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Abstract

A (completely) fault-free tiling of a board is a tiling with no vertical or horizontal
faults. We find a fourth-order recurrence relation for the number of ways to tile such
a board using squares and dominos, and we do the same for a vertical-fault-free board
(which could have horizontal faults).

1 Introduction

Tiling problems appear frequently in the mathematical literature. McQuistan and Lichtman
[3] found the number of tilings of a 2 × n rectangle with squares and dominos (given by
A030186), and Read [5] did the same for 3× n (see A033506). And of course, the tilings of
a 1× n rectangle are counted by the Fibonacci numbers.

One variation on these kinds of tiling problems is to ask for fault-free tilings, in which
there are no “clean breaks” of the tiling along any horizontal or vertical line.
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Figure 1: A 3× 6 tiling with a horizontal fault but no vertical fault.

Figure 1 gives a tiling of a 3 × 6 rectangle (using only dominos) which has a horizontal
fault but no vertical fault (we would call this a vertical-fault-free tiling).

Recent articles on fault-free tilings with dominos include Graham’s paper [2] on rect-
angles, a preprint by Montelius [4] which expands on Graham’s work to consider cylinders,
tori, and Möbius strips, and a paper by Atkinson and Lunnon [1] which enumerates fault-free
rectangles in which each fault crosses a fixed number of dominos. Graham points out that
there does not exist a fault-free tiling of a 3 × n rectangle using only dominos. However, if
we use dominos and squares, there are quite a few fault-free tilings, and that is the subject
of our paper. Here is one fault-free tiling:

Figure 2: A 3× 6 tiling which has neither vertical nor horizontal faults.

In what follows, we will count the number of such tilings (with dominos and squares) of
the 3× n rectangle. We let Un represent the number of completely fault-free tilings, and Vn

represent the number of vertical-fault-free tilings. (We are using the expression completely
fault-free, instead of just fault-free, to avoid confusion with the expression vertical-fault-
free. Keep in mind that most authors use the expression fault-free instead of completely
fault-free.)

2 Initial work on counting the tilings

Let us look at some initial values for Un and Vn. Fortunately, the tilings at n = 1 are easy.
Figure 3 shows all possible tilings, and so we see that U1 = 0 and V1 = 3.

Figure 3: All possible tilings of a 3× 1 rectangle with squares and dominos.

For n = 2, all the vertical-fault-free tilings are given in Figure 4. Since none of them are
also horizontally-fault-free, we have U2 = 0 and V2 = 13.
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Figure 4: All possible vertical-fault-free tilings of a 3× 2 rectangle.

For n = 3 and n = 4 there are exactly two completely fault-free tilings as shown in Figure
5, so U3 = U4 = 2. (It turns out that V3 = 26 and V4 = 66 but we will show that later.)

Figure 5: The completely fault-free tilings of a 3× 3 and 3× 4 rectangle.

Now, to tile a fault-free 3 × n board, we must take three very important issues into
consideration.

1. First, for a 3×n tiling to be vertical-fault-free, there must not be any vertical dominoes
in the middle of the board; they can only be at the beginning or end (if at all). As
seen in Figure 6, using vertical dominos in the middle of a tiling causes vertical faults
(represented by dashed lines).

Figure 6: Interior vertical dominos create interior vertical faults.

2. Second, for a tiling to be horizontal-fault-free, then since there can not be vertical
dominos in the middle we must instead have (unaligned) vertical dominos on the ends,
as shown in the two diagrams in Figure 7.

Figure 7: Vertical dominos on each end are required for completely fault-free tilings.
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3. Finally, there are six recurring profiles which we will use to count tilings for n ≥ 3,
based on what happens when one tries to break the tiling, vertically, at position m for
1 ≤ m ≤ n − 1. Figure 8 illustrates the six profiles (similar to those used by Read in
[5]), which we arbitrarily label A through F .

Figure 8: Six profiles in which a tiling fails to have a vertical fault.

