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Abstract

The main object in this paper is the sequence of polynomials Pn(z) that have Stern
numbers as their coefficients; that is, the terms of Stern’s diatomic sequence. We derive
certain basic properties of these polynomials, investigate the distribution of their real
and complex zeros, and prove some results concerning factorizations and resultants. We
also consider the (0, 1)-polynomials obtained from Pn(z) by taking their coefficients
modulo 2. In spite of its simple form, the polynomial sequence is shown to possess
some interesting algebraic and analytic properties. Finally, we discuss combinatorial
interpretations of the polynomials Pn(z) and indicate ways of generalizing them.
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1 Introduction

The Stern sequence, also known as Stern’s diatomic sequence [16], is one of the most remark-
able integer sequences in number theory and combinatorics. It can be defined by s(0) = 0,
s(1) = 1, and

s(2n) = s(n), s(2n+ 1) = s(n) + s(n+ 1) (n ≥ 1). (1)

The first 30 Stern numbers, starting with n = 1, are

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4. (2)

The definition (1) gave rise to two different concepts of Stern polynomials, introduced in [10]
and [15], respectively. Both preserve the “binary structure” of the sequence (1) and have
various combinatorial interpretations. Subsequently these sequences of polynomials were
generalized by the present authors [7], then unified as special cases of a class of polynomials
in two variables [6], and more generally extended to polynomials in an arbitrary number of
variables and with an underlying base b ≥ 2 [8]. All this has applications to counting and
classifying restricted binary and b-ary partitions of integers.

In the current paper we will, in the first place, consider polynomials of a very different
type, namely those having the Stern numbers s(n), and later some of their generalizations,
as coefficients. Thus, we define

Pn(z) := s(1)zn + s(2)zn−1 + · · ·+ s(n)z + s(n+ 1), (3)

and as a specific example we have, with (2),

P8(z) = z8 + z7 + 2z6 + z5 + 3z4 + 2z3 + 3z2 + z + 4. (4)

The polynomials Pn(z), as well, have a combinatorial interpretation which is related to
binary overpartitions, and this leads to generalizations in different directions. The main
purpose of this paper, however, is to derive various properties of the polynomials Pn(z) and
of a closely related polynomial sequence.

In the process we will encounter combinatorial objects, including recurrence relations, Fi-
bonacci numbers, generating functions, and various b-ary partitions. From classical analysis
we will come across several well-known theorems on the distribution of zeros of polynomials,
and the algebraic topics occurring in this paper include cyclotomic polynomials, resultants,
and divisibility and irreducibility.

We begin in Section 2 by recalling certain properties of the Stern sequence that will be
needed later, followed by some basic properties of the polynomials Pn(z). In Sections 3
and 4 we study the complex and real zeros, respectively, of these polynomials. Section 5 is
devoted to algebraic properties of the polynomials Pn(z), including factors and resultants.
In Section 6 we consider a (0,1)-polynomial sequence whose coefficients are those of Pn(z)
taken modulo 2; we completely determine all factors of these polynomials and investigate
their zeros. Section 7 deals with binary and b-ary overpartitions and with a combinatorial
interpretation of the polynomials Pn(z), including some generalizations.
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2 Some basic properties

In this section we derive several basic properties of the polynomials Pn(z), most of which
will be required in later sections. We begin by recalling some easy facts about the Stern
sequence.

2.1 Properties of the Stern sequence

Although at first sight the Stern sequence appears to behave rather erratically, it does in
fact have a great deal of structure. First, we have the special values

s(2m) = 1, s(2m + 1) = m+ 1, s(2m + 2) = m, s(2m + 3) = 2m− 1 (5)

(m ≥ 2), where the first three also hold for m = 1, and the first two for m = 0. All four
identities are easy to prove by induction. The sequence s(n) is also symmetric between two
powers of 2, that is,

s(2m + j) = s(2m+1 − j), 0 ≤ j ≤ 2m. (6)

In particular, with (5), this leads to values for s(2m − j), j = 1, 2, 3. Another identity that
will be needed later is

s(3 · 2m + 1) = s(3 · 2m − 1) = 2m+ 1, m ≥ 0; (7)

this, too, is easy to prove by induction. More properties like these are known, but they will
not be needed here.

Next, combining the two identities in (1), we have s(2n + 1) = s(2n) + s(2n + 2); this
implies that for n ≥ 1 each odd-index Stern number s(2n + 1) is strictly larger than its
two neighbors. The Stern sequence is therefore a strict up-down sequence, beginning with
the second term. This leads us to consider the ratio of neighboring terms. First, it is
clear from (5) and by symmetry that ratios of neighboring terms can be arbitrarily large
or arbitrarily small rational numbers. This is consistent with the well-known fact that the
sequence s(n+ 1)/s(n) is a one-to-one enumeration of all positive rationals; see, e.g., [1, 15].

We now show that the ratios s(n + 1)/s(n) given by the first two identities in (5), and
their reciprocals, are in fact extremal in each interval between two neighboring powers of 2.

Lemma 1. For any integer m ≥ 1 we have

1

m
≤ s(n+ 1)

s(n)
≤ m, where 2m−1 ≤ n ≤ 2m − 1, (8)

and the lower and upper bound are attained exactly when n = 2m − 1 and n = 2m−1, respec-
tively.
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Proof. We proceed by induction on m. The cases m = 1 and m = 2 are easily seen to be true.
Suppose now that (8) holds up to some m ≥ 2, and let n be in the interval 2m ≤ n ≤ 2m+1−1.
First, if n is even, we write n = 2k and with (1) we get

s(n+ 1)

s(n)
=
s(k) + s(k + 1)

s(k)
= 1 +

s(k + 1)

s(k)
;

by the induction hypothesis we then get the upper bound m+ 1. Second, if n is odd, we set
n = 2k + 1 and again with (1) we get

s(n+ 1)

s(n)
=

s(k + 1)

s(k) + s(k + 1)
=

1

1 + s(k)/s(k + 1)
≥ 1

1 +m
,

having used the induction hypothesis. We also implicitly used the “up-down” property which
implies that the quotients s(n+1)/s(n) alternate between greater than and less than 1. This
proves (8) by induction. The final statement is clear by (5) and (6), and uniqueness comes
from the one-to-one enumeration mentioned above.

We also require a remarkable property of the Stern sequence that was apparently first
proved by D. H. Lehmer [16].

