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Abstract
In this article, we evaluate in closed form a number of series involving values of the
Dirichlet eta function, and also Fibonacci and Lucas numbers. We also introduce a
special constant representing the values of several such series.

1 Introduction

Recall that the Riemann zeta function ((s),s € C, is defined by

((s) = %, R(s) > 1.
k=1
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The closely related function 7n(s), s € C, defined by

n(s)=Y_ (_2—)“ R(s) > 0,

k=1

is called alternating zeta, or Dirichlet’s eta, or Euler’s eta function. This function was used
by Euler and it is possible that Euler preferred this function instead of ((s) for its better
convergence [3]. The functions are linked by the following relation

n(s) = (1—27")¢(s). (1)

An integral representation for 7(s) is given by

2571 00 5
s) = dt, R(s) > —1,s # 1.
n(s) T(s+1) /0 cosh?(t) (5) 4
Several properties of the eta function were studied recently by Sondow [16, 17], Milgram
[14] and Alzer and Kwong [2], among others.
This paper is concerned with infinite series involving the eta function. The classical
Goldbach theorem says that

o0

Y (m) -1 =1

n=2
The analog theorem for 7n(s) can be derived as follows:

o

Y () —1) =

n=2

k=2
(D & (=
- ; kE—1 _; k
= —In(2) — (In(2) — 1)
= 1-2In(2).

In the next section we evaluate a number of series with eta values in terms of a special
constant K. The third section presents a collection of series involving eta values together
with Fibonacci and Lucas numbers. Their closed form evaluation is given in terms of such
numbers in combination with trigonometric functions and the digamma function.
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2 Eta series involving a special constant

Lemma 1. We have o
In(n+1) 1] < on
for some constant C.
This estimate follows from (1) and a similar estimate for {(n + 1) — 1 shown in [5].

Lemma 2. (Abel) Let {a,} and {b,},n > p, be two sequences and let A,, = ap+api1+- - +an.
Then for every n > p we have

n n—1
Z akbk = bnAn + Z Ak(bk — bk+1).
k=p k=p

Let ¢(z) = I'"(z)/T'(z) be the digamma function and let the constant K be defined by
1 J—
K- / v(1+z)—Y(l+2/2) .
0

T

(2)

The constant K exhibits strong similarity to another constant, M, that was defined and
studied by the first author [5]:

M:/Olwdx’ (3)

with v = —1)(1) being the Euler-Mascheroni constant. The digits of M are sequence A131688
in the OEIS [15]. The decimal form of the constant M can be found in Finch’s book
about mathematical constants [7, p. 62]. The article by Coffey [6] also contains important
information about M. The constants K and M are strongly related to each other as

Cete) ey

1/2 T

K= (4)

The numerical values are

M = 1.25774688694436963 - - -
K = 0.55212832208549207 - - - .

In this section it will be proved that several interesting eta series can be evaluated in
terms of the new constant K. The results from the next theorem are similar to those of [5,
Theorem 2]. We recall that harmonic numbers (H,,),>¢ are defined by

Ho=Y 0 H=0,
k=1
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and alternating or skew-harmonic numbers (H,, ),>¢ are defined by

Hy =0.

We also define the modified exponential integral Ein(x), an entire function, by

) 0 (_1)71711,71
E = —_
in(x) nZ:; e
Theorem 3. With K as defined above, the following statements hold:
oo 1)n—1 1
n=1 n
> (—1)n 1
Z( ) 1n<1+—>:K, (6)
~ n n
Hy(n(n+1) —1) = K, (7)
n=1
s~ (U —2In2—7n(2) —n3)— - — - K
> ——(n—=2In2 —n(2) —n(3) n(n)) = K, (8)
n=1
> H, (nn+1)—nn+2)=K-n2 (9)
n=1
/ Ein(x) dz _ K (10)
0 er + ].

and
n

> (Z () -t + 1>> K (1)

n=1 k=1

Proof. The well-known Taylor expansion for (1 + ) +

S (=) + Da" = (1 +x) +
implies
Z(—l)"’ln(n +1)z" =Y(1+x) — (1 +2/2).



Dividing by = both sides and integrating between 0 and 1 proves (5). Then (5) implies (6):

= (=1 p(n+1 (1) (S (—1)F!
5~ (D ]](” _ vt (Z(kn)+1>

n=1 n=1 k=1

3

Next we prove (6) — (7):

> Ha(iln+1)-1) = > H, (Z ﬁilf)

n=1 k=2
=D (s, (1Y
- Z L ZH” k ’
k=2 n=1
and using the generating functions for the harmonic numbers
- m_ —In(l—2x)
ZHml’ D — (lz| < 1),
m=1
we get
= (D 1 (D
In{1—-— = 1
2 {1 2 (T
k=2 k k=2
—~ m m



Now, starting from the first sum in the last equation we write

)

by using the evaluation (proved by induction)

;%:n—21n2—n(2)—n(3)—~--—7](n).

