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Abstract

We investigate the “Choix de Bruxelles” operation on integers that replaces the
number N by any of the numbers that can be obtained by multiplying or dividing by
3 consecutive digits of the decimal representation of N. Our approach is different from
the original one assuming halving or doubling, and while both approaches share some
similarities, they also differ in selected features. Our goal is to investigate the modified
operation and to describe its graph.

1 Introduction
Let N be a positive integer with decimal representation
N = [dydy - - - di].

Angelini et al. [1] investigated the so—called “Choix de Bruxelles” operation on integers that
replaces N by taking any number [w] represented by a stringw = d,---d, with1 <p < ¢ <k
and d, # 0, and replacing that string by the decimal representation of [2(w)] or, if w is even,
by the decimal representation of [2(w)] or [(w)/2]. Choosing an empty string is also allowed.
Since d, # 0, the operation is clearly invertible.

The operation applied to N = 1208 provides the following numbers, where one digit is
changed:

2208, 1408, 12016, 1108, 1204.
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Notice the five-digit number is obtained by replacing 8 with 16. We emphasize that we do
not carry 1 to the next decimal place. When we consider strings of length two, the following
numbers are possible to get:

2408, 1408, 608, 1108.

The name “Choix de Bruxelles” has the origins briefly described by Angelini et al. [1]
and involves “sprouts” (“choux de Bruxelles”) described by Berlekamp et al. [2]. There are
many appearances of this operation in Online Encyclopedia of Integer Sequences (OEIS) [3],
see for instance sequences A323454, A323286, and A323287.

In this article we investigate a similar operation, but our approach assumes multiplying
or dividing a segment by 3. This leads, for example, to the following numbers, that can be
obtained from 154 in one step:

354, 1154, 1512, 454, 1162, 462, 54, 118.

The last two numbers are obtained by diving two-digit segments by 3. We give more examples
in Table 1. We note that there are other variations of the Choix de Bruxelles operation; we
refer the reader to sequences A337321 and A337357 in OEIS [3].

N | goes to
111,3
612,12
121 4,32,16, 36
36 | 16,32,12,96, 318, 108
243 | 83,241, 81,643,2123, 249,723, 2129, 729
608 | 1808, 208, 6024, 1824

Table 1: Numbers arising when Choix de Bruxelles operation of order three is applied to
some numbers.

Our goal is similar to the one posed by Angelini et al. [1]. We investigate the modified
operation and find out what happens when it is iterated. We call it the Choiz de Bruxelles
operation of order three. In the article we investigate the range of the operation in one or
more steps. We also completely describe the graph of the operation and present an algorithm
that for a given number identifies its connected component of the graph.

In the article we let N denote a positive integer (which is subject to the Choix de Bruxelles
operation of order three). A substring of N is denoted by w (or wy, w9 and so on), its decimal
representation is denoted by [w] and its length is written |w|. We denote by (123) (or any
other number) the string 123. The concatenation of two strings w; and wy is wy - wy. If w
is a string, then by (3[w]) (and similar symbols) we understand a string with digits equal to
the number represented by 3[w] (if w = 444, then (3[w]) = 1332).


https://oeis.org/A323454
https://oeis.org/A323286
https://oeis.org/A323287
https://oeis.org/A337321
https://oeis.org/A337357

2 Numbers that are reached in one step

Table 2 shows the lowest and the largest numbers that can be reached in one step. They
are denoted by M;(N) and M, (N), respectively, for each positive integer N. First, let us

N\12345678910111213 14 15
M(N)|1 21 4 5 2 7 8 3 10 11 4 13 14 5
M,(N)|3 6 9 12 15 18 21 24 27 30 33 36 39 112 115

Table 2: The largest and the lowest number that can be obtained in one step.

investigate the bounds of functions M, and M;.

Theorem 1. The largest number M,(N) that can be obtained from
N = [dydads - - - dy]

by the Choix de Bruxelles operation is either 3N, if d; < 4 for all i, and otherwise is obtained
by multiplying by 3 the number [w| = [d, - - - di], where d,, is the right-most digit not less than
4, and replacing [w] with 3[w] in N.

