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Abstract

We count the number of ways to tile 2× n rectangles and bracelets using dominos
and L-shaped trominos. We show that these 2×n tilings can be related to 1×n tilings
with squares, dominos, and two colors of k-minos for k ≥ 3, and we discover some new
identities for old sequences.

1 Introduction

How many ways are there to tile a 2 × n board? Naturally, it all depends on the tiles
we use. With just dominos, we obtain the familiar Fibonacci sequence. For dominos and
squares, we look to McQuistan and Lichtman [8] and the sequence A030186 from the On-
Line Encyclopedia of Integer Sequences (OEIS) [9], and for colored dominos and squares
we have papers by Kahkeshani [5], Kahkeshani and Arab [6], and Katz and Stenson [7].
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Squares, dominos, and (straight) trominos were covered by Haymaker and Robertson [4] and
are counted by A278815. For L-shaped trominos and squares, we can turn to to a recent
paper by Chinn, Grimaldi, and Heubach [3] as seen in A077917. An interesting variation on
the 2× n board was given by Bodeen, Butler, Kim, Sun, and Wang [2] who looked at tiling
a 2 × n lozenge with triangles, giving nice combinatorial interpretations to the sequences
A000129, A000133, A097075, and A097076.

In this paper, we count the tilings of the 2×n board using a slightly different collection of
tiles: we use dominos and L-shaped trominos. We derive a number of results and identities
for these kinds of tilings. In addition, we are able to relate this question to the problem
of tiling a 1 × n board with squares, dominos, and colored k-minos, and this allows us
to establish new identities for the sequences A052980, A080204, and A332647. Our work
follows closely the tiling techniques studied by Benjamin and Quinn in their book, Proofs
That Really Count [1].

To begin with, let us define an to be the number of different ways to tile a 2 × n board
with dominos and “bent trominos” in the shape of the letter L (henceforth, we will call these
L-shaped trominos, or simply “trominos” if it is clear from the context). It is convenient
to define a0 = 1. As an example, Figure 1 gives all five possible tilings for n = 3, thus
demonstrating that a3 = 5. The trominos are shaded for ease of reading.

Figure 1: Demonstrating that a3 = 5.

A few minutes of work with pencil and paper will give us the sequence 1, 1, 2, 5, 11, 24, 53, . . .
(starting with a0 = 1), and in the next section we will show that this sequence equals
A052980. But first, inspired by a similar coloring trick in Chinn, Grimaldi, and Heubach’s
article [3], we show that we can reduce this 2 × n tiling problem to a 1 × n problem: our
numbers an are exactly the number of ways to tile a 1×n strip with (white) squares, (white)
dominos, and colored (red or blue) k-minos of arbitrary length k ≥ 3. To see this equivalence,
first note that any 2× n tiling can be broken along vertical lines into indivisible segments.
Two examples are given here in Figure 2, with the trominos shaded for easy visibility.

By parity, each indivisible segment must contain an even number of trominos. Further-
more, each tromino induces a single vertical break in the tiling, as seen in Figure 3 (we will
explain the red and blue coloring in Figure 3 in a moment).

Hence, we conclude that for each indivisible segment, it either has no trominos, or it has
exactly two trominos with one at each end of the segment. As seen in Figure 3, a tromino at
the beginning of an indivisible segment is either oriented like the letter “r” (which we have
colored red) or like the letter “b” (which we have colored blue). Likewise, a tromino at the
end of an indivisible segment must be one of the two grey trominos at the right of Figure
3. Also, an indivisible segment with no trominos must begin with (and hence must be equal
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Figure 2: Breaking a 2× n tiling along vertical lines.

Figure 3: Trominos that can appear at the ends of indivisible segments.

to) either a single vertical domino or two stacked horizontal dominos; any longer and the
segment would break.

These insights now allow us to establish the following relationship between our 2 × n
tilings and our 1× n tilings. After breaking up a 2× n tiling into indivisible segments, and
after coloring each tromino at the beginning of each segment either red or blue depending
on its orientation as seen in Figure 3, we map each segment of length k beginning with a
red tromino to a red k-mino and likewise each segment of length k beginning with a blue
tromino to a blue k-mino, each single vertical domino to a white square, and each aligned
pair of horizontal doninos to a white domino. We give here in Figure 4 an example based
on the tilings in Figure 2.

