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Abstract

We examine a procedure that, on starting with an integer n, results in a pair of

equal integers that are no greater than n. We call the resulting value the strange

root of n, and we show how this strange-root-finding procedure is intimately linked

to the game of Tchoukaillon solitaire. We analyze the strange-root-finding procedure

in reverse to determine when a prescribed value is the strange root of at most two

integers. We present a conjecture about strange roots and translate this conjecture

into one involving Tchoukaillon solitaire.

1 Introduction

In this paper we present some results relating an algorithmic procedure on integer pairs
due to Colm Fagan [5], an actuary with a keen interest in mathematics, to the game of
Tchoukaillon solitaire. First we explain Fagan’s construction as it was originally defined in
the On-line Encyclopedia of Integer Sequences [7, A204539] and state the question that has
motivated the work on this construction.

Fagan’s construction: Let m be a positive integer. Define the first Fagan pair to be (2, 2m).
If the current Fagan pair is (i, y) and y > i, then construct the next Fagan pair (i + 1, z)
where z is the smallest integer such that (i + 1)z > iy and i + 1 + z is even. Do this until
the current Fagan pair (i, y) satisfies y ≤ i.
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To illustrate this, choose m = 4. We begin with the Fagan pair (2, 8), which produces
the next Fagan pair (3, 7). Applying the rule once again, we construct the Fagan pair (4, 6)
followed by the Fagan pair (5, 5). As 5 6> 5 we are done. Let us use CF(m) to refer to the
resulting sequence of Fagan pairs in this case, i.e.,

CF(4) : (2, 8) → (3, 7) → (4, 6) → (5, 5).

The outcome of this procedure seems to yield a pair of equal positive integers that we
denote (cf(m), cf(m)), and in the above example cf(4) = 5. We prove this equality by using
Lemma 3 in conjunction with the connection to Fagan pairs that follows Lemma 4.

Fagan’s question: If there is only one integer m for which cf(m) = n, we say that n is
cf-unique. Are there infinitely many positive integers n that are cf-unique?

The values of m for which this is known to be true are 1, 2, 3, 6, 30, 493080, and
242650650. The corresponding values of n are given in the table and is sequence A204540.
Information on the number of integers m for which cf(m) is some prescribed value is given
in A204539.

m cf(m)
1 2
2 3
3 4
6 6
30 14

493080 1760
242650650 39046

Fagan’s construction relies on the chosen integer being a multiple of 4 and contains a
parity condition. Observations and calculations made regarding this construction may be
found in sequences A204539, A204540, and A185001. The original terminology includes the
notions of basins and the sea, which represent the size of the pre-image cf−1(n) and the Fagan
pair (cf(m), cf(m)), respectively.

In order to preserve Fagan’s original construction but at the same time move to a more
mathematically convenient framework, in this paper we define (in Definition 1) a procedure
on a larger set of integers and introduce the notion of a strange root of an integer n. This new
procedure incorporates Fagan’s construction. The correspondence between strange roots and
the final pair of numbers in a Fagan pair is that the strange root of 2m is equal to cf(m).

Tchoukaillon solitaire is a game played on a one-dimensional board that consists of a pit
followed by a sequence of holes (see Figure 1). Every hole can contain a number of stones.
The pit is special in that stones can be placed into it but not removed from it, and it is
initially empty. The aim of the game to move stones from all holes to the pit according to
a redistribution rule: select a hole, pick up all the stones in that hole, and place one stone
in each hole that one meets on the way to the pit. It turns out that for a fixed number n
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of stones, there is only one configuration on a board consisting of n stones that is winnable,
and the order in which hole selection should be executed is non-trivial. The game is won if
one can select the holes in such an order so that at end all stones are in the pit. Figure 1
illustrates the Tchoukaillon board for n = 10 and the winning play of the game.

pit hole 1 hole 2 hole 3 hole 4 hole 5

Configuration (0,1,1,3,5)

pit hole 1 hole 2 hole 3 hole 4 hole 5

Configuration (1,2,2,4,0)

(0, 1, 1, 3, 5) 7→ (1, 2, 2, 4, 0) 7→ (0, 2, 2, 4, 0) 7→ (1, 0, 2, 4, 0) 7→ (0, 0, 2, 4, 0)
7→ (1, 1, 3, 0, 0) 7→ (0, 1, 3, 0, 0) 7→ (1, 2, 0, 0, 0) 7→ (0, 2, 0, 0, 0)
7→ (1, 0, 0, 0, 0) 7→ (0, 0, 0, 0, 0)

Figure 1: The Tchoukaillon board configurations for n = 10 is displayed first followed by the
board configuration after the first play. Note that we do not record the number of stones in
the pit in the configuration. The list of board configurations resulting in a win is given.

It turns out that there are precisely two Tchoukaillon boards for which the rightmost
non-empty hole is hole number 5, and these boards correspond to having n = 10 and n = 11
stones. In this paper we prove the surprising result, in Proposition 11, that the number of
Tchoukaillon boards for which the rightmost non-empty hole is hole number k−1 is equal to
the number of integers n whose strange root is k. The number of integers n whose strange
root is 5 + 1 is precisely two (these are the integers 11 and 12).

