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Abstract

In this paper we consider the hyperplane arrangement in R
n whose hyperplanes are

{xi + xj = 1 | 1 ≤ i < j ≤ n} ∪ {xi = 0, 1 | 1 ≤ i ≤ n}. We call it the boxed threshold

arrangement since we show that the bounded regions of this arrangement are contained
in an n-cube and are in one-to-one correspondence with the labeled threshold graphs
on n vertices. The problem of counting regions of this arrangement was studied earlier
by Song. He determined the characteristic polynomial of this arrangement by relating
its coefficients to the count of certain graphs. Here, we provide bijective arguments to
determine the number of regions. In particular, we construct certain signed partitions
of the set {−n, . . . , n} \ {0} and also construct colored threshold graphs on n vertices
and show that both these objects are in bijection with the regions of the boxed threshold
arrangement. We independently count these objects and provide a closed form formula
for the number of regions.

1 Introduction

A hyperplane arrangement A is a finite collection of affine hyperplanes (i.e., codimension 1
subspaces and their translates) in R

n. Without loss of generality we assume that arrange-
ments we consider are essential, i.e., the subspace spanned by the normal vectors is the
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ambient vector space. Removing all the hyperplanes of A leaves Rn disconnected; counting
the number of connected components using diverse combinatorial methods is an active area
of research. A flat of A is a nonempty intersection of some of the hyperplanes in A; the
ambient vector space is a flat since it is an intersection of no hyperplanes. Flats are naturally
ordered by reverse set inclusion; the resulting poset is called the intersection poset and is
denoted by L(A). A region of A is a connected component of Rn \

⋃

A. The characteristic
polynomial of A is defined as

χA(t) :=
∑

x∈L(A)

µ(0̂, x) tdim(x)

where µ is the Möbius function of the intersection poset and 0̂ corresponds to the flat Rn.
The characteristic polynomial is a fundamental combinatorial and topological invariant of
the arrangement and plays a significant role throughout the theory of hyperplane arrange-
ments. Among other things, the polynomial encodes enumerative information about the
stratification of the space Rn, induced by the arrangement. We refer the reader to Stanley’s
notes [9] for more on the enumerative aspects of hyperplane arrangements. In particular we
have the following seminal result by Zaslavsky.

Theorem 1 ([10]). Let A be an arrangement in R
n. Then the number of regions of A is

given by
r(A) = (−1)nχA(−1)

and the number of bounded regions is given by

b(A) = (−1)nχA(1).

The finite field method, developed by Athanasiadis [1], converts the computation of the
characteristic polynomial to a point counting problem. A combination of these two results
allowed for the computation of the number of regions of several arrangements of interest.

Another way to count the number of regions is to give a bijective proof. This approach
involves finding a combinatorially defined set whose elements are in bijection with the regions
of the given arrangement and are easier to count. For example, the regions of the braid
arrangement (whose hyperplanes are given by the equations xi − xj = 0 for 1 ≤ i < j ≤ n)
correspond to the n! permutations of order n. The regions of the Shi arrangement (whose
hyperplanes are given by the equations xi−xj = 0, 1 for 1 ≤ i < j ≤ n) are in bijection with
the parking functions on [n], hence the number of regions is (n + 1)n−1. Refer to Stanley’s
notes [9, Lecture 5] for details.

In the present article we consider the following hyperplane arrangement

BT n := {Xi +Xj = 1 | 1 ≤ i < j ≤ n} ∪ {Xi = 0, 1 | 1 ≤ i ≤ n}.

The problem of counting regions of this arrangement was recently solved by Song in a series
of papers. His first approach [6, 5] involved relating the coefficients of the characteristic
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polynomial to the generating functions for the number of certain graphs. These generating
functions [5, Theorem 1] have quite a complicated expression and consequently make it
difficult to determine a compact form for the characteristic polynomial. Later Song [7] used
the finite field method to get a slightly simpler expression for the characteristic polynomial.

The main aim of this paper is to provide bijective proofs for the number of regions of this
arrangement. In particular, in Section 3 we construct certain (signed) ordered partitions of
the set {−n,−(n−1), . . . , n−1, n}\{0} and show that they are in bijection with the regions
of BT n. We also show how to count these partitions. In Section 4 we spell out a recipe to
color the vertices of a labeled threshold graph on n vertices such that the number of such
colored threshold graphs is equal to the regions of BT n. However, we begin the article by
establishing a simpler form for the characteristic polynomial in Section 2. There we also
justify the term “boxed threshold”.

2 The characteristic polynomial

We first translate the hyperplanes in BT n in order to obtain a combinatorially isomorphic
arrangement with the same characteristic polynomial. Putting Xi = xi +

1
2
for every i we

get

{xi + xj = 0 | 1 ≤ i < j ≤ n} ∪ {xi = −
1

2
,
1

2
| 1 ≤ i ≤ n}. (1)

We will stick to the notation BT n to denote the above arrangement. The notation [k] is used
to denote the set {1, . . . , k}. We begin by stating a generalization of the finite field method,
given by Athanasiadis [2], in our context.

