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México
vjanitzio@gmail.com

1

mailto:mago@usb.ve
mailto:jakob@usb.ve
mailto:florian.luca@wits.ac.za
mailto:vjanitzio@gmail.com


Abstract

We provide some results relating Riesel numbers with families of cototients and

noncototients.

1 Introduction

A positive integer k is called a Riesel number whenever k is odd and k2n − 1 is composite
for every nonnegative integer n. These numbers are named after Hans Riesel who in 1956
discovered this property for the number k = 509203 (see [6]). This is conjectured to be the
smallest Riesel number. A conjecture due to Erdős asserts that if k is a Riesel number then
the smallest prime factor pn of k2n − 1 is bounded as n tends to infinity (see [4]). We refer
to such a k as an Erdős-Riesel number. As far as we know, each known example of a Riesel
number is also an Erdős-Riesel number.

A positive integer n is a noncototient if n 6= m − ϕ(m), for every integer m ≥ 2, where
ϕ(m) denotes Euler’s totient function. Notice that k is a Riesel number if and only if
k2n 6= p + 1 = 2p − ϕ(2p), for every odd prime p. Sierpiński and Erdős asked whether or
not there exist infinitely many noncototients. This question was answered affirmatively by
Browkin and Schinzel [1], by showing that the number k = 509203 has the property that
k2n is a noncototient for every n ≥ 1. In 2005, Flammenkamp and Luca [3] found six more
numbers with this property, namely:

2554843, 9203917, 9545351, 10645867, 11942443, 65484763.

The method used in [3] is based on the fact that if k is a prime Riesel number, which is not

a Mersenne prime, and 2k is a noncototient, then 2nk is a noncototient, for every n ≥ 1
(see [3, Proposition 1]). For prime values of k, Grytczuk and Mȩdryk [5] proved that the
criterion employed in [3] are optimal; more precisely, they proved that for a prime integer k,
2nk is a noncototient for every n ≥ 1, if and only if 2k is a noncototient and k is a Riesel

number which is not a Mersenne prime (see [5, Theorem 1]). They also proved that if k is
prime and 2k is a cototient then 2k = m − ϕ(m) for some even, squarefree integer m (see
[5, Theorem 3]). We conclude that in this approach—adopted to find infinite families of
noncototients—it is essential to work with prime numbers. The sequence of Riesel numbers
is A101036 and starts as

509203, 762701, 777149, 790841, 992077, 1106681, 1247173, 1254341, . . .

Our first aim in this paper is to present a method also valid for composite Riesel numbers.
As an application, we have obtain the following:

Theorem 1. For each k in the set

{762701, 790841, 992077, 1247173, 1730653, 1744117, 1830187, 1976473, 3419789, 3423373},

the number 2nk is a noncototient, for every n ≥ 1.
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It is worth adding that the 10 Riesel numbers displayed in the statement of Theorem 1
are all composite. One may ask what can one say about Riesel numbers k such that 2nk is
a cototient for some n ≥ 1. We next result addresses such Riesel numbers.

Theorem 2. There are infinitely many Riesel numbers k such that 2nk is a cototient for

some n ≥ 1.

2 The proof of Theorem 1

Given non-zero integers a, p, with p prime, we let νp(a) denote the exponent of p in the
prime factorization of a. Further, we use P (n) for the largest prime factor of n. The
following lemma is our workhorse when attempting to detect Riesel numbers k such that 2nk
is a noncototient for some positive integer n.

Lemma 3. Let k be a Riesel number. Put p := P (k) and assume

2ν2(p+1)k 6= pνp(k)(p+ 1). (1)

The following conditions are equivalent:

(i) for some n ≥ 1, the number 2nk is a cototient;

(ii) for every n ≥ 1, the number 2nk is a cototient.

Proof. It is clear that (ii) implies (i), so it is enough to show that (i) implies (ii).
Assume that (i) holds and let n0 ≥ 1 be minimal such that 2n0k = m − φ(m) for some

positive integer m. Since 22− 1 = 3 is prime and k is a Riesel number, it follows that k ≥ 3,
so m ≥ 6. In particular, φ(m) is even. The equation 2n0k = m − φ(m) implies that m is
even.

Consider the case n0 > 1. If 4 | φ(m), then 4 | m and 2n0−1k = (m/2) − φ(m/2),
contradicting the minimality of n0. So, m ≥ 6 is even and 2‖φ(m) showing that m = 2qe for
some odd prime q and positive integer exponent e. But then

2n0k = m− φ(m) = 2qe − qe−1(q − 1) = qe−1(q + 1).