3 Vertical-fault-free tilings

Let us now determine the number of vertical-fault-free tilings Vn for a 3×n rectangle. From
our drawings earlier, we know that V1 = 3 and V2 = 13.

First, we define An, Bn, . . . , Fn to be the number of ways to tile a vertical-fault-free 3×n

rectangle ending in profiles A,B, . . . , F from Figure 8, respectively, where the one or two
rectangles in each profile extend one unit beyond the end on the right. For example, A1 = 2
and A2 = 4, thanks to the tilings in Figure 9, and B1 = 1 and B2 = 5 as seen in Figure 10.
Since profile C is just a reflection (around a horizontal axis) of profile A, then we also have
C1 = 2 and C2 = 4.

Figure 9: A1 = 2 and A2 = 4; flip the picture to see that C1 = 2 and C2 = 4.

Figure 10: B1 = 1 and B2 = 5.

But what about profile D? If we study Figure 11, we see that D2 = 2 and D3 = 4, and
furthermore we can see that in general, Dn = An−1 because any profile-D tiling must have
a horizontal domino (in orange) above the two horizontal dominos (in yellow) as shown, to
avoid a vertical fault to the left of those two horizontal dominos.
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Figure 11: D2 = A1 = 2 and D3 = A2 = 4.

Glancing back at Figure 8, we see that we can find other recurrence relations for these
six sequences An, Bn, . . . , Fn. If we look at Figure 12, we can see that a tiling that ends in
profile A must, in order to prevent a vertical fault before that yellow domino, have either one
or two (orange) horizontal dominos below, and slightly to the left, of that original (yellow)
horizontal domino, which means that An must equal Bn−1 + Cn−1 +Dn−1.

Figure 12: Illustrating that An = Bn−1 + Cn−1 +Dn−1.

We have shown that Dn = An−1 and that An = Bn−1 + Cn−1 + Dn−1. Using similar
drawing arguments, we arrive at the six recurrence relations shown in (1), which all hold for
n ≥ 2.

An = Bn−1 + Cn−1 +Dn−1

Bn = An−1 + Cn−1 + En−1

Cn = An−1 + Bn−1 + Fn−1

Dn = An−1

En = Bn−1

Fn = Cn−1

(1)

Note that for n ≥ 3 we can substitute the last three equations from (1) into the first
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three, to obtain

An = Bn−1 + Cn−1 + An−2, (2)

Bn = An−1 + Cn−1 +Bn−2, (3)

Cn = An−1 + Bn−1 + Cn−2. (4)

At this point, we would like to “unlink” these linked recurrence formulas in equations
(2), (3), and (4). After a few minutes of calculations (and with initial values that we
drew out by hand), we noticed that An, Bn, and Cn all seem to satisfy the fourth-order
recurrence relation with signature (1, 4,−1,−1), which is to say that An seems to equal
1An−1 + 4An−2 − 1An−3 − 1An−4 and likewise for Bn and Cn. We now prove that this
observation is correct.

Lemma 1. With An, Bn, and Cn defined in equations (2), (3), and (4), then for n ≥ 5, we
have

An = An−1 + 4An−2 − An−3 − An−4,

Bn = Bn−1 + 4Bn−2 − Bn−3 − Bn−4,

Cn = Cn−1 + 4Cn−2 − Cn−3 − Cn−4.

Proof. We give a direct proof that follows immediately from (2), (3), and (4). Starting with
equation (2), we have

An = Bn−1 + Cn−1 + An−2,

and if we substitute Bn−1 = An−2 +Cn−2 +Bn−3 from (3) and a similar expression for Cn−1

from (4), we obtain

An = (An−2 + Cn−2 + Bn−3) + (An−2 +Bn−2 + Cn−3) + An−2.

We now substitute Bn−3 = An−2 − Cn−3 − An−4 and Bn−2 = An−1 − Cn−2 − An−3 from (2)
to obtain

An = (An−2 + Cn−2 + (An−2 − Cn−3 − An−4))

+ (An−2 + (An−1 − Cn−2 − An−3)) + Cn−3) + An−2,

which simplifies nicely to become our desired recurrence relation. A similar method would
give us the same recurrence relations for Bn and Cn.