Theorem 2 ([2, Theorem 2.1]). If A is a sub-arrangement of the type C arrangement in
R

n, that is, a sub-arrangement of {xi ± xj = 0 | 1 ≤ i < j ≤ n} ∪ {xi = 0 | i ∈ [n]}, there
exists an integer k such that for all odd integers q greater than k,

χA(q) = #(Zn
q \ VA)

where VA is the union of hyperplanes in Z
n
q obtained by reducing A mod q.

We use this result to prove the following relationship between the characteristic polyno-
mial of sub-arrangements of the type C arrangement and that of their “boxed” versions.

Proposition 3. Let A be an arrangement in R
n that is a sub-arrangement of the type C

arrangement and let BA = A ∪ {xi = −1
2
, 1
2
| i ∈ [n]}. Then

χBA(t) = χA(t− 2).

Proof. Let q be any large odd number. Set Dn
q := {(a1, . . . , an) ∈ Z

n
q | ai 6= ± q−1

2
}. Define a

bijection f : Zq−2 → Zq \ {
q−1
2
,− q−1

2
} as

f(i) = i for i ∈ [−
q − 3

2
,
q − 3

2
].

It is clear that for any a, b ∈ Zq−2
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1. a+ b = 0 ⇔ f(a) + f(b) = 0,

2. a− b = 0 ⇔ f(a)− f(b) = 0, and

3. a = 0 ⇔ f(a) = 0.

Using f , we can define a bijection F : Zn
q−2 → Dn

q as

F (a1, . . . , an) = (f(a1), . . . , f(an)) for (a1, . . . , an) ∈ Z
n
q−2.

By the properties of f , we can see that F induces a bijection between those tuples in Z
n
q−2

that do not satisfy the defining equation of any hyperplane in A and those tuples in Z
n
q that

do not satisfy the defining equation of any hyperplane in BA. So, we get that for large odd
numbers q,

χBA(q) = χA(q − 2).

Since χBA and χA are polynomials, we get the required result.

Let Tn denote the threshold arrangement in R
n, i.e., Tn := {xi+xj = 0 | 1 ≤ i < j ≤ n}.

The reason this is called the threshold arrangement is that its regions are in bijection with
labeled threshold graphs on n vertices (see Section 4 for details). This is clearly a sub-
arrangement of the type C arrangement.

Corollary 4. The characteristic polynomials of BT n and Tn are related as follows:

χBT n
(t) = χTn(t− 2).

Consequently, the number of bounded regions of BT n is equal to the number of regions
of Tn. Moreover, these bounded regions are contained in the cube (or a box )

[

−1
2
, 1
2

]n
. Next,

we derive a closed form expression for χTn(t) using the finite field method.

Proposition 5. The characteristic polynomial of the threshold arrangement Tn is

χTn(t) =
n
∑

k=1

(S(n, k) + n · S(n− 1, k))
k
∏

i=1

(t− (2i− 1)).

Here S(n, k) are the Stirling numbers of the second kind.

Proof. Using Theorem 2, we see that the characteristic polynomial of Tn satisfies, for large
odd values of q,

χTn(q) = |{(a1, . . . , an) ∈ Z
n
q | ai + aj 6= 0 for all 1 ≤ i < j ≤ n}|.

This means that we need to count the functions f : [n] → Zq such that

1. |f−1(0)| ≤ 1.
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2. f can take at most one value from each of the sets

{1,−1}, {2,−2}, . . . , {
q − 1

2
,−

q − 1

2
}.

We split the count into the two cases. If 0 is not attained by f , then all values must be
from

{1,−1} ∪ {2,−2} ∪ · · · ∪ {
q − 1

2
,−

q − 1

2
}.

with at most one value attained in each set. So, there are
( q−1

2

k

)

· 2k · k! · S(n, k)

ways for f to attain values from exactly k of these sets. This is because we have
( q−1

2
k

)

· 2k

ways to choose the k sets and which element of each set f should attain and k!S(n, k) ways
to choose the images of the elements of [n] after making this choice. So the total number of
f such that 0 is not attained is

n
∑

k=1

( q−1
2

k

)

· 2k · k! · S(n, k).

When 0 is attained, there are n ways to choose which element of [n] gets mapped to 0
and using a similar logic for choosing the images of the other elements, we get that the total
number of f where 0 is attained is

n ·
n−1
∑

k=1

( q−1
2

k

)

· 2k · k! · S(n− 1, k).

So we get that for large q,

χTn(q) =
n
∑

k=1

( q−1
2

k

)

· 2k · k! · S(n, k) + n ·

n−1
∑

k=1

( q−1
2

k

)

· 2k · k! · S(n− 1, k)

=
n
∑

k=1

(S(n, k) + n · S(n− 1, k))
k
∏

i=1

(q − (2i− 1)).