Lemma 2 (Lehmer). The largest value of s(n) between n = 2m−1 and n = 2m is the
Fibonacci number Fm+1, with the usual definition F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1.
The maximum is attained at

αm :=
1

3

(
2m+1 + (−1)m

)
and βm :=

1

3

(
5 · 2m−1 − (−1)m

)
(m ≥ 1). (9)

m 1 2 3 4 5 6 7 8 9 10

αm 1 3 5 11 21 43 85 171 341 683
βm 2 3 7 13 27 53 107 213 427 853
Fm+1 1 2 3 5 8 13 21 34 55 89

Table 1: αm, βm, Fm+1 for 1 ≤ m ≤ 10

2.2 Properties of Pn(z)

Now we turn to some basic properties of the polynomials Pn(z). First, the definition (3)
immediately gives

Pn(z) = z · Pn−1(z) + s(n+ 1). (10)

By separating even and odd powers of z in (3), we obtain a different class of recurrence
relations, as follows.
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Lemma 3. For all n ≥ 1 we have

P2n(z) = (1 + z) · Pn−1(z2) + Pn(z2), (11)

P2n+1(z) = z · Pn−1(z2) + (1 + z) · Pn(z2). (12)

Proof. By (3) we have

P2n(z) =
n∑
j=0

s(2j + 1)z2n−2j +
n∑
j=1

s(2j)z2n+1−2j

=
n∑
j=0

(
s(j) + s(j + 1)

)
(z2)n−j + z

n∑
j=1

s(j)(z2)n−j

= (1 + j)
n−1∑
j=0

s(j + 1)(z2)n−j−1 +
n∑
j=0

s(j + 1)(z2)n−j,

where we have used (1) and the fact that s(0) = 0. It is now obvious that this last line is
the right-hand side of (11). The identity (12) can be obtained analogously.

The next lemma deals with some special values of Pn(z).

Lemma 4. For any integer m ≥ 1 we have

P2m−1(1) =
2m∑
j=1

s(j) =
1

2
(3m + 1) , (13)

and, for any n ≥ 1,

P2n(−1) = Pn(1), P2n+1(−1) = −Pn−1(1). (14)

Proof. It is a well-known property of the Stern sequence that

2ν+1∑
j=2ν+1

s(j) = 3ν , ν ≥ 0; (15)

see, e.g., [16]. Summing (15) over all ν = 0, 1, . . . ,m− 1 and adding s(1) = 1 to both sides,
we obtain (13). Finally, if we set z = −1 in (11) and (12), we immediately get the two
identities in (14).

To conclude this section, we derive a generating function for the polynomials Pn(z).

Proposition 5. With q a complex variable, we have

∞∑
n=0

Pn(z)qn =
1

1− zq

∞∏
k=0

(
1 + q2

k

+ q2
k+1
)
. (16)
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Proof. The Stern sequence has the well-known generating function

∞∏
k=0

(
1 + q2

k

+ q2
k+1
)

=
1

q

∞∑
n=1

s(n)qn =
∞∑
n=0

s(n+ 1)qn; (17)

see, e.g., [2, 19]. By the definition (3), Pn(z) is a convolution of the sequences s(1), s(2),
. . . , s(n+ 1) and z0, z1, . . . , zn. Hence

∞∑
n=0

Pn(z)qn =

(
∞∑
k=0

zkqk

)(
∞∑
k=0

s(k + 1)qk

)
,

and (16) follows from (17) and the sum of a geometric series.

3 Complex zeros of Pn(z)

Plots of the zeros of Pn(z) indicate that they lie relatively close to the unit circle (with
some notable exceptions inside the unit circle) and have uniform angular distribution; see
Figure 1. It is the purpose of this section to confirm these observations.

3.1 Some classical theorems

All our results will be based on some well-known classical theorems; we quote them here for
the sake of completeness.

The first result is due to Eneström and Kakeya; see, for instance, [17, pp. 136–137].

Theorem 6 (Eneström, Kakeya). Let f(z) = a0 + a1z + · · · + anz
n be a polynomial with

positive coefficients. Then all the zeros of f(z) lie in the annulus ρ1 ≤ |z| ≤ ρ2, where

ρ1 := min
0≤k≤n−1

{
ak
ak+1

}
, ρ2 := max

0≤k≤n−1

{
ak
ak+1

}
. (18)

Another well-known result of a similar nature is due to Cauchy; see [17, p. 123].

Theorem 7 (Cauchy). All the zeros of f(z) = a0 + a1z + · · ·+ anz
n, an 6= 0, lie in the disk

|z| < 1 + max
0≤k≤n−1

{∣∣∣∣akan
∣∣∣∣} . (19)

The next auxiliary result is due to Jentzsch [14]. It can be stated as follows.

Theorem 8 (Jentzsch). Let f(z) =
∑∞

k=0 akz
k be a power series with radius of convergence 1.

Then every point on the unit circle is a limit point of zeros of the partial sums of f(z).
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Figure 1: The zeros of P201(z)

This remarkable theorem can be supplemented by the following well-known result by
Erdős and Turán on the equidistribution of the arguments of the zeros of a polynomial; see
[11], or [23] for a recent exposition and a new proof.

Theorem 9 (Erdős and Turán). Let f(z) = a0 + a1z + · · · + anz
n be a polynomial with

a0an 6= 0, and let α, β be real numbers such that 0 ≤ α < β ≤ 2π. If N(α, β) denotes the
number of zeros zj with α ≤ arg zj ≤ β, then∣∣∣∣N(α, β)

n
− β − α

2π

∣∣∣∣ < 16

√
logP

n
, where P =

1√
|a0an|

n∑
k=0

∣∣ak∣∣. (20)

3.2 Applications to Pn(z)

We now apply these theorems to the polynomials Pn(z). Our first result is an immediate
consequence of Lemma 1 and Theorem 6.

Proposition 10. Let n ≥ 1 and m ≥ 1 be such that 2m−1 ≤ n ≤ 2m − 1. Then the zeros of
Pn(z) all satisfy

1

m
≤ |z| ≤ m. (21)

We will see in the next section that in general the lower bound cannot be improved;
however, see below for some special cases. We expect that the upper bound can be improved.
In any case, we have the following result.
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Proposition 11. Every point on the unit circle is a limit point of the zeros of Pn(z).

Proof. For any n ≥ 0 we consider the reciprocal polynomial

P ∗n(z) := znPn(1
z
) = 1 + z + 2z2 + z3 + 3z4 + · · ·+ s(n+ 1)zn (22)

and the power series

f(z) := lim
n→∞

P ∗n(z) =
∞∑
k=0

s(k + 1)zk. (23)

To determine the radius of convergence, we use the following bound due to Reznick [19,
p. 472]: There is a constant c > 0 such that for all n ≥ 1 we have

1 ≤ s(n) ≤ c · nµ, where µ = log2

(
1+
√
5

2

)
;

an asymptotic value for c can also be found in [19]. Now we use the nth root test for the
power series in (23) and find that

1 ≤ n
√
s(n) ≤ c1/n · nµ/n → 1 as n→∞,

where the limit is clear if we consider logarithms. Hence the radius of convergence of the
power series is 1, and Jentzsch’s Theorem 8 shows that every point on the unit circle is a
limit point of the zeros of P ∗n(z). The same result is then true for the zeros of Pn(z), which
completes the proof.

As mentioned earlier, the lower bound in (21) is essentially best possible. On the other
hand, for certain subscripts n, the zeros of Pn(z) can be proven to be much larger.

Proposition 12. For m ≥ 1, let αm and βm be the integers defined in (9). Then for all
n = αm − 1 and n = βm − 1, all the zeros of Pn(z) satisfy |z| > 1/2.