We can now begin to calculate Vn. From earlier, we know that V1 = 3 and V2 = 13. With
some clever drawings, we can establish the following formula that relates Vn to the An, Bn,
and Cn’s discussed earlier.
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Lemma 2. For n ≥ 3 we have

Vn = 2An−1 + Bn−1 + 2Cn−1 + An−2 +Bn−2 + Cn−2.

Proof. We will first establish that for n ≥ 3,

Vn = 2An−1 + Bn−1 + 2Cn−1 +Dn−1 + En−1 + Fn−1. (5)

To see this, we imagine a vertical-fault-free tiling of the entire length of a 3 × n rectangle
(with n ≥ 3), and we separate it into cases based on how many horizontal dominos are at
the right-hand end of the rectangle. We can not have three horizontal dominos (as then the
tiling would have a vertical fault at n − 2), nor can we have zero horizontal dominos (as
then the tiling would have a vertical fault at n− 1), and so there must be either one or two
horizontal dominos.

Suppose there is one horizontal domino at the far right-hand side, and suppose it is located
in the upper right corner. Figure 13 shows that the number of such tilings is 2An−1, since
there could be either two stacked squares, or a single vertical domino, below the horizontal
domino and so we have to double the number of tilings in profile An−1.

Figure 13: Vertical-fault-free tilings with an upper-right horizontal domino.

Using similar diagrams, it is not hard to show that a horizontal domino at the far-right
side in the middle gives Bn−1 ways to tile the rectangle, a horizontal domino in the bottom
right corner has 2Cn−1 tilings, and so on. This gives us equation (5).

We can now use the last three equations in (1) to replace the Dn−1, En−1, and Fn−1 with
An−2, Bn−2, and Cn−2 respectively, and so equation (5) becomes

Vn = 2An−1 + Bn−1 + 2Cn−1 + An−2 +Bn−2 + Cn−2, (6)

as desired.

We are now ready to establish the following properties for our sequence Vn.

Theorem 3. With Vn the number of ways to tile a vertical-fault-free 3 × n rectangle with
squares and dominos,
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1. The first six values of Vn, starting at n = 1, are 3, 13, 26, 66, 154, 380.

2. For n ≥ 7, we have Vn = Vn−1 + 4Vn−2 − Vn−3 − Vn−4.

We note that this theorem verifies the recursion formula (and subsequent values) in
A335747.

Proof. We consider each part separately.

1. The values of V1 and V2 (namely, 3 and 13) have already been calculated in Figures 3
and 4. As for V3, V4, V5, V6, and V7, we can use Lemma 2 to calculate them from An, Bn,
and Cn. Fortunately, An, Bn, and Cn satisfy the recurrences in equations (2), (3), and
(4), and so the only hand-calculations we need are for n = 1 and 2. Thanks to Figures
9 and 10, we know that A1 = 2, A2 = 4, and B1 = 1, B2 = 5. Recall also from the
discussion at the beginning of Section 3 and in the caption for Figure 9 that Cn = An.
So, the recurrence relations in (2) and (3) give us the sequences {2, 4, 11, 24, 62 . . . } for
An and Cn, and {1, 5, 9, 27, 57, . . . } for Bn. Applying these values to Lemma 2 gives
us V3 = 26, V4 = 66, V5 = 154, and V6 = 380.

2. To establish the recurrence relation for Vn, we look once more at Lemma 2. Since Vn

is defined in terms of An−1 and An−2, Bn−1 and Bn−2, and Cn−1 and Cn−2, and since
these all satisfy our fourth-order recurrence formula thanks to Lemma 1, then so long
as n− 2 ≥ 5 (that is to say, so long as n ≥ 7) we have that Vn also satisfies the same
fourth-order recurrence formula.