Since χTn is a polynomial, we get the required result.

Remark 6. Note that the absolute value of the coefficient of tj in (t−1)(t−3) · · · (t−(2k−1))
counts the number of signed permutations on [k] with j odd cycles (see A039757 in the OEIS
[4]). Let us denote that number by a(k, j). Using this we get a compact expression for the
coefficient of tj in χTn(t) as

n
∑

k=j

(S(n, k) + n · S(n− 1, k))a(k, j).
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Corollary 7. The coefficient of tj in χBT n
(t) is

n
∑

k=j

(S(n, k) + n · S(n− 1, k))b(k, j).

where b(k, j) is the coefficient of tj in (t− 3)(t− 5) · · · (t− (2k + 1)).

Proof. Using Corollary 4 we get

χBT n
(t) =

n
∑

k=1

(S(n, k) + n · S(n− 1, k))
k
∏

i=1

(t− (2i+ 1)).

Expanding the product gives us the required expression. Note that b(k, j) = −
j
∑

i=0

a(k+1, i)

where a(k, j) is defined in Remark 6.

Remark 8. We can also derive an expression for the exponential generating function for the
characteristic polynomial. Using Problem 25(c) in Stanley’s notes [9, Lecture 5] we get

∑

n≥0

χBT n
(t)

xn

n!
= (1 + x)(2ex − 1)

(t−3)
2 .

The generating function for the number of regions is

∑

n≥0

r(BT n)
xn

n!
=

e2x(1− x)

(2− ex)2
.

For the sake of completeness we enumerate the coefficients of the characteristic polynomial
for smaller values of n (see Table 1). Song [5] also computed the characteristic polynomial
for n ≤ 10, however there are typos in all the expressions for n ≥ 4, consequently the region
numbers are wrong. The sequence of number of regions of BT n can be found at the entry
A341769 in the OEIS [4].

3 The signed ordered partitions

In this section we prove a bijection between regions of BT n, and certain ordered partitions
of [−n, n]\{0}∪{−1

2
, 1
2
} (the notation [−n, n] is used for the set {−n,−n+1, . . . , n−1, n}).

We will denote −xi by x−i for all i ∈ [n]. Let R be a region of BT n. We write

1. i ≺R −j if xi + xj < 0 in R where i 6= j in [n].

2. i ≻R −j if xi + xj > 0 in R where i 6= j in [n].
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n χBT n
(t) r(BT n)

2 t2 − 5t+ 6 12

3 t3 − 9t2 + 27t− 27 64

4 t4 − 14t3 + 75t2 − 181t+ 165 436

5 t5 − 20t4 + 165t3 − 695t2 + 1480t− 1263 3624

6 t6 − 27t5 + 315t4 − 2010t3 + 7320t2 − 14284t+ 11559 35516

7 t7 − 35t6 + 546t5 − 4865t4 + 26460t3 − 87010t2 + 158753t−
122874

400544

8 t8−44t7+882t6−10402t5+78155t4−379666t3+1154965t2−
1995487t+ 1486578

5106180

9 t9 − 54t8 + 1350t7 − 20286t6 + 200025t5 − 1331022t4 +
5932143t3 − 16952157t2 + 27979203t− 20158695

72574936

10 t10 − 65t9 + 1980t8 − 36840t7 + 459585t6 − 3986031t5 +
24172575t4 − 100548090t3 + 272771475t2 − 432836011t +
302751327

1137563980

Table 1: Characteristic polynomial and the number of regions of BT n for n ≤ 10.

3. i ≻R
1
2
if xi >

1
2
in R where i ∈ [−n, n] \ {0}.

4. Similarly define i ≺R
1
2
, i ≻R −1

2
and i ≺R −1

2
for any i ∈ [−n, n] \ {0}.

So ≺R is a relation on [−n, n] \ {0} ∪ {−1
2
, 1
2
} where comparable elements are

1. Elements of [−n, n] \ {0} of different signs and different absolute values.

2. Elements of [−n, n] \ {0} and ±1
2
.

Remark 9. The reader can consider the relation i ≺R −j as
+

i appearing before
−

j in a signed
permutation on [n] and similarly for other such relations. The equivalence defined in the
following lemma corresponds to choosing a signed permutation representative for each region.
This is similar to the way Spiro [8] associated ‘threshold pairs in standard form’ to labeled
threshold graphs.

Lemma 10. Let ∼ be the relation defined on the set N = [−n, n] \ {0} as
a ∼ b if the following hold:

1. a and b are of the same sign, and

2. there does not exist any c ∈ N ∪ {−1
2
, 1
2
} such that a ≺R c ≺R b or b ≺R c ≺R a.