Figure 4: Mapping from our 2× n tilings to our to 1× n tilings.

To reverse the mapping, we apply the following algorithm to a 1 × n tiling: we replace
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each square with a vertical domino, we replace each domino with two stacked horizontal
dominos, and we replace each red k-mino with a segment that begins with the red tromino
from Figure 3 followed by k − 3 staggered horizontal dominos and then one of the two grey
trominos on the right of Figure 3. (A similar procedure is used for replacing each blue k-
mino.) We then “uncolor” each colored tromino, repainting the red and blue trominos with
a neutral grey. We give an example in Figure 5

Figure 5: Mapping from our 1× n tilings to our to 2× n tilings.

It is clear that we have a one-to-one and onto mapping between our 2×n tilings and our
1× n tilings.

As an aside, we note that other types of tilings that use both single-color and multi-
colored tiles have interesting connections to seemingly-unrelated sequences. For example,
Milan Janjic comments in A001333 in the OEIS that the numerators of the continued fraction
expansion for

√
2 also count the number of tilings using single-color squares and two colors

of k-minos for k ≥ 2. As for tilings with single-color squares and three colors of k-minos for
k ≥ 2, this gives us A026150 which is related to

√
3. Thus, we should not be surprised to

learn that our tiling method (using single-color squares, single-color dominos, and two colors
of k-minos for k ≥ 3) also turns up in the OEIS, and that is the subject of the next section.

2 Establishing that our tiling sequence equals A052980

The sequence A052980, defined in the OEIS as the sequence with generating function (1 −
x)/(1−2x−x3), has initial values 1, 1, 2, 5, 11 and recurrence formula xn = 2xn−1+xn−3. We
now show (in Corollary 2 to Theorem 1) that our sequence (an)n≥0 has the same recurrence,
and since it also has the same initial values then it must equal A052980.

Theorem 1. For n ≥ 3, we have

an = an−1 + an−2 + 2 (an−3 + an−4 + · · ·+ a1 + a0) . (1)
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Proof. In the spirit of Benjamin and Quinn, we ask: how many ways can we tile a board of
length n using squares, dominos, and red or blue k-minos with k ≥ 3? On the one hand,
by our equivalence discussed in the introduction there are an ways to tile it. On the other
hand, we can condition based on the first tile. If it is a square, there are an−1 ways to tile
the remaining length of n − 1. Likewise, if the first tile is a domino, we have an−2 ways.
Finally, if the tiling begins with a k-mino for k ≥ 3, we recall that each k-mino has two
possible colorings, and can also be any length greater than or equal to three. Therefore, any
tiling starting with a k-mino has 2an−k ways to tile the rest of the strip. Summing up all
the different ways, and comparing it to an, we have our desired equation (1).

Corollary 2. For n ≥ 3, we have

an = 2an−1 + an−3. (2)

Proof. Since our first few values for an starting with a0 are 1, 1, 2, 5, . . . , then the corollary
clearly holds for n = 3. As for n ≥ 4, we use equation (1) from Theorem 1 to state that

an = an−1 + an−2 + 2
n−3∑
i=0

ai, (3)

which also implies

an−1 = an−2 + an−3 + 2
n−4∑
i=0

ai. (4)

Subtracting equation (4) from equation (3), and noticing that just about everything cancels,
we get

an − an−1 = an−1 + an−3.

Therefore, an = 2an−1 + an−3, as desired.

Thanks to Corollary 2 above, we can now conclude that our sequence (an)n≥0 is indeed
the sequence A052980, as both have the same initial values and the same recurrence formula.

It is worth noting that Corollary 2 can be proved directly using the following clever
tiling argument: on the one hand, there are an ways to tile a strip of length n with squares,
dominos, and red or blue k-minos. On the other hand, we can look at the first tile of our
strip of length n.