We also address the question of whether it is possible to go backwards from a strange root
and systematically derive those integers that have a specified strange root. It will transpire
in Proposition 12 that when we try working backwards from a strange root pair, there can
be at most two pairs that map to a specified pair, and it can only be two if a divisibility
condition is satisfied. We end the paper by using the correspondences we have proven to
give an equivalent formulation of Fagan’s conjecture in terms of Tchoukaillon solitaire.
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2 Strange roots

In this section we consider a construction on the natural numbers that at first looks funda-
mentally different to Fagan’s construction. We show that it incorporates Fagan’s construc-
tion by way of a linear transformation. As with Fagan’s construction, our construction also
appears to terminate in an equal pair of integers and we prove this equality in Lemma 3. We
refer to the equal pair of values that each construction terminates as the strange root of the
initial number. To clearly distinguish our construction from Fagan’s, we use angle brackets
in place of the parentheses used for Fagan pairs in Section 1.

Let N = {1, 2, . . .} be the set of natural numbers.

Definition 1. Let n ∈ N. Let Alistn be the sequence of pairs produced by the following
algorithm: Begin with the pair 〈1, n〉. Given a pair 〈i, yi〉 with yi > i, construct the subse-
quent pair 〈i + 1, yi+1〉 where yi+1 is the smallest integer such that (i + 1)yi+1 > i(yi + 1).
Equivalently, yi+1 is the unique integer such that

yi+1 >
i(yi + 1)

i+ 1
≥ yi+1 − 1.

This produces a sequence Alistn = 〈1, n = y1〉 → 〈2, y2〉 → 〈3, y3〉 → · · · → 〈sr(n), ysr(n)〉
where 〈sr(n), ysr(n)〉 is the final pair in this sequence. We will find it convenient to call the
value sr(n) the strange root of n.

Example 2.

(i) Suppose n = 2. We begin with 〈1, 2〉. As y1 = 2 > 1 we let y2 be the smallest integer
greater than 1(2)/2 = 1, which is 2. This gives the pair 〈2, 2〉. Since y2 6> 2 we are
done and 〈2, 2〉 = 〈sr(2), ysr(2)〉. Thus Alist2 is 〈1, 2〉 → 〈2, 2〉.

(ii) Suppose n = 8. We start with 〈1, 8〉. As 8 > 1 we let y2 be the smallest integer greater
than 1(8 + 1)/2 = 4.5, which is 5. We now have the pair 〈2, 5〉 and since 5 > 2 we let
y3 be the smallest integer greater than 2(5 + 1)/3 = 4, which is 5. This gives the pair
〈3, 5〉. As 5 > 3 we let y4 be the smallest integer greater than 3(5 + 1)/4 = 4.5, which
is 5. This gives the pair 〈4, 5〉. As 5 > 4 we let y5 be the smallest integer greater than
4(5+1)/5 = 4.8, which is 5. This gives the pair 〈5, 5〉. Since 5 6> 5 this is the final pair
and so 〈sr(8), ysr(8)〉 = 〈5, 5〉. Thus Alist8 is 〈1, 8〉 → 〈2, 5〉 → 〈3, 5〉 → 〈4, 5〉 → 〈5, 5〉.

(iii) The Alist sequences for the first few integers are illustrated in Figure 2.

Lemma 3. For every n ∈ N, we have sr(n) = ysr(n).

Proof. Consider the sequence of pairs produced by Definition 1. If 〈sr(n), ysr(n)〉 is the final
entry of Alistn, then it must be the case that ysr(n) ≤ sr(n). We now show the following:

(i) If we have pairs 〈i, yi〉 and 〈i+ 1, yi+1〉 as part of this process, then yi+1 ≤ yi.
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n Alistn

1 〈1, 1〉
2 〈1, 2〉 → 〈2, 2〉
3 〈1, 3〉 → 〈2, 3〉 → 〈3, 3〉
4 〈1, 4〉 → 〈2, 3〉 → 〈3, 3〉
5 〈1, 5〉 → 〈2, 4〉 → 〈3, 4〉 → 〈4, 4〉
6 〈1, 6〉 → 〈2, 4〉 → 〈3, 4〉 → 〈4, 4〉
7 〈1, 7〉 → 〈2, 5〉 → 〈3, 5〉 → 〈4, 5〉 → 〈5, 5〉
8 〈1, 8〉 → 〈2, 5〉 → 〈3, 5〉 → 〈4, 5〉 → 〈5, 5〉
9 〈1, 9〉 → 〈2, 6〉 → 〈3, 5〉 → 〈4, 5〉 → 〈5, 5〉
10 〈1, 10〉 → 〈2, 6〉 → 〈3, 5〉 → 〈4, 5〉 → 〈5, 5〉
11 〈1, 11〉 → 〈2, 7〉 → 〈3, 6〉 → 〈4, 6〉 → 〈5, 6〉 → 〈6, 6〉
12 〈1, 12〉 → 〈2, 7〉 → 〈3, 6〉 → 〈4, 6〉 → 〈5, 6〉 → 〈6, 6〉
13 〈1, 13〉 → 〈2, 8〉 → 〈3, 7〉 → 〈4, 7〉 → 〈5, 7〉 → 〈6, 7〉 → 〈7, 7〉
14 〈1, 14〉 → 〈2, 8〉 → 〈3, 7〉 → 〈4, 7〉 → 〈5, 7〉 → 〈6, 7〉 → 〈7, 7〉
15 〈1, 15〉 → 〈2, 9〉 → 〈3, 7〉 → 〈4, 7〉 → 〈5, 7〉 → 〈6, 7〉 → 〈7, 7〉
16 〈1, 16〉 → 〈2, 9〉 → 〈3, 7〉 → 〈4, 7〉 → 〈5, 7〉 → 〈6, 7〉 → 〈7, 7〉
17 〈1, 17〉 → 〈2, 10〉 → 〈3, 8〉 → 〈4, 7〉 → 〈5, 7〉 → 〈6, 7〉 → 〈7, 7〉
18 〈1, 18〉 → 〈2, 10〉 → 〈3, 8〉 → 〈4, 7〉 → 〈5, 7〉 → 〈6, 7〉 → 〈7, 7〉
19 〈1, 19〉 → 〈2, 11〉 → 〈3, 9〉 → 〈4, 8〉 → 〈5, 8〉 → 〈6, 8〉 → 〈7, 8〉 → 〈8, 8〉
20 〈1, 20〉 → 〈2, 11〉 → 〈3, 9〉 → 〈4, 8〉 → 〈5, 8〉 → 〈6, 8〉 → 〈7, 8〉 → 〈8, 8〉