Then, ∼ is an equivalence relation on N .
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Proof. It is clear that a ∼ a for any a ∈ N and that a ∼ b implies that b ∼ a for any
a, b ∈ N . Let a ∼ b and b ∼ c for some distinct a, b, c ∈ N . So a, b, c are of the same sign. By
definition of ≺R and ∼, the only possible d ∈ N ∪ {−1

2
, 1
2
} such that a ≺R d ≺R c is −b. We

must show that this is not possible (a similar argument works if c ≺R −b ≺R a). Suppose
a ≺R −b ≺R c. We then have −c ≺R b ≺R −a. If a ≺R −c, we will have a ≺R −c ≺R b,
which contradicts a ∼ b. So we must have −c ≺R a. But this gives −a ≺R c and hence
b ≺R −a ≺R c, which is a contradiction to b ∼ c. Hence ∼ is an equivalence on N .

Definition 11. The equivalence classes of ∼ defined in Lemma 10 will be called boxed
threshold blocks (corresponding to the region R). Positive blocks refer to those blocks that
contain positive numbers and similarly we define negative blocks.

Remark 12. Since all the elements of a boxed threshold block are of the same sign, we
sometimes consider a block as a subset of [n] with a sign (+ or −) assigned to it.

The proof of the following lemma follows from the definition of the equivalence.

Lemma 13. If B is a boxed threshold block then so is −B = {−b : b ∈ B}.

Proposition 14. Define an order < on the set of boxed threshold blocks along with ±1
2
as

follows:

1. B < B′ where B,B′ are boxed threshold blocks if there exists a sequence c0, c1, . . . , ck
of elements in N ∪ {−1

2
, 1
2
} such that c0 ≺R c1 ≺R · · · ≺R ck, c0 ∈ B and ck ∈ B′.

2. −1
2
< 1

2
.

3. B < 1
2
if b ≺R

1
2
for some b ∈ B. Similarly define other relations between blocks and

±1
2
.

This is a total order in all cases except when there is a unique i ∈ [n] such that −1
2
≺R i ≺R

1
2
.

Proof. The transitivity of this order is straightforward. If we show that B < B is not possible
for any block, the order is well-defined. Suppose c0 ≺R c1 ≺R · · · ≺R ck where c0, ck ∈ B.
If c1 6= −ck we get a contradiction to c0 ∼ ck and similarly if ck−1 6= −c1. So we must
have c1 = −ck and ck−1 = −c1. But then we get c1 ≺R −ck and −c1 ≺R ck, which is a
contradiction.

We will now show that this order is a total order in all cases except when there is unique
i ∈ [n] such that −1

2
≺R i ≺R

1
2
. The relationship of any block with ±1

2
is always defined.

So we only have to check that any two blocks are comparable. Let B,B′ be boxed threshold
blocks. If B,B′ are distinct blocks of the same sign, they are comparable by definition of
the equivalence relation. If they are of opposite sign and not of the form {i}, {−i} for some
i ∈ [n], they are comparable since there is some a ∈ B and b ∈ B′ of opposite signs such
that |a| 6= |b|. So we have to deal with the case B = {i} and B′ = {−i} for some i ∈ [n]. If
i ≻R

1
2
or i ≺R −1

2
, {−i} and {i} are comparable.
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Suppose −1
2
≺R i ≺R

1
2
and {i} and {−i} are blocks and they are not comparable. We

have already seen that all the positive blocks are comparable and so are all the negative
blocks. Let the order on the positive blocks be B1 < B2 < · · · < Bk and hence the order on
the negative blocks is −Bk < · · · < −B2 < −B1.

Suppose B1 = {i}. Since i is not the only number satisfying −1
2
≺R i ≺R

1
2
, we have

b ≺R
1
2
for all b ∈ B2. Taking some b ∈ B2, since i /∈ B2, there is some k ∈ [n] such

that i ≺R −k ≺R b. Since {−i} is a block, and k 6= i, there is some l ∈ [n] such that
−i ≺R l ≺R −k (we cannot have −k ≺R l ≺R −i since this would mean {i} and {−i}
are comparable). But this gives k ≺R −l ≺R i, which contradicts the fact that there is no
positive block less than {i}. We get a similar contradiction if Bk = {i}.

Suppose Bm = {i} for some m ∈ [2, k − 1]. Take some bp ∈ Bm−1 and bs ∈ Bm+1. There
are three possibilities:

1. There are kp, ks ∈ [n] such that

bp ≺R −kp ≺R i ≺R −ks ≺R bs.

Since kp, ks 6= i, and {−i} is a block, there are cp, cs ∈ [n] such that

−kp ≺R cp ≺R −i

−i ≺R cs ≺R −ks

where the other possibilities are not possible since {i} and {−i} are not comparable.
So we get

bp ≺R −kp ≺R cp ≺R −i ≺R cs ≺R −ks ≺R bs.