Proof. We consider the polynomial P ∗n(z) as defined in (22). Then by Lemma 2, extended
with (1), we see that the leading coefficient s(αm) or s(βm) is greater than, or equal to, all
other coefficients. Then by Cauchy’s Theorem 7 all the zeros of P ∗n(z) satisfy |z| < 2, which
implies that for all the zeros of Pn(z) we have |z| > 1/2, as claimed.

The final result in this section is a direct consequence of the theorem of Erdős and Turán.

Proposition 13. The zeros of Pn(z) have uniform angular distribution. More precisely, if
α, β ∈ R are such that 0 ≤ α < β ≤ 2π, and N(α, β) denotes the number of zeros zj with
α ≤ arg zj ≤ β, then∣∣∣∣N(α, β)

n
− β − α

2π

∣∣∣∣ < 16 ·

√
log 3

log 2
·
√

1 + log(n+ 1)

n
. (24)
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Proof. To determine P in (20), we first note that by definition of Pn(z) we have an = 1 and
a0 ≥ 1; hence it remains to estimate the relevant sum of coefficients. Given the index n, let
m ≥ 1 be such that 2m−1 − 1 ≤ n ≤ 2m − 2. Then by (13), and upon subtracting s(2m) = 1
from both sides, we get

P ≤
n∑
k=0

|ak| = Pn(1) ≤ P2m−2(1) =
1

2
(3m − 1) <

1

2
· 3m,

so that
logP < − log 2 +m log 3. (25)

Now, since 2m−1 − 1 ≤ n, we have 2m ≤ 2(n+ 1), and thus

m ≤ log(2(n+ 1))

log 2
= 1 +

log(n+ 1)

log 2
.

Substituting this into (25), we get

logP < − log 2 + log 3 +
log 3

log 2
· log(n+ 1) =

log 3

log 2
·
(
1 + log(n+ 1)

)
.

This, with (20), gives (24).

In closing we remark that the numerical value of the constant factor on the right of (24)
is 16

√
log 3/ log 2 ' 20.14. Also, (24) becomes meaningful only when n is reasonably large.

4 Real zeros of Pn(z)

Since the polynomials Pn(z) have only positive coefficients, the only possible real zeros will
be negative. In fact, we have the following result.

Proposition 14. For all n ≥ 0,

(a) P2n(x) has no real zeros; in fact, P2n(x) ≥ 3
4
s(n) + s(n+ 1) for all x ∈ R.

(b) P2n+1(x) is strictly increasing as a function of x, and therefore has exactly one real
zero.

Proof. From (10) we get Pn(x2) = x2Pn−1(x
2) + s(n + 1), and substituting this into (11)

gives
P2n(x) =

(
1 + x+ x2

)
Pn−1(x

2) + s(n+ 1). (26)

It is easy to see that 1 + x + x2 ≥ 3
4

and Pn−1(x
2) ≥ Pn−1(0) = s(n) for all x. This fact,

along with (26), proves (a).
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To prove part (b), we first take the derivative of (10) with respect to z, and then set
z = x2, to obtain

P ′n(x2) = x2P ′n−1(x
2) + 2Pn−1(x

2). (27)

Next, taking the derivative of (12), we get

P ′2n+1(x) = 2x2P ′n−1(x
2) +

(
2x+ 2x2

)
P ′n(x2) + Pn−1(x

2) + Pn(x2).

By substituting (27) into this last identity, we obtain, after some simplification,

P ′2n+1(x) = 2x2
(
1 + x+ x2

)
P ′n−1(x

2) +
(
1 + 2x+ 2x2

)
Pn−1(x

2) + Pn(x2).

We already noted that 1 + x+ x2 > 0; it is also easy to verify that 1 + 2x+ 2x2 > 0 for all
x ∈ R. Since all other terms are obviously positive, we have P ′2n+1(x) > 0 for all x ∈ R, as
desired.

n −rn n −rn n −rn
1 1 13 .5607907569 25 .5989653955
3 .5698402910 15 .2829027496 27 .4179121334
5 .6464478041 17 .6442386664 29 .5308746463
7 .3767322046 19 .4753681436 31 .2253056724
9 .6494575822 21 .5862078204 33 .6410098261

11 .4468280932 23 .3232890249 35 .4907265638

Table 2: The real zeros rn of Pn(x), 1 ≤ n ≤ 35

Proposition 14(b) can be made more precise. For instance, Table 2 indicates that the
real zeros of Pn(x), for odd n ≥ 3, lie strictly between −1 and 0. This, and more, is shown
in the next result.

Proposition 15. For n ≥ 1, let r2n+1 be the unique real zero of P2n+1(z); then −1 <
r2n+1 < 0. Furthermore, if m is such that 2m−1 + 1 ≤ 2n+ 1 ≤ 2m − 1, then:

(a) If n is odd, then

− s(n+ 1)

s(n)
< r2n+1 ≤ −

1

m
, (28)

and, if n ≡ 3 (mod 4), then −1/2 < r2n+1 ≤ −1/m.

(b) If n is even, then

−s(2n+ 2)

s(2n+ 1)
< r2n+1 ≤ −

1

m
(n ≡ 0 (mod 4)), (29)

− s(n)

s(n− 1)
< r2n+1 ≤ −

1

m
(n ≡ 2 (mod 4)). (30)
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Before proving this result, we derive a consequence that explains the observation from
Table 2 that the zeros rn are relatively small and decreasing in absolute value for n =
7, 15, 31. This becomes more pronounced when we compute r63 ' −.1863219404 and r127 '
−.1583809009. The following result partially explains these observations.

Corollary 16. For any integer m ≥ 2 we have

− 1

m− 1
< r2m−1 ≤ −

1

m
. (31)

Proof. We use Proposition 15(a) with n = 2m−1−1. Then by (5) and (6) we have s(n+1) = 1
and s(n) = s(2m−2 + 1) = m−1, which gives the left inequality of (31). The right inequality
remains the same as in (28).

Corollary 16 shows that Proposition 10, in particular the left inequality, is best possible.
It also shows that certain polynomials Pn(z) can have zeros that are arbitrarily close to the
origin. This does not contradict Proposition 11.

Proof of Proposition 15. By the second identity in (14) we have P2n+1(−1) < 0, while by
definition we have P2n+1(0) = s(2n+ 2) > 0. Hence the unique zero r2n+1 must lie between
−1 and 0, as claimed. In fact, by Proposition 10, r2n+1 cannot be greater than −1/n, which
proves the right-hand inequalities in (28)–(30).

For the remainder of the proof it will be convenient to deal with the slightly modified
polynomial Q2n+1(x) := −P2n+1(−x), which remains monic but changes the signs of the real
zeros. We have, therefore,

Q2n+1(x) = x2n+1 − x2n + 2x2n−1 − · · ·+ s(2n+ 1)x− s(2n+ 2). (32)

To prove part (a), we rewrite (32) as

Q2n+1(x) = x2n+1 +
n∑
j=1

(
s(2j + 1)− s(2j)x

)
· x2n+1−2j (33)

− s(2n)x2 + s(2n+ 1)x− s(2n+ 2).