Figure 2: The first few Alist sequences as defined in Definition 1

(ii) If we have pairs 〈i, yi〉 and 〈i+ 1, yi+1〉 as part of this process, then yi+1 ≥ i+ 1.

For (i), since 〈i, yi〉 → 〈i + 1, yi+1〉, by assumption it must be the case that yi > i, so
yi ≥ i + 1. By Definition 1, yi+1 is the smallest integer that is strictly greater than the
quantity z = i(yi + 1)/(i + 1) = yi + 1 − (yi + 1)/(i + 1). As yi ≥ i + 1 we must have that
(yi+1)/(i+1) ≥ (i+2)/(i+1) = 1+1/(i+1). Therefore we have z = yi+1−(yi+1)/(i+1) ≤
yi + 1− (1 + 1/(i+ 1)) = yi − 1/(i+ 1). As yi+1 is the smallest integer strictly greater than
z, and since z ≤ yi −

1
i+1

< yi, we must therefore have yi+1 ≤ yi.
For (ii), notice that since z = yi + 1 − (yi + 1)/(i + 1) and yi ≥ i + 1, we have z ≥

(i + 1) − 1/(i + 1). As yi+1 is the smallest integer strictly greater than z, we must have
yi+1 ≤ i+ 1.

The implications of (i) and (ii) are that the sequence of pairs must terminate since the
second value is weakly decreasing and the first value is strictly increasing. Part (ii), with
i = sr(n) − 1 gives us the inequality ysr(n) ≥ sr(n). Since ysr(n) ≤ sr(n) we must have that
there is a final pair, and this final pair is 〈sr(n), ysr(n) = sr(n)〉, as claimed.

The strange roots for the first few integers are given in Figure 3. A first observation is
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
sr(n) 1 2 3 3 4 4 5 5 5 5 6 6 7 7 7 7 7 7 8 8

Figure 3: The strange roots of the first few integers.

that the sequence seems to be weakly increasing.

Lemma 4. Let n1, n2 ∈ N with n1 ≤ n2. Then sr(n1) ≤ sr(n2).

Proof. Suppose we have

Alistn1
= 〈1, n1 = x1〉 → 〈2, x2〉 → · · · → 〈sr(n1), sr(n1)〉,

Alistn2
= 〈1, n2 = y1〉 → 〈2, y2〉 → · · · → 〈sr(n2), sr(n2)〉.

Let us assume we have the pairs 〈i, xi〉 and 〈i, yi〉 and assume that xi ≤ yi. Note that, by
assumption this is true for i = 1. By Definition 1 we have that xi+1 is the smallest integer
strictly greater than i(xi + 1)/(i + 1). Since xi ≤ yi we also have i(xi + 1)/(i + 1) ≤ i(yi +
1)/(i+1), and by definition yi+1 is the smallest integer strictly greater than i(yi+1)/(i+1).
Therefore xi+1 ≤ yi+1.

This tells us that at the second entry in Alistn2
is always at least as big as the corre-

sponding second entry in Alistn1
, and the result follows.

Let us now connect these pairs of integers we have just introduced to Fagan pairs. Con-
sider Alist2n : 〈1, 2n〉 → · · · → 〈sr2n, sr2n〉 and the linear transform 〈x, y〉 7→ (x, 2y − x).
Note that the sum of the entries in the resulting pair is always even. The inverse of this
transform is (x, y) 7→ 〈x, (x + y)/2〉. Under this transform the first entry of our sequences
〈1, 2n〉 7→ (1, 4n − 1). The second pair in Alist2n is 〈2, y2〉 where y2 is the smallest integer
such that y2 > (y1 + 1)/2 = (2n+ 1)/2, which is n+ 1. The pair 〈2, n+ 1〉 7→ (2, 2n) which
is a Fagan pair.

Let us suppose that the ith pair in Alist2n is 〈i, yi〉, which maps to (i, 2yi − i). If yi > i
then the subsequent pair in Alist2n is 〈i+1, yi+1〉, which maps to (i+1, 2yi+1− (i+1)) where
yi+1 is the smallest integer such that yi+1 > i(yi + 1)/(i+ 1).