Proof. 1f d; < 4 for all 4, then |3N| = |N| and M,(N) = 3N.
If d; > 4 for at least one 7, then |3d;| = 2. We choose any string starting with such d;.
Let M denote the number obtained from N by replacing d; with 3d;. Then |M| = |N|+ 1.
Notice that if x is the number represented by the farthest substring to the right starting
with d; > 4, then we should multiply = by 3. This is because if the first digit of the substring
is not less than 4, then the tripled one starts with 1 or 2 and that is less than 4. More
formally, if d,, - - - dj, is the right-most string starting with d,, > 4, then we can obtain

M =dydy-dy-1-(3d,—10)- A, d, € {4,5,6}

or

M=didy--dyy-2-(3d,—20)-B, d, {7,809}

for some (possibly empty) strings of numbers A and B. On the other hand, if there is a digit
ds > 4 with s < p, then let

M/:dl"'ds—l'(3[ds])'ds+1"'dk

and s-th digit of M’ is less than the one of M, so M' < M.
Finally, if d, is the right-most digit that is at least 4, then let N, denote the number
obtained by Choix de Bruxelles on a substring d,, - - - d, with ¢ < k. Then

Np:dl"'dp—l'(3[dp"'dq])'dq+1"'dk

and the number N, is maximized by taking ¢ = k. O
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We illustrate Theorem 3 with three examples.

Example 2. (1) Let N = 113. Since all digits are at most 3, we have M,(N) = 3N = 339.
(2) Let N = 56234234. The right-most digit is at least 4, hence M,(N) = 562342312.
(3) Let N = 67542. The right-most digit that is at least 4 is 4 (the tens place), hence we
multiply 42 by 3 and M, (N) = 675126.

We follow the notion of “greedy algorithm” from the article by Angelini et al. [1] for
the algorithm in Theorem 1, that is, for a given number N the algorithm described in the
theorem returns the largest possible number M, (N).

A similar theorem holds for the lowest number M;(N).

Theorem 3. The lowest number M;(N) that can be obtained from
N = [dydads - - - dy]
by the Choix de Bruzelles operation is either
1. N, if there is no substring of N that is divisible by 3,

2. otherwise, among all indezes r and s with d, € {1,2} and [w] = [d, - - - ds] such that [w]
1s divisible by 3, first select the largest r possible and then for such r select the largest
s possible, finally replace [w]/3 with [w] in N,

3. otherwise, among all indexes r and s with d, > 3 and [w] = [d, - - - ds| such that [w] is
divisible by 3, first select the lowest r possible and then for such r select the largest s
possible, finally replace [w]/3 with (w) in N.

Proof. We mimic the argument in the proof of Theorem 1. O]
We illustrate Theorem 3 with three examples.

Example 4. (1) Let N = 116. Only one string is divisible by 3, hence M;(N) = 112.
(2) Let N = 56234234. We have two substrings starting with 2 that are divisible by 3:
234 and 234234. We can obtain three different strings from that:

56 - 78-234,56-234 78,56 - 78078.

The algorithm says we should pick the right-most string 234 and the lowest possible number
is 5623478.

(3) Let N = 67542. There is no substring starting with 1 or 2 that is divisible by 3, so
we find the longest substring that is divisible by 3 and starts farthest to the left. We have
several choices: 6, 675, 67542, and they give numbers 27542, 22542 and 22514, respectively.
The last one, 22514, is the lowest one possible possible one according the algorithm. It is
easy to check that by hand as well.



With what we have just proven we can get precise bounds on the range of numbers
generated by the Choix de Bruxelles operation of order three.

Theorem 5. The numbers M obtained by the Choir de Bruxelles operation to N lie in the
range

N
— < M < 10N
10< < 10

and there are values of N for which M s arbitrarily close to the either of the bounds.