Thus (8) is also proved. Next we prove (10). From the representation

1 o] :L.sfl
= d
n(s) I'(s) /0 e 4+ 1 .

we find with s = n -+ 1 that

i ) in(n+1) / Z ) ign dx _/ooEin(x)dx
et +1  Jy e+l

n=1

We shall prove now the implication (5) — (9) by using Abel’s lemma (Lemma 2) for
(=

1]1 — and by =n(k+1)—1. Then A, = H,

transformation of series. We take p =1, a, =
and we find

3 (—112“ (nk+1)—1)= H, (n(n+1)—1) + X_:H,;(n(k +1) —nk+2)).

k=1

Setting n — oo and using the estimate from Lemma 1 and also the fact that |H, | < H,
and H, ~ Inn at infinity, we come to the equation

i(_ iH (k+1) —n(k+2)).

k=1 k=1
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According to (5) we have

Z nk+1)—1)=K —In?2

k=1
and (9) follows. Finally, we prove (11). The proof is based on Euler’s series transformation
[4]. Given a power series f(x) = ag+ a1z + - - - we have for sufficiently small |¢| that

() - S (S 0)-)

We take f(z ) (1 + z) — (1 + x/2) with the expansion ¥(1 + z) — (1 + z/2) =

v (=1)"'n(n + 1)a"™ where ag = f(0) = 0. Using the substitution z = &, dz = (lftt)Q

we compute

Ly(l+2) — (1+a:/2)

K =
t dt
Ry ( )
/0 1—t"\1-¢t) t
1/2 o0 n di
_ n -1 k—1 1 b
[ (Z() Tl + >)t
- ZWZ@(—) (k1)
n=1 k=1
after integrating term by term. O

3 Eta series with Fibonacci coefficients

The important Fibonacci numbers F,, (A000045) and the companion sequence of Lucas
numbers L, (A000032) are defined for n > 0 as F,yo = F,,41 + F, and Lo = Lypyq + Ly,
with initial conditions Fy = 0, F; =1, Ly = 2 and Ly = 1, respectively. The Binet formulas
are given by

P, =1 _67 Ln,=a"+p",
a—f
where « is the golden ratio, i.e., a = %5 and f = —1/a = 1_2‘/5. For more details consult

Koshy’s book [13].
Very recently, some series evaluations involving the Riemann zeta function at positive
integer arguments and Fibonacci (Lucas) numbers appeared in the mathematical literature
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[1, 8,9, 11, 12]. For the eta function, the following two identities were stated in a problem
proposal [10]:

an @ - Loy, T
n(2 P T T0cos( ) and ni2n)—— = — — 1. (12)
Z 10 cos(37%) ; 5 2 cos(37)

In this section we prove some additional results of this nature. We will need the following
lemma.

Lemma 4. We have

oo

Zn(Qn)x% = %(% — 1>, lz| < 1, (13)
= n(2n on 1 T 5
; n(2n ):C B §ln <sin(7r:c)) < (%))’ [zl <1, (14)
and .
> 4 Da" = (1 —2) + (1 —2/2), |z[<1. (15)

Proof. The first identity follows from the known series [18, p. 161]

ZC (2n)x (1 — Tz CO’L(WCE)) lz] < 1,

whereas the second is deduced from [18, p. 160]

Z %x% = %ln(F(l —o)I'(1+2)), |z <L

Finally, the series [18, p. 160]

> ()t = —p(l—x) =y, x| <1,

implies the third eta series. [
We begin with a generalization of (12).

Theorem 5. For each k > 0 we have the evaluations

Fn L 1
277 2ntk T k+1 “F, (16)
5n 10 cos(ﬁg) 2
and
Lo, F, 1
277 2n+k _r k+7: - (17)
2 cos(m)



Proof. Use (13) with = o/v/5 and = = 3//5, respectively, to get

T akJrl Oék

;n@n) 5 2+/5 sin(ma /v/5) 9

a2n+k

and 2n+k k+1 k
N T
2 S S i)
Now,
. yiyes . s s ™
S1n (%) = S1n (ﬁ + 5) = COS (m)
and

n () = (v~ 3) =~ (53)
sin|—=) =sin| —= — = cos
V5 2v5 2 2v/5
The proof is finished after combining these results according to the Binet formulas. [