Let us re-frame this without the use of the angle bracket pairs. Define ai := 2yi − i.
Notice that yi > i ⇐⇒ 2yi > 2i ⇐⇒ ai > i. Given the pair (i, ai) with ai > i and i + ai
even, we next produce the pair (i+ 1, ai+1) where ai+1 is the smallest integer such that

ai+1 + (i+ 1)

2
> i

((

ai+i
2

)

+ 1
)

i+ 1
.

This inequality simplifies to
(i+ 1)ai+1 ≥ iai,

with the additional property that i+ 1 + ai+1 is even.
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We would like to show that equality can never occur in this inequality if i + ai and
i+1+ ai+1 are both even. Suppose that i is even. Then i+1 is odd and since i+ ai is even
we must have that ai is even. Since i+ 1 + ai+1 is even we must have that ai+1 is odd. The
product (i + 1)ai+1 is therefore off and the product iai is even, and so it is not possible for
(i + 1)ai+1 to be equal to iai. A similar argument holds for when i is odd. With equality
ruled out, we have that ai+1 is the smallest integer such that (i+1)ai+1 > iai and such that
i+1+ ai+1 is even. This statement is the defining step of Fagan’s construction and so all of
these pairs beginning with (2, 2m) are Fagan pairs.

To conclude, the sequence of Fagan pairs that one meets in Fagan’s construction for
the integer 4m corresponds exactly to the sequence of pairs in Alist2m (discounting the
initial pair) via the linear transformation 〈x, y〉 7→ (x, 2y − x). The final pair in Alist2m is
〈sr(2m), sr(2m)〉 7→ (sr(2m), 2sr(2m)− sr(2m)) = (sr(2m), sr(2m)) = (cf(m), cf(m)).

Proposition 5. Let n ∈ N and define y1 = n. Then the sequence of numbers (y1, . . . , yr)
are such that Alistn is 〈1, y1〉 → 〈2, y2〉 → · · · → 〈r, r = yr〉 iff the sequence of numbers wi

defined by wi = yi − yi+1 + 1 satisfies

wi =

⌈

n− 1− (w1 + · · ·+ wi−1)

i+ 1

⌉

,

for all i = 1, 2, . . . , r − 1. (Note that the sum of the wj is zero when i = 1.)

Proof. Let n ∈ N and set y1 := n. By Definition 1, a sequence of numbers (y1, . . . , yr) is
such that 〈1, y1〉 → 〈2, y2〉 → · · · → 〈r, yr〉 with r = sr(y1) = yr iff yi+1 > i(yi + 1)/(i+ 1) ≥
yi+1 − 1 for all i ∈ {1, . . . , r − 1} and yr = r = sr(y1).

Let us translate this last statement into one that concerns only the differences between
the yi terms. For a general sequence of numbers (y1, . . . , yr), we consider the sequence
(z1, . . . , zr−1) of differences where zi := yi − yi+1 for all 1 ≤ i < r.

The value zi comes from the transition 〈i, yi〉 → 〈i + 1, yi+1〉. Since there is a transition
we must have yi > i and, by Definition 1, yi+1 is the unique integer such that

yi+1 >
i(yi + 1)

i+ 1
≥ yi+1 − 1.

Subtracting every term in this inequality from yi gives

yi − yi+1 < yi −
i(yi + 1)

i+ 1
=

yi + 1

i+ 1
− 1 ≤ yi − yi+1 + 1,

which is equivalent to

zi <
yi + 1

i+ 1
− 1 ≤ zi + 1.

This, in turn, is equivalent to

⌈

yi + 1

i+ 1
− 1

⌉

= zi + 1, i.e.,

⌈

yi + 1

i+ 1

⌉

= zi + 2. We can now

provide an expression for the zi values without the yi values by noticing that the sum of the
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first i− 1 z values is z1 + · · ·+ zi−1 = y1 − yi = n− yi. This gives

zi =

⌈

1 + n− (z1 + z2 + · · ·+ zi−1)

i+ 1

⌉

− 2

for all i = 1, . . . , r − 1. Note that when i = 1 the sum of the z terms in the expression is
empty, and is consequently 0.

Substituting zi = wi − 1 into the above expression, and simplifying, gives

w1 =

⌈

n− 1

2

⌉

and for all i = 2, . . . , r − 1,

wi =

⌈

n− 1− (w1 + · · ·+ wi−1)

i+ 1

⌉

.

3 Tchoukaillon solitaire

Let us now introduce the board game Tchoukaillon solitaire and detail some of its properties.
The board for this game is a sequence of holes numbered 0, 1, 2, . . .. We assume that hole 1
is to the right of hole 0, and hole 2 is to the right of hole 1, and so on (see Figure 1). The
game is played as follows: n stones are placed in these holes, but hole 0 (also known as the
pit) is special and does not initially contain any stones.

The aim of the game is to move all the stones in holes 1 and above to the pit through
some sequence of valid moves. A valid move consists of selecting a hole, i say, that currently
contains si stones, and then re-distributing these si stones by placing one stone into each of
the si holes i− 1, i− 2, . . ., i− si. If i− si < 0 then we have no holes left in which to place
the remaining si − i stones, and we immediately lose the game. One should therefore never
select a hole that currently has more stones than there are holes to its left. The game is won
if one can select the holes in such an order that we end up with all stones in the pit.