Proof. Since the operation is invertible, it is sufficient to prove the lower bound (the upper
bound follows by switching the roles of M and N).
For the lower bound we can assume the case 2. in Theorem 3, otherwise we obtain
M;(N) > £
Let
N=A-C-B, o N=I[A-10+][C] 10"~ +B]

for some j > 1, strings A, B and C' with
C=d,---ds, d, € {1,2}

and C' is the string described in the case 2. in Theorem 3. Then the left-most digit of [C]/3
is at least 3 and

My(N) =[A] - 1077 + [—(;] 107+ B,

so we have M;(N) > 1.
For the optimal bound take N = 10¥ 4+ 12 with k£ > 2. Then M;(N) = 10*"! 4+ 4 and we
have
i M) 1
Nores N 107

[]

3 The graph G of the Choix de Bruxelles operation of
order three

Let GG denote the undirected graph, whose vertices are positive integers and two vertices are
connected by an edge if and only if one vertex (represented by a number or a string) can be
obtained by a valid Choix de Bruxelles operation of order three from the other vertex. We
have for instance the following partial graph of G (see Figure 1). The graph is undirected
since the operation is symmetric (invertible). We do not draw edges corresponding to empty
strings.

We also represent the graph with the following simplified notation, that we will use
frequently throughout the article:

5—15—-35—-95— 275 — 815 — 85.



5 15 3595 (27581585

Figure 1: Subgraph of G.

We show that the graph has infinitely many components and we describe how to find the
corresponding component for a given number N.

We start with the simple case — the number which the right-most digit is 0. Whenever
we write “number can be reduced to” we mean that after some number of iterations, a given
number can be reduced with the Choix de Bruxelles operations to another number. To
“reduce the number of digits” means to iterate the operation on N so that the number M
which we obtain has |[M| < |N].

Let Z(¢) denote a string of ¢ zeroes. For example, Z(3) = 000. The following lemma
describes the numbers N that are of the form N = A - Z(¢).

Lemma 6. Any number N of the form N = A - Z({) with £ > 0 and k not divisible by 10
cannot be reduced to k' - Z({") with ¢’ < € and k not divisible by 10.

Proof. Note that the right-most digit of &', say d, would have to satisfy d - 3 = 0 (mod 10),
which is impossible. O

Lemma 6 says that the number of zeroes at the end of the number N stays fixed under
the operation. This has a major consequence for the graph of the operation.

Theorem 7. The graph G has infinitely many connected components.
Proof. This is an obvious consequence of Lemma 6. [l

Since the graph has infinitely many components, it is interesting to find a description
for each component by some sort of “root” number, that is, the numbers N that cannot be
reduced to a lower number. We do that with the help of the following definition.

Definition 8. The vertices labeled with the numbers 1 -10%, 2 - 10¢ and 5 - 10° where ¢ is a
non-negative integer, are called the roots of the graph G.

We now describe all components of the graph G. Its partial description is based on Lemma
6. We show that each number can be reduced by the Choix de Bruxelles operation of order
three to one of the roots of G and each root describes a different connected component.
According to Lemma 6, it is enough to solve the cases where 10 does not divide N.

Lemma 9. The number 2 cannot be reduced to 1 or 5. The number 5 cannot be reduced to
1.

Proof. Any valid operation on 2 or its iterates gives a number m = 0 (mod 2). Furthermore,
any valid operation on 5 or its iterates gives a number m =5 (mod 10). O
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Lemma 9 and Lemma 6 show that any number of the form 1 - 10, 210 and 5 - 10°
belongs to a different component of the graph. We now describe which numbers belong to
which component. For this, it is enough to find all numbers that can be reduced to a given
root.

Lemma 10. Any number of the form N = 10a + 5 can be reduced to 5.

Proof. The proof goes by induction on the number of digits of N. If |[N| < 2, then we use
Figure 2 to reduce such number to 5 (the reduction is optimal).

45 125 165 55

5 15 3595 (27581585

115 225 75

135195 [ 65 [ 25

Figure 2: Subgraph of G with optimal reduction path for all odd two-digit numbers divisible
by 5.

If IN| >2and N = k-10°+ 5, then £ > 2 and the number can be reduced by one digit
as follows (first step is to multiply a whole number by 3):

k-Z(0—1)-5—(3k)-Z(0—2)-16—k-Z({—2) 15— k- Z({ —2) - 5.

Obviously,
|k-Z(—2)-5|=|N|—1.