4 Completely fault-free tilings

We now turn our attention to finding Un, the number of completely fault-free tilings of a
3 × n rectangle. We have already shown in Section 1 that U1 = U2 = 0, and (thanks to
Figure 5) that U3 = U4 = 2. As seen in Figure 7, we must have vertical dominos on each end
for a completely fault-free tiling, and those two diagrams suggest that we can count Un by
instead counting the number of completely fault-free tilings that have a vertical domino in
the lower left corner (as seen in the left-hand diagram in Figure 7) and then doubling that
number.

With this in mind, we let Tn equal the number of completely fault-free tilings that have
a vertical domino in the lower left corner. From the previous paragraph, we have that
T1 = T2 = 0 and T3 = T4 = 1. Figure 14 shows that T5 = 5, and Figure 17 at the end of the
paper demonstrates that T6 = 8.
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Figure 14: Completely fault-free 3× 5 tilings with a lower-left vertical domino.

As we now show, it is quite easy to adapt our methods from Section 3 to the current
problem. Just as we defined An, Bn, . . . , Fn to count the number of vertical-fault-free tilings
ending in profiles A,B, . . . , F from Figure 8, we now define A′

n
, B′

n
, . . . , F ′

n
to give us the

number of vertical-fault-free tilings beginning with a vertical domino in the lower left corner
and ending in those same profiles A,B, . . . , F .

We know (thanks to Figure 7) that any completely fault-free tiling that begins with a
vertical domino in the lower left corner, must end with a vertical domino in the upper right
corner. Hence, Tn = C ′

n−1
as seen in Figure 15.

Figure 15: Tn = C ′

n−1
.

At this point, we recognize that the three sequences A′

n
, B′

n
, and C ′

n
satisfy exactly the

same linked recurrence relations (2), (3), and (4) as do An, Bn, and Cn from Section 3; recall
that we established those by studying diagrans such as Figure 12 and of course the scenario
from that figure is exactly the same for our “new” sequences A′

n
, B′

n
, . . . , F ′

n
. And just as we

showed that An, Bn and Cn satisfy our particular fourth-order recurrence relation in Lemma
1, we can assume that the same applies for A′

n
, B′

n
, and C ′

n
.

Now, since Tn = C ′

n−1
, we know that Tn also satisfies our particular fourth-order recur-

rence relation. To find the initial values for Tn we simply need to find the initial values for
C ′

n
, which means we also need those value for A′

n
and B′

n
.

Fortunately, this is easy to do. Thanks to Figure 16, we see that A′

1
= 1, B′

1
= 0, C ′

1
= 0

and also A′

2
= 0, B′

2
= 1, C ′

2
= 1.
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Figure 16: Initial values for A′

n
, B′

n
, C ′

n
.

We can now use equations (2), (3), and (4) to get that the initial values of C ′

n
, with n

from 1 to 6, are {0, 1, 1, 5, 8, 26}, and so Tn has the same values (starting with n = 2) and
satisfies the same fourth-order recurrence relation of Tn = Tn−1+4Tn−2−Tn−3−Tn−4 which
(we find by checking) actually holds for all n ≥ 5 if we recall from earlier that T1 = 0. If we
double these values, we have now proved the following theorem.

Theorem 4. With Un the number of ways to tile a completely fault-free 3×n rectangle with
squares and dominos,

1. The first seven values of Un, starting at n = 1, are 0, 0, 2, 2, 10, 16, 52.

2. For n ≥ 5, we have Un = Un−1 + 4Un−2 − Un−3 − Un−4.

This is sequence A334396, and (surprisingly) these numbers Un are twice A112577.
As a final note, we also find it surprising that both our sequences (Vn, the number of

ways to tile a vertical-fault-free rectangle, and Un, the number of ways to tile a completely
fault-free rectangle) satisfy the same recurrence relation. Surely there is a geometric or tiling
explanation for why Un = Un−1 + 4Un−2 − Un−3 − Un−4 and likewise Vn, and we hope an
interested reader will be able to find it.

We conclude with a visual demonstration that T6 = 8 and hence U6 = 16.

Figure 17: A demonstration that T6 = 8.
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