Let us write c = (c1, c2, . . .) for a Tchoukaillon configuration whereby ci is the number of
stones in hole i and n := c1+c2+ · · · . It turns out that for every n there is a unique winning
Tchoukaillon configuration, Tchoukn, consisting of n stones. We list these configurations in
Figure 4.

We find it important to mention that it is not the case that any order of selecting holes
in Tchoukn results in a win.

Example 6. Consider Tchouk3 = (1, 2). If we select hole 1 first, then on performing our
move the single stone is placed into the pit. Next we select hole 2 that contains two stones,
and on performing our move we drop one stone into hole 1 and the other into the pit. Next
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we select hole 1 again, and drop the stone from there into the pit. After this all three stones
are in the pit and we have won the game.

However, had we selected hole 2 first, then one stone would have been placed into hole
1, and one into the pit. There are then two stones in hole 1, and there is no way of winning
so we have lost the game.

n Tchoukn Move vector
0 () none
1 (1) (1)
2 (0, 2) (1, 1)
3 (1, 2) (2, 1)
4 (0, 1, 3) (2, 1, 1)
5 (1, 1, 3) (3, 1, 1)
6 (0, 0, 2, 4) (3, 1, 1, 1)
7 (1, 0, 2, 4) (4, 1, 1, 1)
8 (0, 2, 2, 4) (4, 2, 1, 1)
9 (1, 2, 2, 4) (5, 2, 1, 1)
10 (0, 1, 1, 3, 5) (5, 2, 1, 1, 1)
11 (1, 1, 1, 3, 5) (6, 2, 1, 1, 1)
12 (0, 0, 0, 2, 4, 6) (6, 2, 2, 1, 1)
13 (1, 0, 0, 2, 4, 6) (7, 2, 1, 1, 1, 1)

Figure 4: The first few unique winning configurations Tchoukn of Tchoukaillon solitaire

One way to construct Tchoukn is by recursion. Given Tchoukn−1, suppose that position i
is the leftmost position containing 0 stones. Then Tchoukn is the configuration that results
from Tchoukn−1 by adding i stones to hole i, and subsequently removing one stone from each
of the holes 1, 2, . . . , i− 1.

Recently, Jones, Taalman, and Tongen [6] gave an explicit method to construct the
winning configurations Tchoukn. The configuration Tchoukn = (c1, c2, . . .) whereby

c1 = n mod 2

c2 = n− c1 mod 3

c3 = n− (c1 + c2) mod 4

...

ck = n− (c1 + c2 + · · ·+ ck−1) mod (k + 1).

Once the sum c1 + c2 + · · ·+ ck−1 = n one stops computing further entries.
For any winning configuration, there is some sequence of moves that result in a win. As

we saw in Example 6, it is not the case that any sequence of moves on Tchoukn result in a
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win. The sequence of moves that is required to ‘win’ can be discovered by playing the game
in reverse, and is essentially the same as the recursive rule for constructing Tchoukaillon
configurations highlighted above (except, of course, executed in reverse since it starts from
the empty board).

There is another interesting aspect to the winning configurations that instead looks at
the number of times each hole was selected for a valid move during a ‘win’. Given c =
(c1, . . . , ck) = Tchoukn, let m = m(c) = (m1, . . . ,mk) be the sequence whereby mi is the
number of times that hole i was selected in playing the game. This sequencem is known in the
literature as the move vector. For example, in Example 6 we considered c = (1, 2) = Tchouk3.
For that game hole 1 was selected twice (som1 = 2) and hole 1 was selected once (som2 = 1).
The move vector for this c is m(c) = (2, 1).

Taalman et al. [9] gave an explicit expression for the entries of the move vector of Tchoukn
in terms of n:

Theorem 7. (Taalman et al. [9, Thm.4]) The move vector for solving Tchoukn is m =
(m1, . . . ,mℓ) where

m1 =
⌈n

2

⌉

m2 =

⌈

n−m1

3

⌉

m3 =

⌈

n− (m1 +m2)

4

⌉

...

mℓ =

⌈

n− (m1 +m2 + · · ·+mℓ−1)

ℓ+ 1

⌉

.

The link between Tchoukaillon solitaire and strange roots is now seen by comparing the
theorem above to the expression in Proposition 5. The precise correspondence is given in
the following theorem.

Theorem 8. Let n ≥ 2. The sequence Tchoukn−1 = (b1, . . . , bℓ) corresponds uniquely to
Alistn : 〈1, y1 = n〉 → 〈2, y2〉 → · · · → 〈sr(n), sr(n)〉 as follows:

(a) ℓ = sr(n)− 1.

(b) For i = 1, 2, . . . , sr(n)− 1,

bi = 2i+ 1 + iyi − (i+ 1)yi+1.

(c) For i = 1, 2, . . . , sr(n),

yi = i+
1

i
(bi + bi−1 + · · ·+ bsr(n)−1).

10



Proof. With the objects as stated in the theorem, the correspondences are established
through the intermediate object of the move sequence m = (m1,m2, . . . ,mℓ) where mi :=
1 + yi − yi+1. The largest value of ℓ for which this is well defined is ℓ = sr(n) − 1, hence
(a). That m is a valid move vector is verified by showing 0 ≤ mi < i for all i, and this is a
consequence of Lemma 3.