Since s(2j + 1) > s(2j) for all j ≥ 1, all summands in the first line of (33) are positive for
0 < x < 1. The last three summands taken together are nonnegative exactly when

x2 − s(2n+ 1)

s(2n)
x+

s(2n+ 2)

s(2n)
≤ 0.

With (1), this quadratic inequality can be rewritten as

x2 −
(

1 +
s(n+ 1)

s(n)

)
x+

s(n+ 1)

s(n)
≤ 0

11



and be factored as (
x− 1

)
·
(
x− s(n+ 1)

s(n)

)
≤ 0. (34)

Since n is odd, s(n + 1)/s(n) < 1, and with x = s(n + 1)/s(n) the left of (34) obviously
vanishes, and by (33) we have Q2n+1(s(n + 1)/s(n)) > 0, while Q2n+1(0) < 0. This proves
the left inequality of (28).

For the final statement of part (a) we set n = 4k + 3 and obtain with (1),

s(n+ 1)

s(n)
=
s(4k + 4)

s(4k + 3)
=

s(2k + 2)

s(2k + 1) + s(2k + 2)
<

1

2
,

where the inequality is easy to verify, using the fact that s(2k + 1) > s(2k + 2).
To prove part (b), we modify (33) and obtain

Q2n+1(x) = x2n+1 +
n−1∑
j=1

(
s(2j + 1)− s(2j)x

)
· x2n+1−2j (35)

+
(
−s(2n− 2)x2 + s(2n− 1)x− s(2n)

)
x2 +

(
s(2n+ 1)x− s(2n+ 2)

)
.

We proceed as in part (a) and note that all summands in the first line of (35) are positive.
Next, in analogy to (34) we can see that

−s(2n− 2)x2 + s(2n− 1)x− s(2n) ≥ 0

if and only if (
x− 1

)
·
(
x− s(n)

s(n− 1)

)
≤ 0, (36)

which is the case when s(n)/s(n − 1) ≤ x ≤ 1; here we note that s(n)/s(n − 1) < 1
since n is even. For the final term in (35) we have s(2n + 1)x − s(2n + 2) ≥ 0 if and
only if x ≥ s(2n + 2)/s(2n + 1), which is also less than 1. So altogether, by (35) we have
Q2n+1(x0) > 0, while again Q2n+1(0) < 0, where

x0 := max

{
s(n)

s(n− 1)
,
s(2n+ 2)

s(2n+ 1)

}
, (n even). (37)

To complete the proof, we determine which one of the two elements is larger. First, when
n ≡ 0 (mod 4), we set n = 4k and with (1) we obtain

s(n)

s(n− 1)
=

s(4k)

s(4k − 1)
=

s(2k)

s(2k − 1) + s(2k)
<

1

2
,

s(2n+ 2)

s(2n+ 1)
=
s(8k + 2)

s(8k + 1)
=

s(4k + 1)

s(4k) + s(4k + 1)
=

s(2k) + s(2k + 1)

2s(2k) + s(2k + 1)
>

1

2
,

where the inequalities on the right are easy to verify, using the fact that odd-index Stern
numbers are larger than their neighbors. These inequalities prove (29).
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When n ≡ 2 (mod 4), we set n = 4k + 2, obtaining

s(n)

s(n− 1)
=

s(2k + 1)

s(2k) + s(2k + 1)
=

s(k) + s(k + 1)

2s(k) + s(k + 1)
,

s(2n+ 2)

s(2n+ 1)
=

s(4k + 3)

s(4k + 2) + s(4k + 3)
=

s(k) + 2s(k + 1)

2s(2k) + 3s(2k + 1)
.

It is now easy to verify that

s(k) + s(k + 1)

2s(k) + s(k + 1)
>

s(k) + 2s(k + 1)

2s(2k) + 3s(2k + 1)
,

for instance by multiplying both sides by the denominators and then simplifying. This shows
that the first element in (37) is maximal, which proves (30); the proof is now complete.

Remark 17. Based on Table 2 and the second part of Proposition 15(a), it may be tempting
to conjecture that rn > −1/2 for all n ≡ 3 (mod 4), n > 3, and rn < −1/2 for all n ≡ 1
(mod 4). However, this is not true, as the counterexamples in Table 3 show. In the latter
case, all counterexamples with n < 2000 are shown, while in the former case, there are 8
more up to n = 2000.

n ≡ 3 (mod 4) rn < −1/2 n ≡ 1 (mod 4) rn > −1/2
67 −.5002864226 509 −.4954752823
131 −.5067977789 765 −.4975876362
259 −.5115134818 1021 −.4920186458
387 −.5012417771 1277 −.4983631397
515 −.5150841917 1533 −.4936355414
643 −.5031636440 1789 −.4968495572

Table 3: The first 6 counterexamples related to Remark 17

5 Algebraic properties

In this section we will deal with some algebraic properties of the polynomials Pn(z), mainly
factorizations involving cyclotomic polynomials, and an identity involving resultants.

5.1 Factors of certain differences

Computations show that for all n ≤ 2000 the polynomials Pn(z) are irreducible, with two
exceptions which we will address later in Subsection 5.3. We also saw in the previous two
sections that in spite of some general results, the zero distribution of Pn(z) tends to be quite
irregular.
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It is therefore somewhat surprising that certain infinite classes of differences of the poly-
nomials Pn(z) have the greatest possible regularity, by being products of cyclotomic polyno-
mials. Computations show, for instance,

P30(z)− P14(z) =
(
z8 − z4 + 1

)(
z4 − z2 + 1

)2(
z2 − z + 1

)3(
z2 + z + 1

)4
(38)

= Φ24(z) · Φ12(z)2 · Φ6(z)3 · Φ3(z)4,

where Φn(z) is the nth cyclotomic polynomial, a monic polynomial with integer coefficients
that can be defined by

Φn(z) =
∏

1≤k≤n
gcd(k,n)=1

(
z − e2πik/n

)
. (39)

Among numerous other properties, the cyclotomic polynomials satisfy

Φp(z) =

p−1∑
j=0

zj, Φ2p(z) =

p−1∑
j=0

(−z)j (p ≥ 3 prime), (40)

and if p is an arbitrary prime with p - r, then

Φrpm(z) = Φrp

(
zp

m−1)
. (41)

We are now ready to state the first result of this section.