1. If a square, remove it to get a strip of length n− 1.

2. If a domino, replace it with a square to get an n− 1 tiling that begins with a square.

3. If a red 3-mino, remove it to get a strip of length n− 3.
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4. If a blue 3-mino, replace it with a domino to get an n − 1 tiling that begins with a
domino.

5. If a (red or blue) k-mino for k ≥ 4, reduce the length of this k-mino by one to get an
n− 1 tiling that begins with a (red or blue) k-mino.

To sum up, part 1 gives us an−1 tilings, part 3 gives us an−3 tilings, and parts 2, 4, and 5
add up to give us another an−1. In total, we have an−1 + an−3 + an−1, and since this must
equal an then we have our desired equation (2).

3 Additional identities

Benjamin and Quinn’s book [1] is full of ingenious tiling proofs for various identities. Since
our sequence (an)n≥0 is also a tiling sequence, we can use Benjamin and Quinn’s methods
(just as we did in the proof of Theorem 1) to come up with new identities for our sequence.
For example, this next formula comes from looking at where the tiling breaks into two.

Theorem 3. For n,m ≥ 2, we have

am+n = aman − am−1an−1 +
1

2
(am+2 − am+1 − am)(an+2 − an+1 − an). (5)

Proof. Just like in our proof of Theorem 1, we ask: how many ways can we tile a board of
length m+n with squares, dominos, and red or blue k-minos with k ≥ 3? On the one hand,
this is simply am+n. On the other hand, we can look at what happens between cell m and
cell m+ 1. There are three options.

1. The tiling breaks between cell m and m+ 1. See Figure 6.

Figure 6: A break between cells m and m+ 1.

In this case, it is easy to see that there are am tilings on the left of the break, and an
tilings on the right, giving aman ways to tile this board.

2. There is a domino covering the break between cells m and m+ 1. See Figure 7.

Figure 7: Covering the break with a domino.
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Using the same argument as above, we can see that the total number of ways to tile
this board is am−1an−1.

3. There is a red or blue k-mino covering the break between cells m and m+ 1.

Figure 8: Covering the break with a red or blue k-mino.

As seen in Figure 8, there are am−i tilings to the left of the central k-mino, then two
possible colorings (red or blue) for the k-mino, and then an−j tilings to the right, giving
am−i · 2 · an−j tilings. We now imagine central k-minos of different sizes, and we see
that i can range from 1 to m and likewise j can range from 1 to n, but we note that
we can not have both i and j equal to 1 at the same time, as this would imply that
the central k-mino would be of length 2 instead of the required 3 or above. Hence, the
total number of tilings in this configuration can be written as(

2 ·
m∑
i=1

am−i ·
n∑

j=1

an−j

)
− 2am−1an−1, (6)

where we have included, and then removed, the forbidden case where i = j = 1.

We have now covered all possible cases. Since am+n must equal the sum of the expressions
from the above three options, we have

am+n = aman + am−1an−1 +

(
2 ·

m∑
i=1

am−i ·
n∑

j=1

an−j

)
− 2am−1an−1,

= aman − am−1an−1 + 2
m∑
i=1

am−i

n∑
j=1

an−j. (7)

For the sum
∑m

i=1 am−i in equation (7), we replace i with m− i to obtain
∑m−1

i=0 ai. We note
that Theorem 1 tells us that am+2 = am+1 + am + 2

∑m−1
i=0 ai and so we see that our sum∑m−1

i=0 ai can be replaced with 1
2

(am+2 − am+1 − am). This, along with a similar substitution
for
∑n

j=1 an−j, allows us to simplify equation (7) to obtain our desired equation (5).

The following corollary is a nice variant on Theorem 3.

Corollary 4. For n ≥ 2, we have a2n = a2n − a2n−1 +
1

2

(
an + an−1 + an−2

)2
.
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Proof. If we replace m with n in equation (5) of Theorem 3, we have

a2n = a2n − a2n−1 +
1

2
(an+2 − an+1 − an)2. (8)

We can now use Corollary 2 to replace the an+2 in equation (8) with 2an+1 + an−1, giving us

a2n = a2n − a2n−1 +
1

2
(an+1 − an + an−1)

2, (9)

and we again use Corollary 2 but this time to replace the an+1 in equation (9) with 2an+an−2,
which gives us our desired formula.