The sum of the entries in a move sequence is the same as the number of stones in the
Tchoukaillon game, and so

∑

i mi = (1+y1−y2)+(1+y2−y3)+· · · = (sr(n)−1)+y1−ysr(n) =
sr(n)− 1 + n− sr(n) = n− 1. In other words the sequence Alistn can be seen to correspond
to a move sequence for a Tchoukaillon game with n− 1 stones. In order to be able to write
the entries of the sequences (b1, . . . , bsr(n)−1) and (y1, . . . , ysr(n)) in terms of one another, we
make use of some identities.

(b) To describe the bj in terms of mj, we use the following identify from Taalman et al. [9,
Theorem 2]:

bi = imi −

sr(n)−1
∑

j=i+1

mj.

Substitute mj = 1 + yj − yj+1 into this. We have

bi =

{

i(1 + yi − yi+1)−
∑

sr(n)−1
j=i+1 (1 + yj − yj+1), if i ≤ sr(n)− 2;

(sr(n)− 1)(1 + ysr(n)−1 − ysr(n)), if i = sr(n)− 1.

The expression in the top case simplifies to 2i+ 1− sr(n) + iyi − (i+ 1)yi+1 + ysr(n) =
2i+1+ iyi− (i+1)yi+1. The expression in the bottom case simplifies, by using the fact
that ysr(n)−1 = ysr(n) for n ≥ 2, to sr(n)−1. In fact if we use i = sr(n)−1 in the top case
then it reduces to this same expression sr(n)− 1, and so bi = 2i+ 1+ iyi − (i+ 1)yi+1

for all i = 1, 2, . . . , sr(n)− 1.

(c) To describe the yj in terms of the bj. If Tchoukn−1 = (b1, b2, . . . , bsr(n)−1) = b then the
move vector corresponding to b is m = (m1, . . . ,msr(n)−1) where

mi =
1

i
bi +

1

i(i+ 1)

sr(n)−1
∑

k=i+1

bk, (1)

for all 1 ≤ i ≤ sr(n)− 1 by using Taalman et al. [9, Eq. (2)]. As the mi and yi values
are related via mi = 1 + yi − yi+1 for all 1 ≤ i ≤ sr(n)− 1 and y1 = n, we find that

yi = n+ (i− 1)−
i−1
∑

t=1

mt

and this holds for all 1 ≤ i ≤ sr(n). The ends of this sequence are well defined
since y1 = n + 0 − 0 = n and ysr(n) = n + (sr(n) − 1) − (m1 + · · · + msr(n)−1) =
n+ (sr(n)− 1)− (n− 1) = sr(n).
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Again by using Equation (1) we can express the partial sum

i−1
∑

t=1

mt =
i−1
∑

t=1





1

t
bt +

(

1

t
−

1

t+ 1

) sr(n)−1
∑

k=t+1

bk





=
i−1
∑

t=1

1

t
bt +

i−1
∑

t=1

(

1

t
−

1

t+ 1

) sr(n)−1
∑

k=t+1

bk

=
i−1
∑

t=1

1

t
bt +

sr(n)−1
∑

k=2

bk

min(i,k)−1
∑

t=1

(

1

t
−

1

t+ 1

)

=
i−1
∑

t=1

1

t
bt +

sr(n)−1
∑

k=2

bk

(

1−
1

min(i, k)

)

=
i−1
∑

t=1

1

t
bt +

(

i−1
∑

t=1

bt

(

1−
1

t

)

)

+

(

1−
1

i

)

(bi + · · ·+ bsr(n)−1)

= (b1 + · · ·+ bi−1) +

(

1−
1

i

)

(bi + · · ·+ bsr(n)−1)

= (n− 1)−
1

i

sr(n)−1
∑

k=i

bi.

Using this in the equation for yi, and simplifying, we have that

yi = i+
1

i

sr(n)−1
∑

k=i

bi,

for all 1 ≤ i ≤ sr(n). Therefore the configuration b = Tchoukn−1 corresponds to
Alistn : 〈1, y1〉 → 〈2, y2〉 → · · · → 〈sr(n), sr(n)〉, where the yi are as stated.

Notice that the end of a Tchoukaillon configuration is a fixed point in the following sense:

Lemma 9. Suppose b = (b1, . . . , bℓ) = Tchoukn. Then bℓ = ℓ.

Proof. This is straightforward to see by using the recursive construction presented after
Example 6 Since Tchouk1 = (1), we have bℓ = 1 = ℓ and it is true. Suppose it is true for
n = k so that Tchoukk = (b1, . . . , bℓ) with ℓ = bℓ. To construct Tchoukk+1 from Tchoukk we
must condition on the appearance of the first (i.e., lowest indexed) 0 in Tchoukk.

(a) If bi = 0 is the first zero of Tchoukk and i < ℓ then only the entries in holes {1, . . . , i}
are changed and the final entry of Tchoukk+1 is the same as the final entry of Tchoukk,
hence bℓ = ℓ.

12



(b) If bℓ+1 is the first zero of Tchoukk, then Tchoukk+1 must have bℓ+1 = ℓ + 1 and all
entries to the left of this are decreased by one.

In both cases, the claim holds true and the result follows by induction.

A natural corollary of Theorem 8 and Lemma 9 is the following, which allows us to inter-
pret questions about the strange root of n in terms of winning Tchoukaillon configurations.