Proposition 18. For any integer m ≥ 1 we have

P2m+1−2(z)− P2m−2(z) =
m−1∏
j=0

Φ3·2j(z)m−j, (42)

P2m+1−1(z)− P2m−1(z) = z
m−1∏
j=0

Φ3·2j(z)m−j. (43)

Clearly, (38) is the case m = 4 of (42). Proposition 18, in turn, is a special case of a
more general class of identities. In order to simplify notation we set, for integers ν ≥ 0 and
m ≥ 1,

a(ν,m) := (3 · 2ν + 1) · 2m−1 − 2, b(ν,m) := (3 · 2ν − 1) · 2m−1 − 2. (44)

Proposition 19. For any pair of integers ν ≥ 0 and m ≥ 1 we have

Pa(ν,m)(z)− Pb(ν,m)(z) =
(
Pa(ν,1)

(
z2

m−1)− Pb(ν,1)(z2m−1))m−2∏
j=0

Φ3·2j(z)m−1−j, (45)

and
Pa(ν,m)+1(z)− Pb(ν,m)+1(z) = z

(
Pa(ν,m)(z)− Pb(ν,m)(z)

)
. (46)
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Proof. We fix an integer ν ≥ 0 and proceed by induction on m. When m = 1, the two
sides of (45) are identical since the empty product is 1 by convention. For the induction
hypothesis, suppose that (45) holds for a certain m. From the definitions in (44) we obtain

a(ν,m+ 1) = 2
(
a(ν,m) + 1

)
, b(ν,m+ 1) = 2

(
b(ν,m) + 1

)
. (47)

We recall (11), namely
P2n(z) = (1 + z) · Pn−1(z2) + Pn(z2),

and set n = a(ν,m) + 1 and n = b(ν,m) + 1, respectively. Using (47) and subtracting the
two identities thus obtained, we get

Pa(ν,m+1)(z)− Pb(ν,m+1)(z) = (1 + z)
(
Pa(ν,m)(z

2)− Pb(ν,m)(z
2)
)

(48)

+ Pa(ν,m)+1(z
2)− Pb(ν,m)+1(z

2).

With (10) we obtain

Pa(ν,m)+1(z
2)− Pb(ν,m)+1(z

2) = z2
(
Pa(ν,m)(z

2)− Pb(ν,m)(z
2)
)

(49)

+ s(a(ν,m) + 2)− s(b(ν,m) + 2).

Since
a(ν,m) + 2 = (3 · 2ν + 1) · 2m−1, b(ν,m) + 2 = (3 · 2ν − 1) · 2m−1,

with (1) and (7) we see that the two Stern numbers at the right of (49) are the same. Hence
(49) and (48) give

Pa(ν,m+1)(z)− Pb(ν,m+1)(z) =
(
1 + z + z2

) (
Pa(ν,m)(z

2)− Pb(ν,m)(z
2)
)
. (50)

Now, using (45) as induction hypothesis, we see that one factor on the right of (50) will be

Pa(ν,1)
(
z2

m)− Pb(ν,1)(z2m),
and the remaining factors are(

1 + z + z2
)
·
m−2∏
j=0

Φ3·2j(z
2)m−1−j. (51)

By (41) with r = 3 and p = 2 we have

Φ3·2j(z
2) = Φ3·2

(
(z2)2

j−1)
= Φ3·2

(
z2

j)
= Φ3·2j+1(z),

and since 1 + z + z2 = Φ3(z), the product (51) becomes

Φ3(z) ·
m−2∏
j=0

Φ3·2j+1(z)m−1−j =
m−1∏
j=0

Φ3·2j(z)m−j.

Thus we have shown that (45) holds for m + 1 in place of m, which completes the proof of
(45) by induction.

Finally, (46) is just (49) with z in place of z2, if we recall that the Stern numbers on the
right cancel each other. This completes the proof of Proposition 19.
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To make (45) more explicit for small values of ν, we set

fν(z) := Pa(ν,1)(z)− Pb(ν,1)(z), ν ≥ 0, (52)

and display the first three of these polynomials in Table 4. The case ν = 0 leads to Propo-
sition 18.

ν fν(z)
0 z2 + z + 1
1 z5 + z4 + z3 + z + 1
2 z11 + z10 + z9 + z7 + z6 − z4 + z3 + 2z2 + z − 1

Table 4: fν(z) for ν = 0, 1, 2

Proof of Proposition 18. According to (45) and (52) we need to evaluate

f0
(
z2

m−1)
= Φ3

(
z2

m−1)
.

We claim that

Φ3

(
z2

m−1)
=

m−1∏
j=0

Φ3·2j(z), m ≥ 1. (53)

This can be shown either by an easy induction based on the factorization z4 + z2 + 1 =
(z2 + z + 1)(z2 − z + 1), or we can write (53) explicitly as

z2
m

+ z2
m−1

+ 1 =
(
z2 + z + 1

)(
z2 − z + 1

)(
z4 − z2 + 1

)
· · ·
(
z2

m−1

+ z2
m−2

+ 1
)

and verify it by “telescoping” the right-hand side.
The identity (42) now immediately follows from multiplying the product on the right of

(45) with that on the right of (53). Finally, the identity (43) is an immediate consequence
of (46) and (42).

5.2 A resultant identity

The resultant of two polynomials is an important expression, with numerous applications in
algebra and number theory. Given two polynomials

f(x) = anx
n + an−1x

n−1 + · · ·+ a0, g(x) = bmx
m + bm−1x

m−1 + · · ·+ b0 (54)

(an 6= 0, bm 6= 0), the resultant of f and g can be defined by

Res(f, g) = amn b
n
m

n∏
i=1

m∏
j=1

(
αi − βj

)
,
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where α1, . . . , αn and β1, . . . , βm are the zeros of f and g, respectively. An equivalent defini-
tion is by way of the Sylvester determinant, the determinant of a certain (m+ n)× (m+ n)
matrix which has the coefficients of f and g as entries. The resultant Res(f, g) is therefore
a rational integer if f and g have integer coefficients.

We can now state and prove the following result.

Proposition 20. For any integer n ≥ 0 we have

Res
(
Pn(x), Pn+1(x)

)
= s(n+ 2)n. (55)

Proof. From among the numerous known properties of the resultant, we require just two.
First if a is a constant and g is a monic polynomial, then

Res(a, g) = Res(g, a) = adeg g. (56)

Second, if f and g are polynomials as given in (53), and if

f(x) = q(x) · g(x) + r(x), (57)

with polynomials q, r, and with ν := deg r, then

Res(g, f) = bn−νm Res(g, r). (58)

A proof of this property can be found, for instance, in [18, p. 58]. We apply this to (10),
namely Pn+1(x) = xPn(x) + s(n+ 2); so by (57) and (58), followed by (56), we get

Res
(
Pn(x), Pn+1

)
= Res

(
Pn(x), s(n+ 2)

)
= s(n+ 2)n,

where we have used the fact that Pn(x) is a monic polynomial of degree n.

We were unable to identify or prove general identities between other pairs of polynomials
Pn(x), or identities for the discriminant of Pn(x).

5.3 Factors of Pn(z)

We close this section with some remarks and observations on possible cyclotomic factors of
the polynomials Pn(z) themselves. Computations show that P62(z) is divisible by Φ7(z) and
P1022(z) is divisible by Φ11(z). Noticing the close relationship between the corresponding
subscripts, we were able to find a third factor; see Table 5.