Theorem 6. For each k > 0 we have

- Fonyr ™2, cos(772) ™2, sin(77z) 1
Zﬂ@n) 220:% -0 Lyt 4;/5 Fia oL §Fk (18)
— cos(m) 4+/5 cos(57z)
" Vi, sl mya sin()
s Lo, /2 cos(—= T sin 1
Zn(Zn)ﬂ = k+1 4o L1 WaL 5Lk (19)
20n 4 cos(37z) 45 cos(57=)

Proof. Use (13) with x = o/(2v/5) and = = 3/(2V/5), respectively, combined with

(3v8) = (5 + 1) = 7 (m (55) +es (535))

. s . s T V2 T
an (22 =sin (7~ T) = Y2 (n (22) — eon(22))

Simplify according to the Binet forms and keep in mind the trigonometric identity cos?(z) —

sin

oI

and

sin?(z) = cos(2z). O
Example 7.
< g ayEcos(sE) — Vsin(-n)
Zn(Qn)ﬁ ~ 20 cos(z5=) (20)
n=1 2V/5
" (55) - 2 sin(z%)
" 9 cos(—=) — —=sin(-—"=
Zn SR R kv (21)
20” 4 COS(Q\[)



It is worth mentioning that Theorem 5 can be also generalized into another direction.

Theorem 8. Let k and j be integers with k > 0 and j odd. Then

Saen Pt - T b1
5 F 10F; COS(pr) 2
and
2 J = J — =Ly,
D) e 2F; cos(z Ly 27"
n=1 J 2\/§Fj
Proof. From A ‘
ol i
— =14+ — -,
\/BFJ J— 37

it is obvious that ozj/\/gFj < 1,if jis
L;=Fj1+F

)

o a4 Fi L +1
V5 F; VF; 2V5F; 2
and :
po_BE+Fa. L 1
VBF,  VBE,  2/5F, 2
so that

sin <\/_QTJFJ> = cos (2\55]};}) and

The expression then follows from (13).

s
() =

Example 9.
Z O
20" 5 COS(%)
and
™
Z 77 n - TN L.
20 2cos( )

Theorem 10. For each k > 0 we have

_ Fk (2\/_

i n(2n) Fo, ik
2n Hn 2

n=1

and

s ) 2\/_l (acos(L)—sin(

\/_>Jr

™

10

2

L;
OS (m) .

(22)

(23)

odd and aj/\/gFj > 1, if j is even. Also, using

(24)

(25)



Proof. Inserting = a/v/5 and z = 3/+/5, respectively, in (14) and working with the Binet
forms we arrive after some steps of algebraic manipulations at

S (T () - gt

Lo (s () o (7)) ~ S (o 75) -0 (75))

To simplify further use

n=1

L 5F, Ly — /b F
o = Bt VEE e L m V5B
2 2
The Lucas series evaluations are proved in the same manner and are omitted. O
Example 11.
i": n(2n) Py, iln<1 cos( %) —|—sm(ﬁg)> (28)
~ 2n 5" 5 \acos(;z) —sin({z)
and -
ST~ () (29)
— 2n 5 T

Theorem 12. For each k > 0 we have

S o0t = A e 1om@) -1 (5 -2) (1 ) vl 5%%))

2
(30)
and
ZW Lost (S 41-m@) -5A 113;>)_¢5Fk(¢<1_%)_¢<1_2%)).
(31)

Proof. Use (15) with 2 = o/v/5 and = = (3//5, respectively, to get
S0t~ (i) (1 2)
3 (0= 7)o (- 2)
+or (1= 58) —2(1-55)




Now,

(1= 25)-o(1- 5) - o

and

¢<1—%) +¢<1—%) :2@/;(1—%) + V5.

The terms involving 2v/5 in the denominator can be manipulated using Legendre’s duplica-
tion formula:

2¢(22) = 2In(2) + () + Y (xz +1/2).
Set v =1 — a/2v/5. Then 1 — 3/2v/5 =z +1/2 and

(x4 1/2) +¢(x) = 2¢(22) — 2In(2),
bz +1/2) = ¢(x) = 20(2x) — 2¢(z) — 21In(2)

and o
2z) = (1——)—1—\/504.
P(2z) = 7
Finally, we gather terms and rearrange and the first expression follows. The Lucas counter-
part is similar. O
Example 13.
- F, 2In(2) 2 aY Y
n+1 :—a+———< (1——)— (1——>) 32
> o+ D o (- ) (- (32)
and

= L
Zn(n+1)5n—;;:a+2—21n(2). (33)
n=1
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