Corollary 10. For all n ≥ 2, sr(n) = length(Tchoukn−1) = final(Tchoukn−1), where
length(c) is the highest index i such that ci 6= 0, and final(c) is the value of that ci.

The correspondence established in this section allows us to gain some insight into the sr

statistic through enumerative results on Tchoukaillon solitaire. The quantity that is most
well-known in relation to Tchoukaillon solitaire is a statistic t(k) that is defined as the
smallest integer n for which k occurs for the first time in Tchoukn. For example, if we look
at Figure 4, we see that 4 first occurs in Tchouk6, and so t(4) = 6.

Since the end of every winning Tchoukaillon sequence is a value equal to its index (by
Lemma 9), t(k) may be equivalently defined as the number of n(≥ 0) for which there are no
entries in holes k, k + 1, k + 2, . . .. For example, for k = 4, if we look at Figure 4 then there
are no stones in holes 4 or higher of the configurations Tchouk0, Tchouk1, . . ., Tchouk5 and
so t(4) = 6.

The sequence (t(1), t(2), . . .) is A002491 and begins

1, 2, 4, 6, 10, 12, 18, 22, 30, 34, 42, 48, 58, 60, . . . .

It is known to have several curious properties. An extremely good exposition of these prop-
erties and further references can be found in Jones et al. [6].

• t(k) can be calculated by starting with k and successively rounding up to next multiple
of k − 1, k − 2, . . ., 1. For example, t(4) is calculated by starting with 4, round up
to the next multiple of k − 1 = 3 which is 6. Round up again to the next multiple of
k − 2 = 2 which is still 6, and rounding up to the next multiple of k − 3 = 1 does not
change the value at all. Thus t(4) = 6. (Brown [2]).

• It can be generated by a sieving process on the integers. This was described in Erdős
and Jabotinsky [4] and David [3], and is very clearly explained in Sloane [8].

• t(k) =
k2

π
+ O(n) (this result is due to Broline and Loeb [1] and improves on Erdős

and Jabotinsky [4] result t(k) =
k2

π
+O(n4/3)).

Brown’s construction (in the first point above) bears a similarity to the construction that
we are considering. It produces pairs of integers according to a rule similar to ours. However,
it does not stop in the same manner that Fagan’s construction or Definition 1 do, and so the
notion of a ‘root’ seems to have been skipped over. In light of the correspondences we have
established, we have the following:

13
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Proposition 11.

(a) The number of integers n for which sr(n) = k is t(k) − t(k − 1). Equivalently, t(k) =
|{n ≥ 1 : sr(n) ≤ k}|.

(b) The number of integers whose strange root is less than k is approximately k2/π for k
large.

Part (b) helps justify the strange root terminology we have used as the number of non-
negative integers whose square root is less than a natural number k is k2. Although these
connections give us some interesting information about the sr function, the known properties
of t(k) are not sufficient to aid us any further in considering Fagan’s question. In the next
section we present a brief analysis of the Alist sequences with Fagan’s question in mind.

4 Determining integers having a prescribed strange

root

When we consider the sequence of pairs that arise from these constructions, is it possible to
express those pairs that must precede some pair in a given sequence? Moreover, given an
integer r, is it possible to determine the set {n ∈ N : sr(n) = r}?

Suppose
Alistn : 〈1, n〉 → · · · → 〈i, u〉 → 〈i+ 1, v〉 → · · · → 〈r, r〉

where r ≥ 2. Definition 1 tells us that u must be an integer that satisfies (i+1)v > i(u+1) ≥
(i+1)(v−1). In analyzing the values that u can take, at a second glance it is more restricted
than first appears. It transpires that there can be either one or two values of u that map to
a given 〈i+ 1, v〉.

Proposition 12. Let n ∈ N and consider

Alistn : 〈1, n〉 → · · · → 〈i, u〉 → 〈i+ 1, v〉 → · · · → 〈r, r〉

where r ≥ 2. Then

u ∈

{

{

v − 2 +
⌊

v−1
i

⌋

, v − 1 +
⌊

v−1
i

⌋}

, if i | v − 1;
{

v − 1 +
⌊

v−1
i

⌋}

, if i 6 | v − 1.

Proof. Suppose that 〈i, u〉 → 〈i+1, v〉 as stated in the theorem. Then by Definition 1 u must
satisfy (i+ 1)v > i(u+ 1) ≥ (i+ 1)(v − 1). This inequality is equivalent to v + (v/i)− 1 =
v − 1 + (v/i) > u ≥ (v − 1) + (v − 1)/i− 1 = v − 2 + (v − 1)/i, i.e.,

v − 1 +

⌊

v − 1

i

⌋

≥ u ≥ v − 2 +

⌈

v − 1

i

⌉

.
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Notice that if v−1
i

is an integer x, then this inequality is v − 1 + x ≥ u ≥ v − 2 + x, i.e.,
u ∈ {v−2+x, v−1+x}. However, if v−1

i
is not an integer but is x+ǫ for some integer x ∈ N

and ǫ ∈ (0, 1), then this inequality is v−1+x ≥ u ≥ v−2+x+1 = v−1+x, i.e., u = v−1+x.
For example, consider 〈i+ 1, v〉 = 〈4, 5〉, we have that v− 1 = 4 and i = 3. As 4/3 is not an
integer, the only u for which 〈i, u〉 → 〈i+ 1, v〉 is u = v − 1 + ⌊(v − 1)/x⌋ = 4 + 1 = 5. The
only pair 〈3, u〉 that produces 〈4, 5〉 is 〈3, 5〉.

