1
207 1 902 1 1549 1 2176 1 2829 1 3476 1 4093 2 4657 1
212 1 907 1 1554 1 2197 1 2832 2 3508 1 4100 2 4660 2
215 2 910 2 1557 2 2205 2 2863 1 3513 1 4131 1 4691 1
246 1 931 2 1588 1 2236 1 2884 1 3516 2 4163 1 4712 1
270 4 959 2 1620 1 2247 4 2892 2 3547 1 4168 1 4720 2
300 2 966 2 1622 2 2277 2 2923 1 3568 1 4171 2 4751 1
307 2 997 1 1624 2 2284 2 2934 4 3576 2 4202 1 4762 4
338 1 1029 1 1653 2 2315 1 2964 2 3607 1 4223 1 4792 2
370 1 1034 1 1684 1 2347 1 2971 2 3618 4 4231 2 4799 2
375 1 1037 2 1716 1 2352 1 3002 1 3648 2 4262 1 4830 1
378 2 1068 1 1721 1 2355 2 3034 1 3655 2 4273 4 4862 1
409 1 1089 1 1724 2 2386 1 3039 1 3686 1 4274 1 4867 1
430 1 1097 2 1755 1 2407 1 3042 2 3718 1 4275 1 4870 2
438 2 1128 1 1776 1 2415 2 3073 1 3723 1 4278 2 4901 1
469 1 1139 4 1784 2 2446 1 3094 1 3726 2 4296 2 4922 1
480 4 1169 2 1815 1 2457 7 3102 2 3757 1 4303 2 4930 2
510 2 1176 2 1826 4 2490 1 3133 1 3778 1 4342 1 4961 1
517 2 1207 1 1856 2 2495 1 3144 7 3786 2 4347 1 4972 4
548 1 1239 1 1863 2 2498 2 3177 1 3817 1 4350 2 4976 7
580 1 1244 1 1894 1 2529 1 3182 1 3828 4 4381 1
585 1 1247 2 1926 1 2561 1 3185 2 3829 1 4413 1
588 2 1278 1 1931 1 2566 1 3216 1 3830 1 4418 1
619 1 1299 1 1934 2 2569 2 3248 1 3833 2 4421 2

Table 5: Nonzero positions moved back by the nonchalant procedure in iterations 1-5000.
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i p i p i p i p i p i p i p i p
5003 2 5632 1 6249 2 6852 2 7483 2 8144 1 8835 1 9485 2
5010 2 5664 1 6280 1 6883 1 7514 1 8147 2 8843 2 9516 1
5041 1 5666 2 6291 4 6904 1 7535 1 8178 1 8874 1 9527 4
5073 1 5668 2 6321 2 6912 2 7543 2 8205 2 8885 4 9557 2
5078 1 5697 2 6328 2 6943 1 7574 1 8238 1 8915 2 9564 2
5081 2 5728 1 6359 1 6954 4 7585 7 8261 3 8922 2 9595 1
5112 1 5760 1 6391 1 6984 2 7618 1 8267 2 8953 1 9627 1
5133 1 5765 1 6396 1 6991 2 7623 1 8298 1 8985 1 9632 1
5141 2 5768 2 6399 2 7022 1 7626 2 8330 1 8990 1 9635 2
5172 1 5799 1 6430 1 7054 1 7657 1 8335 1 8993 2 9666 1
5183 4 5820 1 6451 1 7059 1 7689 4 8338 2 9024 1 9687 1
5213 2 5828 2 6459 2 7062 2 7716 2 8369 1 9045 1 9695 2
5220 2 5859 1 6490 1 7093 1 7723 2 8390 1 9053 2 9726 1
5251 1 5870 4 6501 7 7114 1 7754 1 8398 2 9084 1 9737 4
5283 1 5900 2 6534 1 7122 2 7786 1 8429 1 9123 2 9738 1
5288 1 5907 2 6539 1 7153 1 7791 1 8440 4 9130 2 9739 1
5291 2 5938 1 6542 2 7164 4 7794 2 8470 2 9161 1 9742 2
5322 1 5970 1 6573 1 7168 7 7825 1 8477 2 9193 1 9770 1
5343 1 5975 1 6605 1 7195 2 7846 1 8508 1 9198 1 9792 2
5351 2 5978 2 6610 1 7202 2 7854 2 8540 1 9201 2 9799 2
5382 1 6009 1 6613 2 7233 1 7885 1 8545 1 9232 1 9830 1
5393 7 6030 1 6628 20 7265 1 7896 4 8548 2 9253 1 9862 1
5426 1 6038 2 6645 1 7270 1 7926 2 8579 1 9261 2 9867 1
5431 1 6069 1 6677 1 7273 2 7933 2 8600 1 9292 1 9870 2
5434 2 6080 4 6682 1 7304 1 7964 1 8608 2 9294 1 9901 1
5465 1 6084 7 6685 2 7325 1 7996 1 8639 1 9328 4 9922 1
5497 1 6111 2 6716 1 7333 2 8001 1 8650 4 9347 2 9930 2
5502 1 6118 2 6748 1 7364 1 8004 2 8705 2 9354 2 9961 1
5505 2 6149 1 6750 2 7375 4 8035 1 8712 2 9385 1 9972 4
5528 4 6181 1 6752 2 7405 2 8056 1 8743 1 9417 1
5561 1 6186 1 6781 2 7412 2 8064 2 8775 1 9422 1
5593 1 6189 2 6812 1 7443 1 8095 1 8780 1 9425 2
5598 1 6220 1 6844 1 7475 1 8106 7 8783 2 9456 1
5601 2 6241 1 6849 1 7480 1 8139 1 8814 1 9477 1

