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Abstract

We obtain an explicit and efficient formula for the determinant of a three-layer

Toeplitz matrix. We show that many well-known sequences, such as Jacobsthal num-

bers, generalized Fibonacci numbers, and k-Fibonacci numbers, can be represented as

sequences of determinants of three-layer Toeplitz matrices. Further, we evaluate the

spectrum for one of these matrices using the obtained formulae and, as a consequence,

discover some interesting factorizations of certain integer sequences in terms of prod-

ucts of complex numbers, the imaginary parts of which are expressed using the tangent

function.

1 Introduction

Owing to the Gaussian elimination method, no computational difficulty is encountered when
calculating the determinant of an arbitrary matrix. However, the problem of deriving new
formulae for the determinants of various classes of matrices is yet to be solved; such formulae
for determinants can increase the speed of calculations, enable us to study the properties of
the corresponding matrices more deeply, and expand the application potential. Herein, we
obtain explicit and efficient formulae for the determinants of three-layer Toeplitz matrices
T = (tij). Such matrices are given by

tij =







a, if j − i ≥ k;
b, if − l < j − i < k;
c, if j − i ≤ −l,
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where k, l ∈ Z
+ and a, b, and c are elements of some field. As the name suggests, one

can clearly distinguish three diagonal layers in such matrices; each of these layers consists
of the same elements. The middle layer contains the main diagonal. If the elements of
the side layers are the same, then we have a special case considered earlier in [1]. Herein,
we use fairly elementary methods, namely Laplace expansion and combinations of various
recurrence relations.

This paper is organized as follows. In the next section, we obtain explicit and efficient
formulae for the determinants of three-layer Toeplitz matrices. In the third section, we
consider in detail the special case of such matrices wherein the middle layer coincides with
the main diagonal. We show that many of the sequences in [4] can be viewed as sequences of
determinants of such matrices. Several such sequences are combined in the table presented at
the end of the paper. As an application of the obtained formulae, we calculate the spectrum
for the three-layer Toeplitz matrices of a special type. We also obtain interesting ratios that
express elements of some integer sequences in terms of products of complex numbers, the
imaginary parts of which are expressed in terms of the tangent function.

2 General formulae

Let n, k ∈ Z
+. Consider a Toeplitz matrix A = (aij) of order n with entries

aij =







a, if j − i ≥ k;
b, if − 1 < j − i < k;
c, if j − i ≤ −1,

where a, b, and c are elements of some field.

A =














k
︷ ︸︸ ︷

b . . . b a . . . a

c
. . . . . . . . .

...
...

. . . . . . . . . a
...

. . . . . . b
...

. . . . . .
...

c . . . . . . . . . c b














. (1)

Theorem 1. Let s be the quotient and p the remainder when n is divided by k. Then,

detA =







(b− c)n−s−sgn(p)
a(b− c)s+sgn(p) − c(b− a)s+sgn(p)

a− c
, a 6= c;

(b− c)n−1[b+ (s+ sgn(p)− 1)c], a = c,

(2)

where sgn(p) is the sign function (i.e., sgn(p) = 0 if p = 0 and sgn(p) = 1 if p > 0).
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Proof. Let dn denote the determinant of a matrix A of order n. If k ≥ n, then A has the
following form:











b . . . . . . . . . b

c
. . .

...
...

. . . . . .
...

...
. . . . . .

...
c . . . . . . c b











.

Subtracting the penultimate row from the last one and expanding the determinant along the
last row, we have dn = (b− c)dn−1. Applying this formula recursively, we obtain

dn = (b− c)n−1b (3)

in this case. If k = n, then s = 1 and p = 0. If k > n, then s = 0 and p = n. In both the
cases, (3) is consistent with the first and second lines of (2).

Consider a complementary matrix of order n of the following form:













b a

c
. . . T

...
...

. . . . . .
...

...
. . . . . .

...
c . . . . . . c b a
c . . . . . . . . . c a













.

Here, the triangular area below the main diagonal is completely filled with elements c, the
last column entirely consists of a, and triangular area T consists of arbitrary elements. Let
fn denote the determinant of such a matrix. For n = 1, we assume that the matrix consists
of one element a and that f1 = a. If n ≥ 2, then subtracting the penultimate row from
the last one and expanding the determinant along the last row, we obtain fn = (b− c)fn−1.
Applying this formula recursively, we obtain

fn = (b− c)n−1a. (4)

Let k < n. Then, subtracting the penultimate row of A from the last one, expanding the
determinant along the last row, and repeating this procedure k times, we obtain

dn = (b− c)kfn−k + (b− c)k−1(b− a)dn−k. (5)

By assumption, n = ks + p, 0 ≤ p < k. Applying (5) recursively s + sgn(p) − 1 times, we
obtain

dn = (b− c)(s+sgn(p)−1)(k−1)(b− a)s+sgn(p)−1dk(1−sgn(p))+p + a

s+sgn(p)−1
∑

i=1

(b− c)n−i(b− a)i−1.
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Because k ≥ k(1− sgn(p)) + p, applying (3) to dk(1−sgn(p))+p yields

dn =

s+sgn(p)
∑

i=1

(⌊

i

s+ sgn(p)

⌋

(b− a) + a

)

(b− c)n−i(b− a)i−1. (6)

Using the formula for the sum of a geometric progression, we find that (6) is equivalent to
(2).