We remind our reader of the Fibonacci numbers, which are traditionally defined as F0 =
0, F1 = 1, and Fn = Fn−1 +Fn−2. If we define fn = Fn+1 then the sequence (fn)n≥0 is exactly
the number of ways to tile a board of length n with squares and dominos [1]. With this in
mind, we present the following theorem on weighted sums.

Theorem 5. For n ≥ 3, we have

an = Fn+1 + 2
n−3∑
i=0

ai (Fn−i − 1) , (10)

and for n ≥ 0, we have

an+2 = Fn+1 + an+1 + 2
n∑

i=0

aiFn−i. (11)

Proof. As before, we count up the total number of tilings of a strip of length n and set it
equal to an to obtain our formula. We recall that we have n ≥ 3.

If a particular tiling has no k-minos, it must be entirely made up of squares and dominos.
By our observation earlier, this corresponds to fn = Fn+1 unique tilings. (Recall that when
we talk about k-minos we always assume that k ≥ 3).

Suppose, instead, that the tiling has at least one k-mino. If we look at the last or right-
most k-mino, we see that this splits the length-n tiling into a tiling of length i (to the left of
the k-mino) with squares, dominos and k-minos, followed by the red or blue k-mino in the
middle, and ending with a tiling of length n − i − k (to the right of the k-mino) with just
squares and dominos. An illustration is shown in Figure 9.

Figure 9: Tiling a board based on the location of the last (red or blue) k-mino.
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There are exactly ai ways to tile everything to the left of that last k-mino, there are two
possible colors (red or blue) for that last k-mino, and there are fn−i−k ways to tile everything
to the right of that last k-mino (because to the right we have only squares and dominos).
Hence, the particular configuration in Figure 9 has ai · 2 · fn−i−k tilings.

We now imagine fixing i at some permissible value, 0 ≤ i ≤ n − 3. Since k ≥ 3, then
n− i− k ranges from 0 to n− i− 3, giving us

ai · 2 · f0 + ai · 2 · f1 + ai · 2 · f2 + · · · + ai · 2 · fn−i−3
tilings for the configurations in Figure 9 for this fixed value of i. In other words, we have
ai · 2 · (f0 + f1 + f2 + · · ·+ fn−i−3) ways to tile the board in Figure 9.

We now sum up these values over i as i ranges from 0 to n− 3, and we have

n−3∑
i=0

ai · 2 · (f0 + f1 + f2 + · · ·+ fn−i−3). (12)

Thanks to a well-known identity, that sum of consecutive Fibonacci numbers in equation (12)
can be replaced with fn−i−1 − 1. If we make this substitution, and also add in fn (coming
from the tilings with no k-minos) we obtain this total count for all tilings,

an = fn + 2
n−3∑
i=0

ai(fn−i−1 − 1), (13)

and if we use the identity fn = Fn+1 on equation (13) we have

an = Fn+1 + 2
n−3∑
i=0

ai(Fn−i − 1), (14)

and this is a perfect match for equation (10) from the first part of the theorem.
It is now a simple matter to arrive at equation (11) from the second part of the theorem.

We substitute equation (1) from Theorem 1 into equation (14) to obtain

an = Fn+1 + 2
n−3∑
i=0

aiFn−i − (an − an−1 − an−2)

= Fn+1 + 2
n∑

i=0

aiFn−i − 2(an−2F2 + an−1F1 + anF0) − (an − an−1 − an−2)

= Fn+1 + 2
n∑

i=0

aiFn−i − (an + an−1 + an−2). (15)

From equation (15) we have 2an + an−1 + an−2 = Fn+1 + 2
∑n

i=0 aiFn−i, and by applying
Corollary 2 twice we can replace the 2an + an−1 + an−2 on the left with an+2 − an+1, which
gives us the formula

an+2 = Fn+1 + an+1 + 2
n∑

i=0

aiFn−i, (16)
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and this matches equation (11). Finally, while our proof of (16) was only valid for n ≥ 3, it
is easy to check the cases n = 0, 1, 2 by hand and so our equation (16) actually holds for all
n ≥ 0, as desired.