To analyze this situation, we let m = p−1, where p is an odd prime. Then Φp(z) dividing
Pn(z) is equivalent to Pn(z) ≡ 0 (mod zp − 1), where n = 2p−1 − 2. In other words, if we
reduce all exponents of z in Pn(z) modulo p, then we should get a multiple of Φp(z). In the
case p = 7, n = 62, the reduced polynomial is then

P62(z) ≡
7∑
j=1

(
s(j) + s(7 + j) + · · ·+ s(56 + j)

)
z7−j (mod zp − 1) (59)

= 52z6 + 52z5 + · · ·+ 52z + 52,
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m n = 2m − 2 Factor of Pn(z)

6 62 Φ7(z) = (z7 − 1)/(z − 1)

10 1022 Φ11(z) = (z11 − 1)/(z − 1)

12 4094 Φ13(z) = (z13 − 1)/(z − 1)

Table 5: All known factors of Pn(z)

which is indeed a multiple of Φ7(z). This approach works because all seven sums of Stern
numbers in arithmetic progressions in the first row of (59) are identical. It is not difficult to
generalize this to arbitrary odd primes p.

Proposition 21. For an odd prime p, let n = 2p−1 − 2. Then Φp(z) divides Pn(z) if and
only if the p identities

q(p)−1∑
k=0

s(kp+ j) =
3p−1 − 1

2p
, j = 1, 2, . . . , p, (60)

all hold, where q(p) := (2p−1 − 1)/p is the base-2 Fermat quotient.

Before we prove this proposition, we note that by Fermat’s little theorem both the Fermat
quotient q(p) and the right-hand side of (60) are integers. This last quotient is in fact 1/2 the
base-3 Fermat quotient. When p = 7, we have q(7) = 9 and (3p−1 − 1)/2p = 52, consistent
with (59).

It is rather surprising that the very strong condition (60) holds for the primes p = 7, 11,
and 13. For p = 5, on the other hand, the five sums are 8, 6, 8, 8, and 10. Hence (60) fails
for j = 2 and j = 5 and accordingly, P14(z) is not divisible by Φ5(z).

We have used (60) as a criterion to exclude the cases p = 17, 19, 23, and 29. Obviously
it suffices to find just one j for which (60) fails.

Proof of Proposition 21 (Sketch). By reducing the exponents of z modulo p in the polyno-
mial Pn(z), we see that each sum on the left of (60) is a coefficient of zp−j, 1 ≤ j ≤ p. There
are a total of n + 1 = 2p−1 − 1 coefficients, broken into p sums, each with (n + 1)/p = q(p)
summands. By (12), the sum of all coefficients of Pn(z) is

P2p−1−2(1) =
1

2

(
3p−1 + 1

)
− 1.

So for all the sums in (60) to be equal, the right-hand side has to be (3p−1 − 1)/2p, as
claimed.

6 The polynomials Pn(z) modulo 2

In this section we consider the polynomials P n(z) that are formed from Pn(z) by taking the
smallest nonnegative residues modulo 2 of their coefficients. Strictly speaking, this does not

18



rely on the deeper properties of the Stern sequence since we have the well-known congruence

s(k) ≡

{
0 (mod 2), if 3 | k;

1 (mod 2), if 3 - k.
(61)

This can be obtained by an easy induction, using (1).

6.1 Divisibility and irreducibility

In spite of the easy coefficient sequence, the polynomials P n(z) have some interesting proper-
ties, and they behave very differently according as 3 | n or 3 - n. This difference is illustrated
in Table 6.

n P n(z) factored

9 z9 + z8 + z6 + z5 + z3 + z2 + 1

10 Φ12(z) · Φ6(z) · Φ4(z) · Φ2(z)2

11 Φ12(z) · Φ6(z) · Φ4(z) · Φ2(z)2 · z

Table 6: P n(z) for n = 9, 10, 11

We begin with the two cases that are quite straightforward.

Proposition 22. For k ≥ 2 we have

P 3k+1(z) = (z + 1)2
∏

d|3k+3
d>3

Φd(z), P 3k+2(z) = z(z + 1)2
∏

d|3k+3
d>3

Φd(z). (62)

Proof. By (3) and (61) we have

P 3k+1(z) = (z + 1)(z3k + z3(k−1) + · · · z3 + 1)

= (z + 1) · z
3k+3 − 1

z3 − 1
.

Now we use the well-known fact that

z3k+3 − 1 =
∏

d|3k+3

Φd(z). (63)

Dividing both sides by z3 − 1 = Φ1(z)Φ3(z) removes the cases d = 1, 3 from (63), and we
also take out the factor Φ2(z) = z + 1 and obtain the first identity in (62). The case 3k + 2
is completely analogous. Alternatively, we could also use (9).

In contrast to Proposition 22, when 3 | n we have the following result.
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Proposition 23. For any k ≥ 1, the polynomial P 3k(z) is irreducible over Q.

We will prove this by applying a recent theorem of Sawin, Shusterman, and Stoll [21].
To set the stage, we recall that the reciprocal of a polynomial h(z) is defined by h∗(z) =
zdeg hh(1/z). Then a polynomial h is called reciprocal if h(z) = ±h∗(z). Furthermore, if
h ∈ R[z] is given by h(z) = anz

n + · · ·+ a1z + a0, we define the norm ‖h‖ as the `2-norm of
its coefficient sequence, namely

‖h‖ =
(
a2n + · · ·+ a21 + a20

)1/2
.

Finally, we require the rather technical condition of a robust pair of polynomials (f(z), g(z))∈
Z[z]2 with f(0)g(0) 6= 0. Such a pair is called robust if for every factorization

f0(z)g0(z) = f(z)g(z),

one of several conditions is satisfied; see [12, 21]. In what follows, we need only one of these
conditions, namely

‖f0‖2 + ‖g0‖2 > ‖f‖2 + ‖g‖2. (64)

We can now state the relevant result from [21], as quoted in [12].

Theorem 24 (Sawin, Shusterman, and Stoll). Let f(z), g(z) be polynomials with integer
coefficients such that f(0)g(0) 6= 0, and suppose that (f ∗, g) is a robust pair, f ∗(z) 6= ±g(z)
and gcdZ[z](f, g) = 1. If

n > (1 + deg f + deg g) · 2‖f‖2+‖g‖2 − deg f,

then the non-reciprocal part of f(z)zn + g(z) is irreducible over Z[z].

This theorem is just one of a class of similar irreducibility results, going back to Schinzel
in the 1960s; see [12, 21] for further remarks and references.

Proof of Proposition 23. If 3 | n, then by (3) and (61) we have

P n(z) = zn + zn−1 + zn−3 + · · ·+ z3 + z2 + 1,

and it is easy to verify that(
z3 − 1

)
P n(z) = (z + 1)zn+2 −

(
z2 + 1

)
. (65)

Therefore the reciprocal part of the quadrinomial on the right of (65) is z3 − 1, while the
non-reciprocal part is P n(z).