Let n, k, l ∈ Z
+, 1 < l ≤ k. Consider a Toeplitz matrix B = (bij) of order n with entries

bij =







a, if j − i ≥ k;
b, if − l < j − i < k;
c, if j − i ≤ −l,

where a, b, c are elements of an arbitrary field:

B =

l




















k
︷ ︸︸ ︷

b . . . b a . . . a
...

. . . . . . . . .
...

b
. . . . . . a

c
. . . . . . b

...
. . . . . . . . .

...
c . . . c b . . . b














. (7)

Theorem 2. Let s be the quotient and p the remainder when n is divided by k+ l−1. Then,

detB =







(b− a)(l−1)s(b− c)(k−1)s
a(b− c)s+p − c(b− a)s+p

(−1)(k−1)(l−1)s(a− c)
, p ≤ 1, a 6= c;

(−1)(k−1)(l−1)s(b− c)n−1[b+ (s+ p− 1)c], p ≤ 1, a = c;

0, p > 1.

(8)

Proof. It is clear that if k ≥ n, then matrix B has at least two rows consisting entirely of
elements b, and its determinant equals 0. In this case, s = 0 and p = n, and the result is
consistent with (8).

Let k < n. Subtracting the first row from the second one and expanding the determinant
along the second row, we obtain

detB = (−1)k−1(b− a) detB′,

where B′ is the matrix in which the first and second rows only differ in the (k+1)-th column.
Repeating this procedure recursively (l − 1) times, we obtain

detB = (−1)(k−1)(l−1)(b− a)l−1 detB′′,
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where

B′′ =

k


























b . . . b
. . .

...
. . . a

c b . . . b
b . . . b a
...

. . . . . .

c b
. . . . . .

. . . . . . b
. . . . . .

...
c b . . . b




















.

A part of matrix B′′ located above the horizontal line contains k rows, and the first row
contains exactly k b’s. The lower right part of the matrix is formed by the n− k− l+1 last
rows and columns of the initial matrix and clearly has the same form as that of the initial
matrix.

One can implement the algorithm recursively s times with a shift of k rows each time;
i.e., at the next step, the (k + 1)-th row of matrix B′′ is subtracted from the (k + 2)-th
row, and the determinant is expanded along the (k + 2)-th row; this procedure is continued
recursively (l − 1) times. As a result, we have

detB = (−1)(k−1)(l−1)s(b− a)(l−1)s detB′′′, (9)

where

B′′′ =













b . . . b a
. . . . . . a

. . . b

c
. . .

...
. . .

b . . .
c M













.

The part of matrix B′′′ located above the horizontal axis consists of ks rows. The number
of elements b in the first row is k. Submatrix M is formed by the intersection of the last
p = n− (k + l− 1)s rows and columns of matrix B. It is clear that if p > 1, then matrix M
contains at least two rows consisting entirely of elements b. Therefore, matrix B′′′ also has
two identical rows, and its determinant equals 0. Accordingly, the determinant of matrix B
in this case also equals 0.

If p = 0, then B′′′ is a matrix of the form (1) and order ks. By Theorem 1, we have

detB′′′ =







(b− c)(k−1)s
a(b− c)s − c(b− a)s

a− c
, a 6= c;

(b− c)ks−1(b+ (s− 1)c), a = c,
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which in combination with (9) agrees with (8).
If p = 1, then B′′′ is a matrix of the form (1) and order ks+ 1; therefore, by Theorem 1,

we have

detB′′′ =







(b− c)(k−1)s
a(b− c)s+1 − c(b− a)s+1

a− c
, a 6= c;

(b− c)ks(b+ sc), a = c,

which in combination with (9) also agrees with (8).

Remark 3. Theorems 1 and 2 allow us to compute determinants of matrices (1) and (7) of
order n in O(n) time.

3 Special case

Consider in more detail a three-layer Toeplitz matrix of order n of the form

C =











b a . . . . . . a

c
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . a

c . . . . . . c b











. (10)

Here k = l = 1. By Theorem 1, we have

detC =







a(b− c)n − c(b− a)n

a− c
, a 6= c;

(b− c)n−1(b+ (n− 1)c), a = c.

Let gn denote the determinant of matrix C of order n. It is clear that the ordinary generating
function of (gn) has the following form:

G(x) =
(a+ c− b)x+ 1

(b− a)(b− c)x2 + (a+ c− 2b)x+ 1
.

Accordingly, the following recurrence relation holds for sequence (gn):

gn = (2b− a− c)gn−1 − (b− a)(b− c)gn−2; g0 = 1, g1 = b. (11)

Many sequences presented in [4] correspond to recurrence relation (11) up to a shift by
one or two elements. For example, consider the so-called metallic mean [3] of the following
form:

σk =
k +

√
k2 + 4

2
, k ∈ Z

+.
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For k = 1, we obtain the well-known golden ratio; for k = 2, we obtain the silver ratio, and
so on. Now, we consider the following values as parameters a, b, and c:

a = σk − k, b = 0, c = −σk.