While Theorem 5 involved weighted sums with Fibonacci numbers, this next theorem
presents a weighted sum with powers of 2.

Theorem 6. For n ≥ 0, we have

an+3 = 2n+2 +
n∑

i=0

ai2
n−i. (17)

Proof. For now, let us assume that n ≥ 3. Just as in the proof of Theorem 5, we consider a
strip of length n, but this time we condition on the location of the last blue k-mino. If there
are no blue k-minos, we take all the red k-minos and color them white to match the white
squares and white dominos; this means that our tiling now consists of single-color (white)
tiles of arbitrary length. In order to find the number of ways to tile such a board, consider
the length-n board in Figure 10.

Figure 10: A board of length n.

Note that there are exactly n− 1 interior vertical “dividing lines”. We can create unique
tiling patterns by simply removing (some of the) dividing lines to produce tiles of arbitrary
length. For each dividing line, there are only two options: keep it or remove it. Making this
choice for every dividing line in Figure 10 gives 2n−1 possible tiling patterns.

Next, we suppose there is at least one blue k-mino, and we imagine that it starts at cell
i+ 1 and extends a distance k to the right, as seen in Figure 11.

Figure 11: Counting tilings based on location and length of last blue k-mino.

There are exactly ai ways to tile everything to the left of that last blue k-mino. If
i + k = n, then there is nothing to the right of that last blue k-mino and so we have ai
tilings overall. Assuming now that i + k < n, then to count the tilings to the right of that
last blue k-mino we apply the same technique as at the beginning of the proof: we assign all
tiles to the right of that last blue k-mino to be white so that we now are counting all tilings
consisting of single-color (white) tiles of arbitrary length within a total length of n− i− k,
giving us 2n−i−k−1 such tilings. In total, then, for Figure 11 we have ai tilings for i+ k = n
and ai · 2n−i−k−1 tilings for i+ k < n.
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It remains to carefully sum our number of tilings over the permissible values of i and k.
While i can run from 0 to n − 3, and k can run from 3 to n − i, we need to separate the
special case when i + k = n from the general case when i + k < n. The following list gives
all possible options.

1. When i + k = n, we have just ai tilings for each case, and when we sum over these

permissible values of i we get
n−3∑
i=0

ai tilings.

2. When i + k < n, which occurs when 0 ≤ i ≤ n − 4 and 3 ≤ k ≤ n − i − 1, we have
ai · 2n−i−k−1 tilings. Summing this over these values of i and k gives us

n−4∑
i=0

n−i−1∑
k=3

ai · 2n−i−k−1

tilings. We factor out the ai and we re-index the inner sum by letting j = n− i−k− 1
to obtain

n−4∑
i=0

ai

n−i−4∑
j=0

2j,

and we sum up that inner sum to obtain
n−4∑
i=0

ai
(
2n−i−3 − 1

)
.

Summing up the terms from these two cases gives us
n−3∑
i=0

ai
(
2n−i−3). When we add in the

2n−1 from the case where there are no blue k-minos, and when we compare this total to an,
we obtain

an = 2n−1 +
n−3∑
i=0

ai2
n−i−3 for n ≥ 3.

Replacing n with n+ 3 gives us

an+3 = 2n+2 +
n∑

i=0

ai2
n−i for n ≥ 0,

which is our desired equation (17) in the statement of Theorem 6.

4 Bracelet numbers

Recall that the Fibonacci numbers fn count the number of ways to tile a 1 × n strip with
squares and dominos, and likewise the Lucas numbers count the number of ways to tile a
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1×n bracelet with squares and dominos [1]. Inspired by this relationship, we now ask: what
are the corresponding “bracelet numbers” for our sequence (an)n≥0?

