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An Egyptian fraction represents a rational number as a sum of distinct unit fractions; we
allow 1/1 as a unit fraction, but no larger integers. Several past works have studied Egyptian
fractions with restricted denominators. In the mid-1950s, in connection with the still-open
question of the termination of a greedy algorithm for finding representations with odd de-
nominators, Breusch and Stewart showed that all rational numbers with odd denominators
have Egyptian fractions with odd denominators [2, 13]. One of Graham’s first publications [5]
Egyptian showed that Egyptian fractions with square denominators exist for all rationals in
the intervals [0, 72/6 — 1) and [1,72/6), and characterized Egyptian fractions with kth-power
denominators for k£ > 2. The last posthumous publication of Erdés [3] showed that all nat-
ural numbers have Egyptian fraction representations whose denominators are the products
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Abstract

Resolving a conjecture of Zhi-Wei Sun, we prove that every rational number can
be represented as a sum of distinct unit fractions whose denominators are practical
numbers. The same method applies to allowed denominators that are closed under
multiplication by two and include a multiple of every positive integer, including the
odious numbers, evil numbers, Hardy-Ramanujan numbers, Jordan-Pélya numbers,
and fibbinary numbers.

Introduction

of three prime numbers.
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We find two properties of integer sequences that allow all rational numbers to be repre-
sented as Egyptian fractions with denominators from the sequence, or all rational numbers
up to the natural limit of such representations, the sum of reciprocals of sequence elements.

e Sequence S is closed under doubling (or doubling-closed) when, for all z € S, the
quantity 2z is also a member of S. That is, doubling a sequence element produces
another sequence element.

e Sequence S is productive when, for all x € Z*, there exists y € Z* such that xy is a
member of S. That is, every integer has a multiple that is in the sequence.

Well-known sequences with both properties include the practical numbers, odious and evil
numbers, Hardy-Ramanujan numbers, Jordan-Pélya numbers, and fibbinary numbers (see
Section 2 for details on these sequences), allowing us to find Egyptian fractions using their
elements as denominators. Our results positively resolve a conjecture of Sun according to
which all rational numbers have Egyptian fractions with practical denominators [14]. Two
other conjectures of Sun on Egyptian fractions whose denominators are the primes minus
one or the primes plus one remain open; the sequences in those conjectures are not closed
under doubling.

Our construction method multiplies the numerator of a fraction by a power of two, di-
vides by the denominator, and separately finds the binary representations of the quotient
and remainder. This method was used by Stewart to find Egyptian fractions with all de-
nominators even [13] and called the “binary remainder method” in our earlier survey on
Egyptian fraction construction algorithms [4].

2 Doubling-closed and productive sequences

We briefly survey some notable integer sequences that are closed under doubling and pro-
ductive. For these sequences, we also consider the convergence or divergence of the sum

>,
x
z€eS
of reciprocals of elements of a sequence S, as this sum (when finite) forms a natural upper
bound on Egyptian fractions with denominators in S. Some of these sequences are subse-

quences of others, but for representation by Egyptian fractions this is not redundant, because
they will represent different ranges of rational numbers.

e The practical numbers (A005153) are the numbers n such that all integers m < n
may be represented as sums of distinct divisors of n. For n in this sequence, all
rationals m/n € (0,1) have Egyptian fraction representations with denominators that
are divisors of n. Several tables of Egyptian fraction expansions based on this principle
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were given by Fibonacci [11], but the first explicit definition of the practical numbers
was by Srinivasan in 1948 [12].

A positive integer n is practical if and only if, for each prime p that divides n, the sum
of divisors of the (< p)-smooth part of n is at least p—1 [13, 10]. This property is clearly
preserved on multiplication by two, and can be obtained from any positive integer n
by multiplying it by a power of two bigger than all of its prime divisors. Therefore,
the practical numbers are doubling-closed and productive. They have logarithmic
asymptotic density [15], like the prime numbers, so their sum of reciprocals diverges.

The odious numbers (A000069) have binary representations with an odd number of
nonzero bits, and the evil numbers (A001969) have binary representations with an even
number of nonzeros. Although named by Berlekamp, Conway, and Guy [1, p. 431],
their study goes back at least to Prouhet in 1851 [16]. Doubling an odious or evil
number shifts its binary representation without changing its parity. For any n and
sufficiently large k, the number n(2% + 1) is evil, with a binary representation formed
by two copies of the binary representation of n, separated by zeros, so the evil numbers
are productive. The smallest multiplier whose product with n is odious (A178757) was
proven to exist by Morgenbesser, Shallit, and Stoll [8]. Because the odious and evil
numbers have density % in the integers, the sums of their reciprocals diverge.