We now apply Theorem 24 with f(z) = z + 1 and g(z) = −z2 − 1. Then f ∗(z) = f(z),
f(0)g(0) 6= 0, f ∗(z) 6= ±g(z), and gcdZ[z](f, g) = 1. Furthermore, ‖f‖2 = ‖g‖2 = 2, and the
only other essential factorization of f(z)g(z) is

f0(z)g0(z) = 1 ·
(
− z3 − z2 − z − 1

)
,
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and we have
‖f0‖2 + ‖g0‖2 = 1 + 4 > 2 + 2 = ‖f‖2 + ‖g‖2.

Hence by Theorem 24 the non-reciprocal part of the polynomial in (65), namely P n(z), is
irreducible whenever

n+ 2 > (1 + 1 + 2) · 22+2 − 1 = 4 · 24 − 1 = 63,

which proves our proposition for n ≥ 63 since in our case we have 3 | n. For smaller n we
used computer algebra to show that P n(z) is irreducible.

6.2 Zero distribution

When n ≡ 1, 2 (mod 3), by (62) and the definition (39) of cyclotomic polynomials, the zeros
of P n(z) are completely determined. The case 3|n is more challenging. We begin with a
first rough estimate of the moduli of all the zeros, which will be required to obtain sharper
results.

Lemma 25. For all k ≥ 1, the zeros of P 3k(z) lie in the annulus 1/2 ≤ |z| ≤ 2.

Proof. The upper bound follows immediately from Cauchy’s Theorem 7 since all coefficients
are 0 or 1. The lower bound follows similarly by considering the reciprocal z3kP 3k(1/z).

For the next results it is convenient to consider the polynomial on the right of (65), and
we set

fn(z) := (z + 1)zn+2 − (z2 + 1). (66)

Although only the case 3|n is relevant with regards to P n(z), we may as well consider the
polynomials fn(z) for all integers n. The conclusion of Lemma 25 also holds for all these
polynomials.

Proposition 26. For all n ≥ 1, the zeros of fn(z) satisfy

1− log(n+ 2)

n+ 2
< |z| < 1 +

log(n+ 2)

n+ 2
, (67)

where for odd n the upper bound holds only for n ≥ 17.

Proof. (1) When r := |z| < 1, then by (66) we get

|fn(z)| ≥
∣∣z2 + 1

∣∣− |z + 1| · rn+2. (68)

Using the triangle inequality again, we get |z2 + 1| ≥ 1− r2 and |z + 1| ≤ 1 + r. If we make
the assumption that r ≤ 1− log(n+ 2)/(n+ 2), then (68) gives

|fn(z)| ≥ 1−

(
1− 2

log(n+ 2)

n+ 2
+

(
log(n+ 2)

n+ 2

)2
)

−
(

2 +
log(n+ 2)

n+ 2

)(
1− log(n+ 2)

n+ 2

)n+2

.
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The power in the last term is less than exp(− log(n+ 2)) = 1/(n+ 2), and thus

|fn(z)| > 2
log(n+ 2)

n+ 2
−
(

log(n+ 2)

n+ 2

)2

− 2

n+ 2
− log(n+ 2)

(n+ 2)2

=
log(n+ 2)− 2

n+ 2
+

log(n+ 2)

n+ 2

(
1− log(n+ 2)

n+ 2
− 1

n+ 2

)
.

Now log(n + 2) − 2 > 0 for n ≥ 6, and it is easy to verify that the expression in large
parentheses on the right is positive for all n ≥ 1. Hence |fn(z)| > 0 whenever r ≤ 1− log(n+
2)/(n + 2), which proves the lower bound in (67) for n ≥ 6. The cases 1 ≤ n ≤ 5 can be
verified by computations.

(2) When r = |z| > 1, then from (66) we get

|fn(z)| ≥ |z + 1| · rn+2 −
∣∣z2 + 1

∣∣ . (69)

We also have |z + 1| ≥ r − 1 and |z2 + 1| ≤ r2 + 1 ≤ 5 since by Lemma 25 we may restrict
our attention to r ≤ 2. Now, if r ≥ 1 + log(n+ 2)/(n+ 2), then by (69) we get

|fn(z)| ≥ log(n+ 2)

n+ 2
·
(

1 +
log(n+ 2)

n+ 2

)n+2

− 5. (70)

It can be shown by analytical methods, complemented by some computations for smaller
cases, that the sequence

cn :=
1

n+ 2
·
(

1 +
log(n+ 2)

n+ 2

)n+2

is increasing for n ≥ 7. Furthermore, for n ≥ 200 we have cn ≥ c200 > 0.9337. So, if we
assume that r ≥ 1 + log(n+ 2)/(n+ 2), then by (70) we have

|fn(z)| ≥ log(n+ 2) · 0.9337− 5 > 0

when n ≥ 210. The cases 1 ≤ n ≤ 209 can again be checked by direct computation.

Remark 27. With additional effort, Proposition 26 can be improved as follows:

(a) When 0 ≤ | arg z| ≤ 2π/3, then the upper bound in (67) can be decreased to 1, with
equality only for z = 1 and for z = e±2πi/3 when 3|n.

(b) When 2π/3 ≤ | arg z| ≤ π, then the lower bound in (67) can be increased to 1.

We conclude this section with a result on real zeros.

Proposition 28. For any n ≥ 0, the polynomial fn(z) has

(a) exactly one positive real zero, z1 = 1;
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(b) exactly one negative real zero −1 − logn+1
n+1

< z2 < −1 when n is odd, where the left
inequality holds for n ≥ 17;

(c) no negative real zeros when n is even.

As a consequence, when k is odd, P 3k(z) has exactly the one real zero given by (b) with
n = 3k, and when k is even, it has no real zeros.

Proof. (a) z1 = 1 is obviously a zero. But since the sequence of coefficients of fn(z) =
zn+3 + zn+2− z2− 1 has exactly one sign change, by Descartes’s Rule of Signs (see, e.g., [13,
pp. 439–443]) there can be only this one positive zero.

(b) For odd n, fn(z) is positive for sufficiently large negative z, while fn(−1) = −1.
Hence there is a zero z2 < −1, and by (67) it must lie to the right of −1− log(n+1)/(n+1),
for n ≥ 17. Since fn(−z) = zn+3−zn+2−z2−1, there is just one sign change in the coefficient
sequence of fn(−z), and again by Descartes’s Rule of Signs there can be no further negative
real zeros.

(c) When n is even, we consider the derivative

f ′n(z) = z ·
(
(n+ 3)zn+1 + (n+ 2)zn − 2

)
, (71)

and we set gn(z) := (n + 3)zn+1 + (n + 2)zn. It is easy to see that, at least for negative z,
this polynomial has a unique maximum z0 := −n(n+ 2)/((n+ 1)(n+ 3)), and

gn(z0) = zn0

(
−n(n+ 2)

n+ 1
+ n+ 2

)
= zn0 ·

n+ 2

n+ 1
.

It is easy to verify that

n(n+ 2)

(n+ 1)(n+ 3)
· n+ 2

n+ 1
< 1 for all n ≥ 0,

and so we have gn(z0) < 1 and thus gn(z0)− 2 < 0 for all even n. Therefore by (71) we have
f ′n(z) > 0 for all z < 0. Since fn(0) = −1, this means that fn(z) < 0 for all z ≤ 0, which
implies part (c).