If IN| > 2 and two right-most digits of N differ from 05, then we can reduce the string
of these digits to 5 according to the subgraph (Figure 2). In this case we also reduce N by
one digit.

By the principle of induction the reduction is possible for an arbitrarily long number. [

Example 11. Let N = 705. Then, according to Lemma 10, we need at most 9 iterations to
reduce the number to 5. Indeed:

705 — 2115 — 715 — 75 — 225 — 275 — 95 — 35 — 15 — 5.

Interestingly, this back-and-forth jumping between two and three-digit numbers is an optimal
path for 705. This result comes from computer analysis of all possible numbers that can be
reached in a specified number of steps.



We now consider the numbers that are not divisible by 5. Among all numbers that have
to be reduced to one of the roots, we find some cases that do not follow the general rule of
reduction. These are the numbers which have a substring w = d,...d; with d; # 0 and
di_1 = 0. We cover them in the following two lemmas.

Lemma 12. Any number N of the form N =k -10° + d, where d € {1,3,7,9} and { > 2,
can be reduced by at least one digit.

Proof. The proof uses induction and is similar to the one of Lemma 10. Let N = k-Z({—1)-d
and d € {7,9}. Since ¢ > 2, the number N can be reduced by one digit as follows:

k-Z(l—1)-d—3k)-Z(l—2)-(3d)—k-Z({—2)-(3d)—k-Z(l—2)-d (1)
and
|k-Z((—2)-dl =|N|—1.

The remaining cases are when d = 3 or d = 1. Since we have the reduction
k-Zl—-1)-1—k-Z((—-1)-3—=k-Z(—-1)-9,
we can use operations in (1) to reduce the last number again to a shorter one. [

Lemma 13. Any number N of the form N = k- 10° + d, where d € {2,4,6,8} and { > 2
can be reduced by at least one digit.

Proof. The proof is up to obvious modification the same as for Lemma 12. The case d = 2
can be reduced to the case d = 6 and the cases d € {4, 6,8} are reduced like in (1). O

Theorem 14. Any odd number N that is not divisible by 5 reduces to 1.

Proof. Figure 3 in Appendix A is a partial graph connecting all at most two-digit numbers
(and some with more digits if necessary) to 1.

By Lemma 12 it is enough to prove the result for at most two-digit numbers. Indeed, if
the number has more digits, we either apply Lemma 12 to remove the string O - d or use the
diagram in Figure 3 (see Appendix A) to reduce the number from right to left by at least
one digit. Then we use recursion to reduce the number to 1. O]

Theorem 15. Any even number N that is not divisible by 5 reduces to 2.

Proof. Figure 4 in Appendix A is a partial graph connecting all two-digit numbers with 2.
By Lemma 13 it is enough to prove the result for at most two-digit numbers. Indeed, if
the number has more digits, we either apply Lemma 13 to remove the string 0 - d or use the
diagram in Figure 4 (see Appendix A) to reduce the number from right to left by at least
one digit. Then we use recursion to reduce the number to 2. O

Let us summarize the results obtained in this section.



Theorem 16. Let N be a positive integer and N = k- 10° for some k > 0 and £ > 0. Then:
1. if k is odd and not divisible by 5, then N reduces to the root 10,
2. if k is even and not divisible by 5, then N reduces to the root 2 - 10,
3. if k is odd and divisible by 5, then N reduces to the root 5 - 10°.

Furthermore, each root defines a distinct connected component of the graph G of the Choiz
de Bruzelles operation of order three.

4 Numbers that are reached in n steps

For the part of calculation presented in this article we used the script written in Python.
The script is provided in the accompanying file. With the aid of that script we find the
cardinality of the set of all numbers that can be reached in n steps. We gather them in
Table 3.

. Starting number

Iteration 1 5 5
3 4 6 15
4 7 18 58
5 18 74 269
6 58 368 1401
7 259 2128 8243
8 1534 | 14511 | 55438
9 11329 | 112298 | 423551
10 95438

Table 3: How many numbers can be reached in n iterations?