Table 6: Nonzero positions moved back by the nonchalant procedure in iterations 5001-10000.
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N1 199 207 210 211 233 235 314 339 342 345 443 460
1 1 1 9 4 0 3 1 1 3 4 1 0
2 2 1 8 5 0 3 1 0 3 4 1 1
3 1 1 8 6 0 1 1 1 5 6 0 1
13 1 1 8 6 0 1 1 1 5 6 0 1
23 2 1 9 5 0 3 1 0 3 4 1 1
32 2 1 8 5 0 3 1 0 3 4 1 1

3213 1 1 8 6 0 1 1 1 5 6 0 1
2313213 1 1 8 6 0 1 1 1 5 6 0 1

32132313213 1 1 8 6 0 1 1 1 5 6 0 1

N1 489 544 659 663 688 806
1 1 1 1 1 0 0
2 0 1 0 1 1 0
3 1 0 0 1 0 0
13 1 0 0 1 0 0
23 1 1 0 1 0 0
32 0 1 0 1 1 0

3213 1 0 0 1 0 0
2313213 1 0 0 1 0 0

32132313213 1 0 0 1 0 0

Table 7: Numbers of occurrences of distances (first row) between two consecutive iterations
in which the nonchalant procedure moved back by exactly four positions, for various initial
words (for 10000 iterations of the procedure).
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[17] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid.

Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1–67. Reprinted in Selected Mathematical Papers of

Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413–478.

[18] A. I. Zimin, Blocking sets of terms, Mat. Sb. 119 (1982), 363–375. Translated in Sb.

Math. 47 (1984), 353–364.

2020 Mathematics Subject Classification: 68R15.
Keywords: squarefree word, extremal word, Zimin word, word extension.

(Concerned with sequence A006742.)

16

https://arxiv.org/abs/2107.13123
https://arxiv.org/abs/2009.10186
https://oeis.org
https://oeis.org/A006742


Received May 1 2021; revised versions received May 4 2021; August 17 2021; August 30
2021. Published in Journal of Integer Sequences, September 23 2021.

Return to Journal of Integer Sequences home page.

17

https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Nonchalant words
	The main conjectures
	Playing with initial words
	Nonchalant words over four letters
	Extensions close to the ends

	The number of squarefree extensions
	The squarefree potential
	The squarefree potential of Zimin words

	Final discussion
	Acknowledgments
	10000 iterations of the nonchalant procedure