But this means that cp and cs are in blocks between Bm−1 and Bm+1 and hence in {i},
which is a contradiction.

2. There is no ks ∈ [n] such that i ≺R −ks < bs. So we must have i ≺R
1
2
≺R bs,

−1
2
≺R bp ≺R

1
2
and kp ∈ [n] such that

bp ≺R −kp ≺R i ≺R

1

2
≺R bs.

This is because i satisfies −1
2
≺R i ≺R

1
2
and is not the only such number. Since kp 6= i,

and {−i} is a block, there is some cp ∈ [n] such that

−kp ≺R cp ≺R −i

where the other possibility is not possible since {i} and {−i} are not comparable. So
we get

−
1

2
≺R bp ≺R −kp ≺R cp ≺R −i

9



which, along with previous observations, gives

i ≺R −cp ≺R kp ≺R

1

2
≺R bs.

But this means kp is in a positive block after {i} but before Bm+1, which is a contra-
diction.

3. The case when there is no kp ∈ [n] such that bp ≺R −kp ≺R i is handled similarly.

In the case when there is unique i ∈ [n] such that −1
2
≺R i ≺R

1
2
, the only order that is

not defined is between the blocks {i} and {−i} and the order is of the form

− Bk < · · · < −B2 < −
1

2
< {i}, {−i} <

1

2
< B2 < · · · < Bk (2)

where B2, . . . , Bk are blocks (not necessarily positive). This can be proved using similar
arguments as before.

If there is a unique i ∈ [n] such that −1
2
≺R i ≺R

1
2
and the blocks are ordered as in (2),

we make the convention that {−i} < {i} if B2 is a positive block and {i} < {−i} if B2 is a
negative block. Once this convention is made, we get a total order on the boxed threshold
blocks, 1

2
and −1

2
in all cases. The proof of the following lemma follows from the definition

of the order.

Lemma 15. For any blocks B,B′, B < B′ implies that −B′ < −B. Similarly, other usual
properties of taking the negative hold; such as B < 1

2
implies that −1

2
< −B.

Proposition 16. The total order associated to a region (defined in Proposition 14) is always
of one of the following forms:

1. −Bk < · · · < −B2 < −B1 < −1
2
< 1

2
< B1 < B2 < · · · < Bk where Bi and Bi+1 are of

opposite signs for all i ∈ [k − 1].

2. −Bk < · · · < −Bl+1 < −1
2
< −Bl < · · · < −B1 < B1 < · · · < Bl <

1
2
< Bl+1 < · · · <

Bk where the size of B1 is greater than 1 and Bi and Bi+1 are of opposite signs for all
i ∈ [l − 1] and i ∈ [l + 1, k − 1].

3. −Bk < · · · < −B2 < −1
2
< −B1 < B1 < 1

2
< B2 < · · · < Bk where the size of B1

is 1, B1 and B2 are of the same sign, and Bi and Bi+1 are of opposite signs for all
i ∈ [2, k − 1].

The association of such an order is a bijection between the regions of BT n and total orders
of the types mentioned above.

10



Proof. The fact that the first half of the order is the negative of the second follows from
Lemma 15. By the definition of blocks, for any two blocks of the same sign which are in the
same position with respect to ±1

2
, there is some block of opposite sign between them.

The first form is when there is no i ∈ [n] such that −1
2
≺R i ≺R

1
2
. The third form is by

the convention we made at the end of the proof of Proposition 14, when there is a unique
i ∈ [n] such that −1

2
≺R i ≺R

1
2
.

So we have to show that when there is more than one i ∈ [n] such that −1
2
≺R i ≺R

1
2
,

the block B1 has size greater than 1. Suppose B1 = {a} for some a ∈ N . Let b ∈ B2. b has
the same sign as −a and is in a different block. Hence there is some k ∈ N of opposite sign
to −a and b such that −a ≺R k ≺R b. But this means k is in a block between {−a} and B2

and hence in {a}, which is a contradiction since k 6= a.
We will now show that the association of such an order is a bijection between the regions

of BT n and total orders of the types mentioned above. First note that, from the total order
associated to a region, we can get back the inequalities describing the region as follows:
For any i 6= j in [n], xi + xj > 0 if and only if the block containing −j is before that
containing i and the relationship between xi and ±1

2
is obtained in the same way. On the

other hand, given an order of one of the forms given above, choosing some real numbers
0 < c1 < c2 < · · · < ck such that ci <

1
2
if Bi <

1
2
and ci >

1
2
if Bi >

1
2
and putting xa = ci

for all a ∈ Bi for all i ∈ [k], gives a point satisfying the required inequalities. It can also be
shown that different such orders correspond to different regions.