Substituting these values into (11), we obtain the following recurrence relation:

gn = kgn−1 + gn−2; g0 = 1, g1 = 0,

which defines a sequence of the so-called k-Fibonacci numbers [2] shifted by one element to
the right. For k = 1, we obtain the Fibonacci sequence; for k = 2, we obtain the sequence
of Pell numbers, and so on. Let Fk,n denote the n-th member of the k-Fibonacci sequence.
Thus the following proposition holds.

Proposition 4.

Fk,n =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 σk − k . . . . . . σk − k

−σk
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . σk − k

︸ ︷︷ ︸
n+1

− σk . . . . . . −σk 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Some examples of other sequences from the On-Line Encyclopedia of Integer Sequences
(OEIS), which can also be considered sequences of determinants of matrices of the form (10),
are presented in Table 1.

Now, assume that c = −a; i.e., consider the matrices of the form

D =











b a . . . . . . a

−a
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . a

−a . . . . . . −a b











.

By Theorem 1, the determinant of matrix D of order n is given by

detD =
(b+ a)n + (b− a)n

2
. (12)

Theorem 5. If a, b ∈ R, then the spectrum of matrix D of order n has the following form:

σ(D) =







{

b+ ia tan
πk

2m+ 1
, −m ≤ k ≤ m

}

, n = 2m+ 1;

{

b+ ia tan
π(2k + 1)

4m
, −m ≤ k ≤ m− 1

}

, n = 2m.

(13)
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Proof. Without loss of generality, we may assume that a > 0. First, we find the spectrum
of matrix D for b = 0. Considering (12), the characteristic equation det(D− λI) = 0 in this
case takes the following form:

(a+ λ)n = (−1)n+1(a− λ)n.

The numbers a+ λ and a− λ must have the same modulus. This is only possible when λ is
a purely imaginary number. Let λ = pi, p ∈ R; i.e., consider the equation

(a+ pi)n = (−1)n+1(a− pi)n. (14)

We denote the argument of a + pi by φ. Because a > 0, φ ∈ (−π/2, π/2). Let n = 2m + 1.
Equating arguments of the numbers on the right and left sides of equation (14), we obtain φ =
πk/n, where k takes integer values in the range [−m,m]. Because tanφ = p/a, eigenvalues
of D in this case have the following form:

ia tan
πk

2m+ 1
, −m ≤ k ≤ m.

Similarly, if n = 2m, then equating the arguments of the numbers on the right and left
sides of equation (14), we obtain φ = π(2k + 1)/2n, k ∈ [−m,m − 1], and accordingly, the
eigenvalues of matrix D have the following form:

ia tan
π(2k + 1)

4m
, −m ≤ k ≤ m− 1.

Clearly, for an arbitrary b, the spectrum of matrix D has the form (13).

As a consequence of (12) and Theorem 5, we obtain the following interesting relation.

Corollary 6. Let a, b ∈ R. Then,

(b+ a)n + (b− a)n

2
=







m∏

k=−m

(

b+ ia tan
πk

2m+ 1

)

, n = 2m+ 1;

m−1∏

k=−m

(

b+ ia tan
π(2k + 1)

4m

)

, n = 2m.

Example 7 (The sequence A007051). Let a = 1, b = 2. Then, by Corollary 6, we have

3n + 1

2
=







m∏

k=−m

(

2 + i tan
πk

2m+ 1

)

, n = 2m+ 1;

m−1∏

k=−m

(

2 + i tan
π(2k + 1)

4m

)

, n = 2m.
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For example,

5 = (2− i tan
π

4
) · (2 + i tan

π

4
),

14 = 2 · (2− i tan
π

3
) · (2 + i tan

π

3
),

41 = (2− i tan
3π

8
) · (2− i tan

π

8
) · (2 + i tan

π

8
) · (2 + i tan

3π

8
),

122 = 2 · (2− i tan
2π

5
) · (2− i tan

π

5
) · (2 + i tan

π

5
) · (2 + i tan

2π

5
),

and so on.

a b c k l A-number in the OEIS

1 0 −2 1 1 A078008 (Expansion of (1− x)/((1 + x)(1− 2x)))
1 0 −3 1 1 A054878 (Number of closed walks of length n ...)
1 2 −1 1 1 A007051 (an = (3n + 1)/2)
2 0 −3 1 1 A102901 (an = an−1 + 6an−2, a0 = 1, a1 = 0)
2 1 −1 1 1 A001045 (Jacobsthal numbers)
2 1 −2 1 1 A046717 (an = 2an−1 + 3an−2, a0 = a1 = 1)
3 1 −2 1 1 A015441 (Generalized Fibonacci numbers)
3 1 −3 1 1 A003665 (an = 2n−1(2n + (−1)n))
3 1 −4 1 1 A320469 (an = 3an−1 + 10an−2, a0 = 1, a1 = 1)

Table 1: Correspondence of sequences of determinants of three-layer Toeplitz matrices to
sequences from the OEIS
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