Proposition 12 allows us to give a description of those integers n whose strange root is
some prescribed value by working backwards from the value of the root. Let us observe
that in Proposition 12, when i = 1, the value i always divides v − 1, and there are two
possible values for u such that 〈1, u〉 → 〈2, v〉 for all v ≥ 2. Thus given a pair 〈2, v〉, both
〈1, 2v − 3〉 → 〈2, v〉 and 〈1, 2v − 2〉 → 〈2, v〉.

The following proposition provides a characterization of the r that are the roots of at
most two integers.

Proposition 13. Suppose that n ≥ 5. Let xr = r and for every i = r − 1, . . . , 1 define

xi := xi+1 − 1 +

⌊

xi+1 − 1

i

⌋

=

⌊

(i+ 1)(xi+1 − 1)

i

⌋

.

Then there are only two integers (x1 and x1 − 1) that have r as its strange root if and only
if xi+1 − 1 6≡ 0 (mod i) for all i ∈ {2, . . . , r − 2}.

Example 14. Consider r = 14. Then we have x14 = 14, and we apply the rule to derive the
second row of the following table:

i 14 13 12 11 10 9 8 7 6 5 4 3 2 1

xi 14 14 14 14 14 14 14 14 15 16 18 22 31 60

xi+1 − 1

i
13
12

13
11

13
10

13
9

13
8

13
7

13
6

14
5

15
4

17
3

21
2

Using the top two rows we can compute the values in the bottom row. None of the quotients
in the bottom row are integers hence, by the above proposition, there are only two integers
(x1 = 60 and x1 − 1 = 59) that have 14 its strange root.

Proposition 13 classifies those r that are the strange root of only two integers. There
are precisely r − 3 (non-)divisibility conditions to be satisfied in order for r to be a unique
strange root. Thus as r grows it would appear less and less likely to find an r such that the
sequence (xr, . . . , x1) satisfies the stated condition. There is nothing suggesting that there
is a maximal such value of r after which no more unique strange roots may exist. Based on
the form of the condition in Prop 13 we present the following conjecture.
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Conjecture 15. There exists an infinite number of integers r ∈ N for which the size of the
set {n ∈ N : sr(n) = r} is 2.

Fagan’s question translates into the question that we have considered, since an integer
r is the strange root of only two integers iff {m ∈ N : cf(m) = r} is a singleton set. In
Figure 5 we record the first few values of both cf and sr to summarize how they are related.

m cf(m) sr(n) n
1 2 2 2
2 3 3 3, 4
3 4 4 5, 6
6 6 6 11, 12
30 14 14 59, 60

493080 1760 1760 986159, 986160
242650650 39046 39046 485301299, 485301300

Figure 5: Note that cf(m) = x is equivalent to sr(2m) = x.

Since the numbers in Figure 5 seem to be growing so fast, it is not easy to get a clearer
picture on the next value (if it exists). It would be interesting to see if some of the theory
regarding the game of Tchoukaillon solitaire could be utilized to give insights into strange
roots that are the strange roots of at most two integers.

We end this paper with a reformulation of Fagan’s conjecture in terms of Tchoukaillon
solitaire through the correspondence we established in Theorem 8. Let us say that the
Tchoukaillon solitaire board b = (b1, . . . , bk) = Tchoukn satisfies the Fagan property if

(i) b1 = 1 and bk = k, and

(ii) 1 ≤ bi < i for all i ∈ {2, . . . , k − 1}.

To see what the Fagan property represents from a solitaire perspective, let us assume that
Tchoukn satisfies the Fagan property. Consider the next two plays of the Tchoukn game. We
have, by Theorem 8(a), that sr(n) = 1+k. Hole 1 contains 1 stone and should now be played
since if it ends up containing more than one stone the game has been lost. After playing hole
1 we have b1 = 0, bk = k, and 1 ≤ bi < i for all other i which is the board Tchoukn−1. By
Theorem 8(a) we have sr(n−1) = 1+k. We now play the leftmost hole such that bi = i, and
this is hole k. After this play we have the configuration (1, b2+1, . . . , bk−1+1, 0) = Tchoukn−2,
which is a board having length 1 less than Tchoukn−1. By Theorem 8(a), we have sr(n−2) = k
and this is different to sr(n− 1) and sr(n).

Next consider Tchoukn+1, the board that results from ‘un-playing’ the board Tchoukn.
As all of the holes 1, . . . , k of Tchoukn are non-empty, it must be the case that the last hole
played that resulted in Tchoukn was hole k+1. This means sr(n+1) = 1+(k+1). Therefore,
if b = (b1, . . . , bk) = Tchoukn satisfies the Fagan property, there are at most two integers, n
and n− 1, whose strange root is k + 1.
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Conjecture 16 (Fagan’s Tchoukaillon Solitaire Conjecture). The exists an infinite number
of Tchoukaillon solitaire boards that satisfy the Fagan property.

Remark 17. Determining those Tchoukaillon boards that satisfy the Fagan property cor-
responds to solving a system of linear congruences (as explained in this paper just after
Example 6), a fact that would suggest that a solution to this conjecture is difficult but not
impossible.
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