Hence, to count the number of regions of BT n, we just have to count the number of
orders of the forms mentioned in Proposition 14. Note that the first half of the order is the
negative of the second, so we just consider the second half. That is, we count orders of the
following types, where in all cases, B1, . . . , Bk is a partition of [n] with a sign assigned to
each block:

1. 1
2
< B1 < B2 < · · · < Bk where Bi and Bi+1 are of opposite signs for all i ∈ [k − 1].

2. B1 < · · · < Bl <
1
2
< Bl+1 < · · · < Bk where the size of B1 is greater than 1 and Bi

and Bi+1 are of opposite signs for all i ∈ [l − 1] and i ∈ [l + 1, k − 1].

3. B1 < 1
2
< B2 < · · · < Bk where the size of B1 is 1, B1 and B2 are of the same sign,

and Bi and Bi+1 are of opposite signs for all i ∈ [2, k − 1].

Proposition 17. The total number of orders of the forms mentioned above is

4 · a(n) +
n
∑

k=1

4(k!− (k − 1)!)(k · S(n, k)− n · S(n− 1, k − 1)).

Here a(n) is the nth ordered Bell number.

Proof. We will count the number of orders of each of the above forms.

11



1. In the first case, we just have to define an ordered partition of [n] and assign alternating
signs to them. The number of ways this can be done is

n
∑

k=1

∑

(a1,...,ak)
a1+···+ak=n

2 ·
n!

a1! · · · ak!
= 2 · a(n).

2. In the second case, we consider two sub-cases:

(a) There is no block after 1
2
. In this case, we have to define an ordered partition of

[n] whose first part has size greater that 1 and assign alternating signs to them.
The number of ways this can be done is

n−1
∑

k=1

∑

(a1,...,ak)
a1+···+ak=n, a1 6=1

2 ·
n!

a1! · · · ak!
= 2(a(n)− n · a(n− 1))

where the equality is because the number of ordered partitions of [n] with first
block having size 1 is n · a(n− 1).

(b) There is some block after 1
2
. In this case, we have to again define an ordered

partition of [n] whose first part has size greater that 1. But we then have to
choose a spot between two blocks to place 1

2
and then choose a sign for the first

block and the block after 1
2
. The number of ways this can be done is

n−1
∑

k=1

∑

(a1,...,ak)
a1+···+ak=n, a1 6=1

4(k − 1)
n!

a1! · · · ak!
.

Making the following substitution for all k ∈ [n− 1]

∑

(a1,...,ak)
a1+···+ak=n, a1 6=1

n!

a1! · · · ak!
=

∑

(a1,...,ak)
a1+···+ak=n

n!

a1! · · · ak!
−

∑

(1,a2,...,ak)
1+a2+···+ak=n

n!

1!a2! · · · ak!

= k! · S(n, k)− n · (k − 1)! · S(n− 1, k − 1)

we get that the initial expression is the same as

n
∑

k=1

4(k!− (k − 1)!)(k · S(n, k)− n · S(n− 1, k − 1)).

3. In the third case, we have to choose the element of [n] in B1 and then define an ordered
partition of the remaining (n−1) elements and assign alternating signs to them. Since

12



we want B1 and B2 to have the same sign, we just need to assign a sign to B2. So, the
number of orders of the third type is

n ·
n−1
∑

k=1

∑

(a1,...,ak)
a1+···+ak=n−1

2 ·
(n− 1)!

a1! · · · ak!
= n · 2 · a(n− 1).

Adding up the counts made for each form gives us the required result.

So, from the observations made above, we have proved the following theorem:

Theorem 18. The number of regions of BT n is

4 · a(n) +
n
∑

k=1

4(k!− (k − 1)!)(k · S(n, k)− n · S(n− 1, k − 1)).

Similar arguments can be applied to the threshold arrangement Tn.

Proposition 19. The regions of Tn are in bijection with ordered partitions of [−n, n] \ {0}
of the form

−Bk < · · · < −B2 < −B1 < B1 < B2 < · · · < Bk

where all elements of each block have the same sign, the size of B1 is greater than 1 and Bi

and Bi+1 are of opposite signs for all i ∈ [k − 1].

The bijection in Proposition 19 is defined just as was done for BT n. That is, the region
associated to such an order satisfies xi + xj > 0 if and only if −j appears before i in the
order. Again, such orders are completely specified by their second half, which are ordered
partition of [n] with first block size greater than 1 and a sign assigned to the first block (and
alternate signs for consecutive blocks). So, we get the following theorem:

Theorem 20. The number of regions of Tn is

2(a(n)− n · a(n− 1)).

Remark 21. It can be shown that the orders considered in Proposition 19 are in bijection
with the set of threshold pairs (of size n) in standard form3 considered by Spiro [8]. In fact,
he showed that the threshold pairs are in bijection with the labeled threshold graphs.

The known formula for the number of labeled threshold graphs is in terms of Eulerian
numbers. Hence for the sake of completeness, we now show that the formula in Theorem 20
is the same as the one containing Eulerian numbers. We first recall a few identities related
to Eulerian numbers A(n, k) and the ordered Bell number a(n). A quick reference for these
identities is Bóna’s book [3, Section 1.1].