5 Counting steps

Let 7(N) be the minimal number of steps to reach N from 1, 2 or 5 using the Choix de
Bruxelles operation of order three. The values for small N are gathered in Table 4. Note
that in this section we do not consider numbers that are divisible by 10.
We now provide upper and lower bounds on 7(N) for large values of N. Let 1y, 75 and
75 be the functions counting steps for those numbers which root is 1, 2 and 5, respectively.
First, we discuss upper bounds.

Lemma 17. Any number of the form N = 10a+ 5 can be reduced to 5 in at most 6-|N| —6
operations. In particular, 75(N) < 6 - |N| — 6 for all admissible N.
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N[1 2 3 4 5 6 7 8 9
(N0 0 1 8 0 110 9 2
N1l 12 13 14 15 16 17 18 19
F(N)[11 710 7 1 6 9 2 9
N
N)

21 22 23 24 25 26 27 28 29
9 9 8 8 6 &8 3 9 7

Table 4: The number of steps to reach N from one of the roots. Multiples of 10 are not
included.

Proof. 1t is enough to count the number of iterations required to reduce the number N by
one digit. We consider the cases and use Figure 2 and Lemma 10:

1. the number that does not end with 05 requires up to 6 operations to be reduced by
one digit,

2. the number that does end with 05 requires exactly 3 operations to be reduced by one
digit.

In any case reduction by at least one digit requires at most 6 iterations, hence at most
6 - (|N| — 1) operations are required to reach 5 from N. O

Proposition 18. The reduction of numbers of the form N = 10a + 5 can be improved to 2
digits per at most 9 iterations.

Proof. This proof is computer assisted. With the aid of the algorithm written in Python
we can check that all three-digit numbers can be reduced to 5 with at most 9 iterations.
Moreover, we can also check that all four-digit numbers of the form d; - 0 - d3 - 5 can be
reduced to a two-digit number with at most 9 steps. Then, for the remaining numbers, we
can use recursion to reduce the number from right to left by two digits unless string Z(¢) - A
with |A| = 2 and ¢ > 2 appears.

The case A = 05 is covered by Lemma 10 and requires exactly 6 iterations to reduce by
2 digits.

The remaining cases are the numbers of the form N = B-Z({)-d-5 with d € {1,2,...,9}
and ¢ > 2. If d > 3, then we use the following reduction:

B-Z(0)-(10d+5) — (3[B]) - Z(£ — 1) - (30d + 15)—
—B-Z({—1)-(30d+15) — B- Z({ — 1) - (10d + 5)

and we have

|B-Z(—1)-(10d +5)| = |N| — 1.
If d < 3, then we multiply d by 3 once to get to the previous case.
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From the above it follows that any string of the form B-Z(2)- A can be reduced to B- A’
with |B-Z(2)- A| > |B - A’| +2 in at most 7 iterations, which is sufficient for the statement
of proposition. O

Example 19. We use Proposition 18 to reduce 30015 by two zeroes in 7 steps. We have the
following chain:

30015 — 30035 — 90105 — 30105 — 3035 — 9105 — 3105 — 335.

Lemma 20. Any odd number N that is not divisible by 5 can be reduced to 1 in at most
12 - |N| operations. In particular, 7(N) < 12 |N| for all admissible n.

Proof. Follows directly from Theorem 14 and Lemma 12, where the reduction by at least
one digit of any at least two-digit number and the reduction of any single-digit number to 1
can be can be done in at most 12 iterations. O]

Lemma 21. Any even number N that is not divisible by 5 can be reduced to 2 in at most
10 - |N| operations. In particular, To(N) < 10 - |N| for all admissible n.

Proof. Follows directly from Theorem 15 and Lemma 13, where the reduction by at least
one digit of any at least two-digit number and the reduction of any single-digit number to 2
can be can be done in at most 10 iterations. ]

Remark 22. Bounds for 75 can be improved via Proposition 18, giving the following:

9k, if |IN| = 2k + 1 for some k > 0;
m5(N) < .
9k — 3, if |[N| = 2k for some k > 0.
These imply the following simple estimation:

75(N) < 4.5-|N| - 3.

Let us discuss lower bounds. To do this, we first look at the greedy algorithm described
in Theorem 1. With the aid of that algorithm we can reach the following numbers. Let
ri(n) be the largest number obtainable according to that theorem after n iterations with the
starting number i € {1,2,5}.