Surprisingly, there are two answers to this question! It all depends on whether we view an
as counting the tilings of a 2×n strip with dominos and trominos (which was our definition
of an), or as counting the tilings of a 1×n strip with squares, dominos, and red/blue k-minos
(which, as we showed in the Introduction, is exactly the same number). This equivalence
between the 2 × n and the 1 × n situations isn’t quite perfect when we turn to bracelets,
because while every 2×n strip with dominos and trominos can be broken along vertical lines
into indivisible segments (which we then map to squares, dominos, and red or blue k-minos),
when n is even there are exactly two tilings on a 2 × n bracelet which can not be broken;
these are the two tilings with unaligned horizontal dominos that go “all the way around the
bracelet”. (Imagine one such configuration; if we rotate the bracelet by one cell we will have
the other configuration). When n is odd this configuration is not possible thanks to parity.

With this in mind, we define b′n to be the number of ways to tile a 2 × n bracelet with
dominos and trominos, and bn to be the number of ways to tile a 1×n bracelet with squares,
dominos, and red or blue k-minos. By our discussion above, b′n = bn + 2 for n even and
b′n = bn for n odd. In what follows, we will focus on bn.

Once again, a few minutes with pencil and paper give the initial values 1, 3, 10, 23, . . . for
bn (starting with b1 = 1), and we will show in a moment that this is the sequence A080204
(which, interestingly enough, comes from a Kolakoski sequence which has nothing to do with
tilings). To show this equality, we need to begin with the following theorem.

Theorem 7. For an and bn defined as above, we have

bn = an + an−2 + 2
n∑

k=3

(k − 1)an−k (18)

Proof. Inspired by the proofs of Theorems 1 and 3, we count the number of ways to tile a
(1 × n) bracelet using squares, dominos, and red or blue k-minos, and we set that equal to
bn. We condition on the tile covering the “break” at the top of the bracelet, as shown in the
following images. There are three options.

1. The tiling is breakable at the top, meaning that no single tile crosses over from the nth

position (immediately to the left of the break) to the first position (immediately to the
right). See Figure 12. As the bracelet is breakable here, there are simply an ways to
tile the 1× n strip we obtain when we unfold the bracelet.

2. The tiling is not breakable at the top, due to a domino covering the break. For this,
we simply remove the domino and unfold the bracelet to give us a strip of length n−2,
and hence there are an−2 ways to tile it.

3. The tiling is not breakable at the top, due to a red or blue k-mino covering the break.
In this case, for each k-mino covering the break there are exactly k − 1 ways to shift
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Figure 12: A bracelet of length n.

it such that the bracelet remains unbreakable at the top. There are two colors for the
k-mino (red or blue), and the rest of the bracelet has length n − k. Hence, there are
2(k − 1)an−k ways to tile this particular bracelet. Since k can range from 3 to n, we
get that the total number of ways to tile in this situation is 2

∑n
k=3(k − 1)an−k.

We have now covered all three possible cases. Adding the results will give equation (18),
as desired.

To conclude, we present the following results for our bracelet sequence (bn)n≥0. These can
all be proved by induction, by Theorem 7, or by tilings; we leave the details to the reader.

Theorem 8. For an and bn defined as above, we have

bn = 3bn−1 − 2bn−2 + bn−3 − bn−4, (19)

bn = 2bn−1 + bn−3 + 2, (20)

bn =
1

2

(
5an − an−1 − an−2

)
− 1, (21)

bn = θn1 + θn2 + θn3 − 1, for θ1, θ2, θ3 the roots of x3 − 2x2 − 1 = 0. (22)

With this recurrence relation (19) for bn, and with our initial values for bn of 1, 3, 10,
and 23, we can conclude that we do indeed have the sequence A080204. Furthermore, the
recurrence relation in (19) for bn is also satisfied by an, as seen here in Lemma 9. Only the
initial values are different.

Lemma 9. For n ≥ 4 we have

an = 3an−1 − 2an−2 + an−3 − an−4. (23)

Proof. From equation (2) in Corollary 2, we have that an = 2an−1 + an−3 and replacing n
with n− 1 we have an−1 = 2an−2 + an−4. We subtract these two equations, and simplify, to
obtain the desired result.
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Finally, we can rewrite equation (20) in Theorem 8 as (bn + 1) = 2(bn−1 + 1) + (bn−3 + 1),
which tells us that the numbers bn + 1 have a particularly nice recurrence formula (in fact,
the same recurrence formula as for an in Theorem 2). These numbers bn + 1 appears in the
OEIS as A332647.
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