3A pair (π, ω) is a threshold pair (of size n) if π is a permutation of size n and ω is a word in {+1,−1}n.
A threshold pair (π, ω) of size n ≥ 2 is in standard form if ω1 = ω2 and if ωi = ωi+1 implies πi < πi+1 for
all 1 ≤ i < n.

13



• a(n) =
n−1
∑

k=0

2k · A(n, k)

• A(n, 0) = 1, A(n, n− 1) = 1 and A(n, k) = 0 for all k ≥ n.

• A(n, k) = (n− k)A(n− 1, k − 1) + (k + 1)A(n− 1, k) for k ≥ 1.

Proposition 22. We have the following equality

r(Tn) =
n−1
∑

k=1

2k(n− k)A(n− 1, k − 1).

Proof. From Theorem 20, we have

r(Tn) = 2(a(n)− n · a(n− 1))

= 2 ·

(

n−1
∑

k=0

2k · A(n, k)− n ·
(

n−2
∑

k=0

2k · A(n− 1, k)
)

)

r(Tn)

2
= A(n, 0) +

n−1
∑

k=1

2k
(

(n− k)A(n− 1, k − 1) + (k + 1)A(n− 1, k)
)

− n
(

n−2
∑

k=0

2k · A(n− 1, k)
)

=
n−1
∑

k=1

2k(n− k)A(n− 1, k − 1) +
(

A(n, 0) +
n−1
∑

k=1

2k(k + 1)A(n− 1, k)
)

−
n−2
∑

k=0

n · 2k · A(n− 1, k)

Since A(n− 1, n− 1) = 0,

r(Tn)

2
=

n−1
∑

k=1

2k(n− k)A(n− 1, k − 1) +
n−2
∑

k=0

2k(k + 1)A(n− 1, k)−
n−2
∑

k=0

n · 2k · A(n− 1, k)

=
n−1
∑

k=1

2k(n− k)A(n− 1, k − 1)−
n−2
∑

k=0

(n− k − 1)2k · A(n− 1, k)

Replacing k + 1 by t in the second sum, we get

r(Tn) = 2 ·

(

n−1
∑

k=1

2k(n− k)A(n− 1, k − 1)−
n−1
∑

t=1

2t−1(n− t)A(n− 1, t− 1)

)

=
n−1
∑

k=1

2k(n− k)A(n− 1, k − 1).
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4 The colored threshold graphs

Before defining the colored threshold graphs that are in bijection with the regions of the boxed
threshold arrangement, we recall the bijection between regions of the threshold arrangement
and labeled threshold graphs.

Definition 23. A threshold graph is defined recursively as follows:

1. The empty graph is a threshold graph.

2. A graph obtained by adding an isolated vertex to a threshold graph is a threshold
graph.

3. A graph obtained by adding a vertex adjacent to all vertices of a threshold graph is a
threshold graph.

Definition 24. A labeled threshold graph is a threshold graph having n vertices with vertices
labeled distinctly using [n].

Such labeled threshold graphs can be specified by a signed permutation of [n], that
is, a permutation of [n] with a sign associated to each number. The signed permutation
i1i2 · · · in corresponds to the labeled threshold graph obtained by adding vertices labeled
|i1|, |i2|, . . . , |in| in order where a positive ik means that |ik| is added adjacent to all previous
vertices and a negative ik means that it is added isolated to the previous vertices. A maximal
string of positive numbers or negative numbers in a signed permutation will be called a block.

Example 25. The labeled threshold graph associated to the signed permutation on [5] given

by
−

2
−

3
+

1
+

4
−

5 is shown in Figure 1.

2

4

−

3
−→ 2 3

4

+
1
−→ 2 3

1

4

+
4
−→ 2 3

1

−

5
−→

4

2 3

1

4

5

Figure 1: Construction of threshold graph corresponding to
−

2
−

3
+

1
+

4
−

5.

The following facts can be verified:

1. The sign of the first number in the permutation does not matter and hence we can
make the first block have size greater than 1.

2. Elements in the same block can be reordered.
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Hence, labeled threshold graphs can be specified by an ordered partition of [n] with first block
size greater than 1 and alternating signs assigned to the blocks. In fact, this association is
a bijection.

Given a threshold graph G1, we can obtain this alternating signed ordered partition of
[n] as follows: Since G1 is a threshold graph, it has at least one isolated vertex or at least
one vertex that is adjacent to all other vertices. If it has an isolated vertex, set D1 to be the
set of all isolated vertices, assign it a negative sign and set G2 to be the graph obtained by
deleting all the vertices of D1 from G1. If G1 has at least one vertex adjacent to all other
vertices, set D1 to be the set of all such vertices, assign it a positive sign and set G2 to be
the graph obtained by deleting all the vertices of D1 from G1. We repeat this process until
we obtain a graph Gk which is complete, in which case we set Dk to be all vertices of Gk

and assign it a positive sign, or Gk has no edges, in which case we set Dk to be all vertices
of Gk and assign it a negative sign. Then set Bi = Dk−i+1 and assign it the same sign as
Dk−i+1 for all i ∈ [k]. The signed ordered partition B1, . . . , Bk is the one associated to G1.