Finally, the last statement of the proposition follows from (65) and the fact that P 3k(z)
cannot have positive zeros since it has only nonnegative coefficients.

7 Overpartitions and colored partitions

In this final section we consider the polynomials Pn(z), as defined in (3), in the framework
of binary and b-ary partitions [4, 8], where b ≥ 2 is an integer base, and more generally in
connection with overpartitions and colored partitions.
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7.1 Binary and b-ary overpartitions

Rødseth and Sellers [20] introduced and studied b-ary overpartitions, in analogy to ordinary
overpartitions that had been introduced a little earlier by Corteel and Lovejoy [3].

A b-ary overpartition of an integer n ≥ 1 is a non-increasing sequence of nonnegative
integer powers of b whose sum is n, and where the first occurrence of a power b may be
overlined. We denote the number of b-ary overpartitions by Sb(n), which differs from the
notation in [20].

Example 29. [20, p. 346]. The binary overpartitions of n = 4 are
4, 4, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.
Thus S2(4) = 10.

As seen in this example, the overlined parts form a b-ary partition into distinct parts,
while the non-overlined parts form an ordinary b-ary partition.

The concept of a b-ary overpartition can be restricted in different ways, one of which is
to restrict by an integer λ the number of times a non-overlined power of b may occur. Then
the generating function is

∞∑
n=0

S
λ

b (n)qn =
∞∏
j=0

(
1 + qb

j
)(

1 + qb
j

+ q2·b
j

+ · · ·+ qλ·b
j
)
, (72)

where S
λ

b (n) is the number of b-ary overpartitions of n in which each non-overlined power of
b may occur at most λ times.

Example 30. Let b = λ = 2. Then (72) becomes

1 + 2q + 4q2 + 5q3 + 8q4 + 10q5 + 13q6 + 14q7 + 18q8 + 21q9 + 26q10 + · · · (73)

Thus, in particular, S
2

2(4) = 8, which is consistent with Example 29, where all but the last

two binary overpartitions are counted by S
2

2(4).

In the recent paper [9] we defined the concept of restricted multicolor b-ary partitions as
a generalization of restricted b-ary overpartitions, and further defined polynomial analogues
of the relevant partition functions. These polynomials then allowed us to not just count the
partitions in question, but to characterize them.

In the special case of restricted b-ary overpartitions with λ = 2, these polynomials spe-
cialize as follows. Let Z = (x, y, z) be a triple of variables, and T = (r, s, t) a triple of
positive integers. Then, in the notation of [9, Def. 2.4], we define

∞∑
n=0

Ω
(1,2)
b,T (n;Z)qn =

∞∏
j=0

(
1 + xr

j

qb
j
)(

1 + ys
j

qb
j

+ zt
j

q2·b
j
)
. (74)
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Comparing this with (72), we immediately get, for any base b ≥ 2,

S
2

b(n) = Ω
(1,2)
b,T (n; 1, 1, 1), n = 0, 1, 2, . . . , (75)

where the triple T is arbitrary. The following result establishes a connection to the polyno-
mials Pn(x) defined in (3), and gives a combinatorial interpretation.

Proposition 31. For any n ≥ 0 we have

Pn(x) = Ω
(1,2)
2,T (n;x, 1, 1), (76)

where T = (2, s, t), with s and t arbitrary. Furthermore,

(a) Pn(1) is the number of restricted binary overpartitions of n, with λ = 2.

(b) The coefficient of xj in Pn(x) is the number of overlined parts that sum to j.

Proof. With b = r = 2 and y = z = 1, the right-hand side of (74) becomes

∞∏
j=0

(
1 + x2

j

q2
j
) ∞∏
j=0

(
1 + q2

j

+ q2
j+1
)
.

By the uniqueness of the binary expansion, the first product gives

∞∏
j=0

(
1 + (xq)2

j
)

=
∞∑
k=0

(xq)k =
1

1− xq
.

The identity (76) now follows from Proposition 5 by equating coefficients of qn.
(a) This follows from combining (76) with (75).
(b) When we remove the overlined parts that sum to j from a binary overpartition of n,

we are left with a restricted binary partition of n − j that can have at most λ = 2 equal
parts. But this is a hyperbinary expansion of n− j, and we know (see, e.g., [19, p. 470]) that
this number is s(n− j + 1). This fact, together with the definition (3), proves part (b).

7.2 Generalizations and colored partitions

By considering (76) in conjunction with (74), it becomes clear that the polynomials Pn(x)
can be generalized in several different directions. We could take different bases b, or different
values of λ, or both. For instance, when b = λ ≥ 2 and r = 2, we get (in a simplified
notation)

∞∑
n=0

P (b)
n (x)qn =

∞∏
j=0

(
1 + x2

j

qb
j
)(

1 + qb
j

+ q2·b
j

+ · · ·+ qb·b
j
)
. (77)

Then the polynomials P
(b)
n (x) are analogues of Pn(x), with the b-generalized Stern numbers

(as defined in [5]; see also [8]) in place of the Stern numbers s(n).
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Another level of generalization would be to consider polynomial analogues of restricted
colored b-ary partitions, as investigated in [9]. As a specific example we mention

∞∑
n=0

P̃n(x)qn =
∞∏
j=0

(
1 + x2

j

q2
j
)(

1 + q2
j
)(

1 + q2
j
)(

1 + q2
j

+ q2
j+1
)
. (78)

In analogy to Proposition 31(b), P̃n(1) is the number of ways n can be written as a sum of
powers of 2, where each part can be in one of four colors, with the added conditions that
each part in the first three colors can occur only once, while a part in the fourth color can
occur at most twice.

The generating function (78) also shows that the coefficients of P̃n(x) can be obtained
by starting with the Stern sequence s(n) and forming the sequence of partial sums twice:

1 1 2 1 3 2 3 1 4 3 . . .
1 2 4 5 8 10 13 14 18 21 . . .
1 3 7 12 20 30 43 57 75 96 . . .

so that

P̃n(x) = xn + 3xn−1 + 7xn−2 + 12xn−3 + 20xn−4 + 30xn−5 + 43xn−6 + · · · ,

where we leave the details to the reader.
Each of the sequences of polynomials P

(b)
n (x), P̃n(x), or others of this type, would lead

to questions and results that are similar in nature to the contents of this paper.
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[15] S. Klavžar, U. Milutinović, and C. Petr, Stern polynomials, Adv. in Appl. Math. 39
(2007), 86–95.

[16] D. H. Lehmer, On Stern’s diatomic series, Amer. Math. Monthly 36 (1929), 59–67.

[17] M. Marden, Geometry of Polynomials , American Mathematical Society, Providence, RI,
1966.

[18] M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory , Cambridge Uni-
versity Press, Cambridge, 1989.

[19] B. Reznick, Some binary partition functions, in B. C. Berndt et al., eds., Analytic
Number Theory: Proceedings of a Conference in Honor of Paul T. Bateman, Birkhäuser,
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