If e > 1, then q = P (k) = p and e− 1 = νp(k). Since k is odd, we get ν2(p+ 1) = n0. Thus,

2ν2(p+1)k = pνp(k)(p+ 1),

which we assumed not to hold. If e = 1, then 2n0k − 1 = q is prime, contradicting the fact
that k is Riesel. Thus, n0 = 1. Since m is even, we have 2k = m − φ(m) and m is even.
Hence, for all n ≥ 1, we have 2nk = (2n−1m)− φ(2n−1m) is a cototient, which is (ii).

In particular, if we want k to be a Riesel number such that 2nk is a noncototient for all
n, it suffices to do two things:
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(i) Check condition (1).

(ii) Check that 2k is a noncototient.

Given k, condition (i) is immediate to check. For (ii), we need to see whether there is
a representation 2k = m − φ(m) for some positive integer m. As we said, if this is so
then m is even, so φ(m) ≤ m/2; hence, 2k = m − φ(m) ≥ m/2, showing that m ≤ 4k.
Further, m ≡ 2 (mod 4). Entry A101036 lists 28 Riesel numbers, with the largest one being
3580901 < 4× 106. If one of them say k is such that 2k = m−φ(m), then m = 2(2ℓ+1) for
some ℓ < 4× 106. We generated with Mathematica the set of numbers of the form

{m− φ(m) : m ≡ 2(2ℓ+ 1), ℓ < 4× 106}.

There are 2117016 such numbers. We intersected this set with the set of numbers of the form
2k, where k runs through the 28 Riesel numbers appearing in . Of these 28, only 16 numbers
k survived. All of them passed condition (1) but 6 of them were primes. The remaining 10
are displayed in the statement of Theorem 1.

3 The proof of Theorem 2

Proof. Let us recall how one constructs Riesel numbers. Consider a system of triples
{(ai, bi, pi)}

t
i=1 of integers that satisfies the following two properties:

cov For every n ∈ Z, there exists i ∈ {1, 2, . . . , t} such that n ≡ ai (mod bi),

ord the numbers p1, . . . , pt are prime, pairwise distinct and pi | 2
bi − 1 for i = 1, 2, . . . , t.

Such covering progressions appeared in Erdős work [2] in the context of proving that there
are infinitely many odd integers not of the form 2n+ p, where p is some prime. As for Riesel
numbers, any odd positive integer k solving the system of congruences

k ≡ 2−ai (mod pi), i = 1, 2, . . . , t, (2)

fulfilling in addition the inequality k ≥ max{p1, . . . , pt}, is a Riesel number. In addition to
these congruences, we also want k to satisfy (1). Assuming that νp(k) = 1, we impose the
additional condition 2ν2(p+1)k = p(p + 1). Note that if k satisfies the above equation, then
p = P (k). Consider the system of triples

{(ai, bi, pi)}
7
i=1 = {(1, 2, 3), (2, 4, 5), (4, 8, 17), (8, 16, 257), (16, 32, 65537),

(32, 64, 6700417), (0, 64, 641)},

which is known to fulfill conditions cov and ord (see [4]). We note that 2ai ≡ ±1 ≡ 2−ai

(mod pi), for every i = 1, . . . , 7. Choosing ν2(p + 1) = 30, the equation 230k = p(p + 1)
implies

230−ai ≡ p(p+ 1) (mod pi)
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for i = 1, 2, . . . , 7. One checks that the quadratic equations 230−ai ≡ x(x+1) (mod pi) have
an integer solution x for each i = 1, . . . , 7. The condition ν2(p + 1) = 30 is equivalent to
p ≡ 230 − 1 (mod 231). Thus, by the Chinese Remainder Lemma there is an odd integer x
coprime to p1p2 · · · p7 such that the residue class x modulo 231p1 · · · p7 satisfies all the above
congruences. By Dirichlet’s theorem on primes in arithmetic progressions, there are infinitely
many prime numbers p in the above progression. For example,

p = 151673607358419855439422291967

satisfies all the above congruences. With each such prime p, the number k = p(p + 1)/230

is a Riesel number satisfying the required property, namely that 2nk is a cototient for all
n ≥ 1. These numbers resemble Riesel numbers that are perfect powers, which have been
studied in [4].
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