Example 26. Figure 2 shows an example of obtaining the signed blocks from a threshold

graph. The corresponding signed ordered partition for this example is
−

{2, 3}
+

{1, 4}
−

{5}.

2 3

1

4

5 −→

D2 =
+

{1, 4}

2 3

1

−→

4

D1 =
−

{5}

2 3

4

−→

D2 =
+

{1, 4} D3 =
−

{2, 3}

Figure 2: Obtaining blocks from a threshold graph.

Hence, regions of Tn and labeled threshold graphs on n vertices are both in bijection with
ordered partitions of [n] with first block size greater than 1 and alternating signs assigned to
the blocks. Hence we obtain a bijection between regions of Tn and labeled threshold graphs
on n vertices. By combining the definitions of the two bijections we see that to a labeled
threshold graph on n vertices we assign the region where xi + xj > 0 if and only if there is
an edge between i and j.

This can be proved as follows: If −Bk < · · · < −B1 < B1 < · · · < Bk is the threshold
block order corresponding to some region R of Tn, −j ≺R i for some i 6= j in [n] if and only
if one of the following holds:

1. −j and i both appear in B1, . . . , Bk with −j appearing first.

2. −j appears in −Bk, . . . ,−B1 and i appears in B1, . . . , Bk.

3. −j and i both appear in −Bk, . . . ,−B1 with −j appearing first.
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Equivalently, one of the following holds:

1. −j and i both appear in B1, . . . , Bk with −j appearing first.

2. i and j both appear in B1, . . . , Bk.

3. −i and j both appear in B1, . . . , Bk with −i appearing first.

But this is precisely the condition for there to be an edge between i and j in the threshold
graph corresponding to B1 < · · · < Bk.

We now move on to the boxed threshold arrangement.

Definition 27. A colored threshold graph is defined recursively as follows:

1. The empty graph is a colored threshold graph.

2. A graph obtained by adding an isolated vertex to a colored threshold graph is a colored
threshold graph. If there are colored vertices in the initial colored threshold graph, the
new vertex should be colored red. If not, the new vertex can be left uncolored or
colored red.

3. A graph obtained by adding a vertex adjacent to all vertices of a colored threshold
graph is a colored threshold graph. If there are colored vertices in the initial colored
threshold graph, the new vertex should be colored blue. If not, the new vertex can be
left uncolored or colored blue.

Definition 28. A labeled colored threshold graph is a colored threshold graph with n vertices
with the vertices labeled distinctly with elements of [n].

Just as for threshold graphs, labeled colored threshold graphs can be represented as a
signed permutation. However, we also have to specify if and when the coloring of the vertices
starts. This is done by using the symbol 1

2
. Having 1

2
at the end of the signed permutation

means that none of the vertices should be colored.

Example 29. The sequence
+

2 1
2

+

1
+

3
−

4
−

5 corresponds to the graph shown in Figure 3.

2 1

3

4 5

Figure 3: Labeled colored threshold graph corresponding to
+

2 1
2

+

1
+

3
−

4
−

5.

Using similar observations about these sequences associated to labeled colored threshold
graphs as done for labeled threshold graphs, we get that labeled colored threshold graphs
are in bijection with orders of the forms counted in Proposition 17. Since these orders also
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correspond to region of BT n, we get a bijection between labeled colored threshold graphs
with n vertices and regions of BT n. Just as before, the inequalities describing the region
associated to a colored threshold graph are as follows: xi + xj > 0 if and only if there is an
edge between i and j, −1

2
< xi <

1
2
if i is not colored, xi >

1
2
if i is colored blue and xi < −1

2

if i is colored red. Notice that the underlying labeled threshold graph corresponds to the Tn

region that the BT n region lies in.
Also, we can see that the bounded regions of BT n are in bijection with the regions of

Tn. Both are represented by labeled threshold graphs with n vertices. The bounded region
of BT n corresponding to a region of Tn is the one satisfying the same inequalities between
xi + xj and 0 for all i 6= j in [n] and having −1

2
< xi <

1
2
for all i ∈ [n].

x1 = − 1
2

x1 = 1
2

x2 = − 1
2

x2 = 1
2

x1 + x2 = 0

1

2

2

1

2

1

2

1

2

1

2

1

2

1 2

1

2

1

2

1

2

1

2

1

Figure 4: Regions of BT 2 represented by labeled colored threshold graphs
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