The Hardy-Ramanujan numbers (A025487) have prime factorizations 2°23°5% - . . with
€9 > ez > e; > ---. This ordering of exponents is preserved by doubling. A Hardy-
Ramanujan multiple of any n can be obtained from the prime factorization of n by
replacing each exponent with its maximum with all later exponents. Hardy and Ra-
manujan [6] proved that the set of these numbers below any given threshold N has
cardinality exponential in \/ log N/loglog N, sufficiently sparse that their sum of re-
ciprocals converges to a finite bound.

The Jordan-Pélya numbers (A001013) are the orders of automorphism groups of trees,
studied by Jordan and Pdlya [7, 9], and are equivalently the products of factorials.
Because 2 is a factorial, they are preserved by doubling. Each n has a multiple in this
sequence, for instance n!. Their sum of reciprocals converges.

The fibbinary numbers (A003714) have binary representations with no two consecutive
nonzero bits. Doubling a fibbinary number shifts its binary representation without
introducing new consecutive nonzeros. Multipliers for each n showing that A003714
is productive, and an argument that these multipliers exist for all n, are given in
A300867. A003714 is so-named because the number of them with a given number
of bits is a Fibonacci number. This implies that, up to any threshold N, there are
O(N'e29) ~ NO-691242 fihhinary numbers, where ¢ is the golden ratio, few enough that
their sum of reciprocals converges.

The Moser-de Bruijn sequence (A000695) consists of sums of distinct powers of four,
and is not closed under doubling. Modifying it by including both the numbers of
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this form, and the doubles of numbers of this form, produces A126684, which is closed
under doubling. The existence in A126684 of a multiple of any n follows from the same
argument as the fibbinary numbers: the numbers of the form (4° —1)/3, having binary
representations that alternate between 0’s and 1’s, have by the pigeonhole principle
two elements that are congruent modulo n, and the difference of these two elements is
a multiple of n in A126684. A126684 grows quadratically, and is the fastest-growing
sequence whose sums of pairs of elements include all positive integers. Its quadratic
growth implies that its sum of reciprocals converges.

e A116882 consists of the positive products 2¥ - ¢ for which 2* > ¢, and is clearly closed
under doubling. For every n, it contains the multiples 2¥n of n, for all k¥ large enough
that 2 > n. When the numbers in A116882 up to some threshold N are factored into
a power of two and an odd part, there are O(log V) choices for the power of two and
O(V/'N) choices for the odd part, giving O(v/N log N) total choices, few enough that

the sum of reciprocals converges.

3 Existence of representations

Theorem 1. Let S be a doubling-closed and productive set of positive integers, and let q
be a rational number with 0 < q < > _s1/s. Then q has a representation as an Egyptian
fraction with denominators in S.

Proof. Let m = min S. Let P be a prefix (that is, an initial subsequence) of the ascending
sorted order of S, the longest prefix for which ¢ > >° _p1/p. Let ¢ = q—3_ p1/p be
the remaining fraction to represent after choosing unit fractions with denominators in P.
We find a representation ¢’ = x/y of ¢ as a fraction (not necessarily in lowest terms), where
y has a nontrivial odd factor and where my € S. To do so, let 2'/y’ be the lowest-terms
representation of ¢/, multiply both 2’ and 3/ by three if ¥’ is a power of two, find a multiple
rmy’ of my’ that belongs to S, and let x = ra’ and y = ry'.

Let k = |log, y|, and divide 2*mx by y giving 2*ma = ay +b. Then z/y < 1/m (else we
would have included more elements in P), and 2% < y, so 2*mx < 3? and a < y. As with
any remainder of division we have also b < y. Let A = {aj,as,...} and B = {by,bs,...}
be sets of integers with a = >7,2% and b = »7,2%, the sets of exponents in the binary
representations of a and b. By our choice of k, and because both a and b are less than y,
each of the exponents in A and B is at most k.
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Represent ¢ as a sum of unit fractions, by expanding
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All denominators in this representation are members of P, or can be obtained by re-
peatedly doubling m or my, so all belong to S. Within each of the three summations of
this representation, the unit fractions come from distinct elements of a set P, A, or B, and
are therefore distinct from each other. The denominators of unit fractions coming from P
cannot coincide with any other denominators, because if they did we would have been able
to include more elements in P. No denominators in the second summation can equal a
denominator in the third summation, because of the nontrivial odd factor of y. Therefore,
we have represented ¢ as a sum of distinct unit fractions all of whose denominators belong
to S. O

Corollary 2. Every positive rational number has an Egyptian fraction representation with
practical denominators, an Egyptian fraction representation with odious denominators, and
an Egyptian fraction representation with evil denominators.

Corollary 3. For each of the sequences A025487, A001013, A003714, A126684, and A116882,
every positive rational number that is less than the sum of reciprocals of the sequence has an
Egyptian fraction representation in which all denominators belong to the sequence.
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