Notice that:

1. by Table 5 we have

ri(n+4) = 16124 (r1(n))] for each n > 5,

2. by Table 6 we have

ro(n +4) = [3189 - (r3(n))] for each n > 5,

11



n ri(n) | n r1(n)
0 1| 10 61246189
1 31 11 612461827
2 9|12 6124618221
3 271 13 61246124663
4 221 || 14 612461246189
5 663 || 15 6124612461827
6 6189 || 16 61246124618221
7 61827 || 17 612461246124663
8| 618221 || 18 | 6124612461246189
916124663 || 19 | 61246124612461827

Table 5: Values of r; for small n.

n r(n) | n r(n)
0 2110 318936318
1 6 11 3189363124
2 18 || 12 31893631212
3 124 || 13 318931893636
4 1212 || 14 3189318936318
) 3636 || 15 31893189363124
6 36318 || 16 318931893631212
7 363124 || 17| 3189318931893636
8| 3631212 || 18 | 31893189318936318
9 | 31893636 || 19 | 318931893189363124

Table 6: Values of ry for small n.

3. by Table 7 we have

rs(n+1)=[1-(rs(n))] for each n > 1.

The last case can be expressed for n > 0 as

- 107+ — 1 10"t 4+ 35
r5(n) 2210’“4—4: T+4: —
k=0

With the above in mind we can formulate the range in which the numbers r;(n) are
possible.
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r(n)

5

15

115
1115
11115
111115
1111115

@m%wwwo‘s

Table 7: Values of r5 for small n.

Theorem 23. For all admissible n, the following estimates hold:
6.124 - 10" < ri(n) < 6.125- 10", n>9,
3.189 - 10" 2 < ry(n) < 3.190 - 10"2, n>9,

10"+ + 35

> 0.
9 Y n_

r5(n) =

Let R;(n) be the largest number that is possible to obtain from i in n steps according
to the Choix de Bruxelles operation. Note that R; differs from r;, since r; follows greedy
algorithm. We now prove the following theorem.

Theorem 24. For all i € {1,2,5} and for all n we have r;(n) = R;(n).

Proof. By the computer calculation, the result is true for all n < 9.

Assume n > 10. The candidates for R;(n) are the numbers that can be obtained from all
numbers that are reached in at most n — 1 iterations of the operation. Since we are looking
for the largest number, we can, according to Theorem 5, discard all numbers that are less
than r;(n)/10.

Let us start with the case © = 1. The set of remaining candidates forms a pattern of
period 4 starting at ninth iteration.

iteration ~ number (in string representation)
5+ 4b K - 663
6 + 4b K - 6189
7+ 4b K - 61827
8+ 4b K - 618221

Here, the concatenation of b > 1 copies of the string 6124 is denoted by K. In each iteration
the largest number that is obtained comes from the largest number obtained in the previous
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iteration, hence Ry(n) = ri(n). We skip the remaining numbers (there are many numbers
starting with the block K).

Let + = 2. As above, we obtain a period 4 pattern of the largest numbers in each iteration,

starting from ninth iteration.
iteration number (in string representation)

5+ 4b L - 3636

6+ 4b L -36318

7T+ 4b L -363124

8+ 4b L - 3631212
Here, the concatenation of b > 1 copies of the string 3189 is denoted by L. In each iteration
the largest number that is obtained comes from the largest number obtained in the previous
iteration, hence Ra(n) = ra(n).

The case @ = 5 is simple, since in each iteration the largest numbers, after discarding the
ones that are less than r;/10, form a pattern. Let O({) denote the string of ¢ ones. Then
the pattern looks as follows:

1-0(() -5, 4-0(0—2)-5, 34-0((—3)-5, 334-0O(f—4)-5, ---
and in each such step the largest number that can be obtained in the next step comes from
the last one (where O(¢ — k) is an empty string). Hence, R5(n) = r5(n). O

Remark 25. The equality r;(n) = R;(n) is true for all n and i € {1,2,5}. The original Choix
de Bruxelles operation (recall that in that case the string is doubled or halved) considered
by Angelini et al. [1] does not have this property, since r(7) = 448 but R(7) = 512.

The estimates provided in Theorem 23 also provide the least amount of iterations of the
Choix de Bruxelles operation of order three to reach a certain number. Recall that 7;(V)

measures the number of steps required to reach the number N from i € {1,2,5} for all
admissible V.

Theorem 26. For all admissible N, the following estimates hold:

221 +log,u N < 7(N), N > 6124663,
1.49 + log,, N < (N), N > 31893636,

Proof. The estimates follow from the bounds in Theorem 23 and the coincidence of functions
r; and R; described in Theorem 24. For instance, if

ro(n) < 3.19 - 10" 2,
then by rearranging we see that to reach the number N from 2 we need at least
N

steps. [
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Remark 27. The bounds for 71 and 7 are not sharp since the bounds in Theorem 23 can be
improved with more decimal places. The bounds for 75(/N) are sharp since we have equality
for numbers r5(n) in Theorem 23.

We can now summarize the bounds that we obtained in this section.

Theorem 28. For all admissible N, the following estimates hold:

2.21 +logg N <1(N) <12 -|NJ, N > 6124663,
1.49 + log,g N <m(N) < 10 - [N, N > 3189363,
logo(ON — 35) — 1 <r5(N) < 4.5 |N| — 3, N > 5.

6 Final remarks

We conclude the article with three important remarks.

Remark 29. The Choix de Bruxelles operation of order three is invertible by the assumption
d, # 0. Otherwise, if we allowed substrings starting with zero to be divided by 3, all initial
zeros would be removed from that string. For instance, the number 15 would be possible to
obtain directly from 1000015. This modification would simplify some reasoning presented
in the article, for instance the way we can reduce a number with long strings of zeroes in
it. This however would not improve any of the provided bounds in general due to “extreme
cases” with no digit 0.

Remark 30. It is interesting to notice the major difference between the original operation
described by Angelini et al. [1] and the one modified one. With a simple change of mul-
tiplier/divider the structure of the graph of the operation is vastly different. This is most
likely due to the following facts:

e the numbers 3 and 10 are coprime, whereas 2 and 10 are not,

e the multiplication or division of numbers by 3 divides residue classes modulo 10 into
four disjoint sets (see Lemma 6 and Lemma 9), where if the number is in one of the
sets, it cannot be reduced to the number from the other set; in the original case all
residue classes form just one such set.

Remark 31. It is interesting to investigate the Choix the Bruxelles operation of arbitrary
order. If we, for example, pick order five, then we could find the graph has only two roots:
1 (all odd numbers) and 2 (all even numbers). Order seven and other prime orders, on the
other hand, seem to have infinitely many roots.
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Appendix

A Diagrams of optimal reductions

81 67 \ 221
241 83 187 621 | 261
2121|721 89 561 | 11261 129 1247 ( | 207 87 | | 2181
| | | | | | | | |
217 77 521 (421 49 43 123 [ | 1741 | 69 29 727
237 231 Y 47 41 121 | 1581 | | 63 23 79
297 |211] | 291 19 321 17 527 61 21 73
| | |
99 71 97 39 13 37 o1 59 7
| | |
93 33 11 53
91 31

Figure 3: Optimal reduction for all odd not divisible by 5 two-digit numbers. The numbers
that are on the same level require the same number of reductions to reach 1. The reduction

is optimal (but not unique).
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18
124 o4 38
372|164 | 1212 324 44 | | 154 162 98
| | | | | | | |
11121[ 1192 || 1216 | | 404 108 132|118 122 294 278
| | | | | | | | | |
1332 |[ 1572 || 1248 || 1204 36 192 | 16 | |138] | 42 234 818
| | | | | |
1992524 | | 188 | 168 | | 12 32 96 64 48 | 1198 | 46 14 78| (214 | 86
664 | | 58 68 o6 4 92 24 66 34 26 74 82
264 28 52 72 8 62 94 22
88 84 76

Figure 4: Optimal reduction for all even and not divisible by 5 two-digit numbers. The
numbers that are on the same level require the same number of reductions to reach 1. The

reduction is optimal (but not unique).
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