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Abstract

We show that a missing q-ary digit set F ⊆ [0, 1] has a corresponding naturally
associated countable binary q-automatic sequence f . Using this correspondence, we
show that the Hausdorff dimension of F is equal to the base-q logarithm of the Mahler
eigenvalue of f . In addition, we demonstrate that the standard mass distribution νF
supported on F is equal to the ghost measure µf of f .

1 Introduction

This story starts with an uncountable set and a countable sequence, their respective di-
mension and asymptotical behavior, and describes the setting in which these objects and
properties—and their generalizations—coalesce.

The uncountable set is the ubiquitous standard middle-thirds Cantor set, C, the self-
affine set that is the unique attractor of the iterated function system SC := {S1, S2}, where
the functions S1, S2 : [0, 1]→ [0, 1] are the affine contractions

S1(x) =
x

3
and S2(x) =

2 + x

3
.

The standard construction of C is via the production of “level sets” Ek, for k ≥ 0, where
Ek := SkC([0, 1]), SC(E) := S1(E) ∪ S2(E) for any set E, and SkC denotes k-fold composition
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of SC with itself; see Figure 1. Each level set Ek has Lebesgue measure λ(Ek) = (2/3)k,
so that C has λ-measure zero. Nonetheless, C has some size; it has Hausdorff dimension
log3(2), where log3(·) denotes the ternary logarithm. Further, one can construct a natural
mass distribution νC , called the Cantor measure, supported on C by repeated subdivision,
at each level spreading the mass equally among the subintervals of Ek and taking k to in-
finity. In this way, the λ-singular continuous measure νC is the (weak) limit of λ-absolutely
continuous measures. We thus arrive to the paradigmatic example of a fractal set C and a
related mass distribution νC . Much of the theories of fractal geometry and discrete dynam-
ical systems have been developed pursuing generalizations of this example; see Falconer’s
definitive monograph Fractal Geometry [14] for details and discussions.
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Figure 1: Iterated construction of the Cantor set C, where Ek = SkC([0, 1]).

Transitioning from the uncountable to the countable, we consider the 3-automatic binary
sequence that is the infinite fixed point %∞c (1) of the substitution %c defined by

%c :

{
1 7→ 101

0 7→ 000 .

We define the Cantor sequence {c(n)}n≥0 as the nth entry of %∞c (1). The construction of
%∞c (1) is reminiscent of the construction of the Cantor set C, the iterate %kc (1) playing the
part of the level set Ek; see Figure 2. It is easy to see that c(n) = 1 precisely when the
ternary expansion of the integer n contains no ones, so that analogy to the Cantor set is
clear. See Allouche and Shallit [3] for details on automatic sequences.

Using the definition, since c is 3-automatic, its generating function is a Mahler function,
and one obtains immediately that the generating function of the Cantor sequence can be
written as an infinite product,

Mc(z) :=
∑
n≥0

c(n)zn =
∏
j≥0

(
1 + z2·3

j
)
.

A result of Bell and Coons [9] provides, as z → 1−, the asymptotics

Mc(z) � 1

(1− z)log3(2)
(1 + o(1)).
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%0c(1) = 1

%1c(1) = 101

%2c(1) = 101000101

%3c(1) = 101000101000000000101000101

...

%∞c (1) = 101000101000000000101000101000000000000000000000000000101000 · · ·

Figure 2: Iterated construction of the Cantor sequence c

Here, the number 2 in the quantity log3(2) is the Mahler eigenvalue λc of Mc(z) (details
and definitions are provided in the next section) obtained from the Mahler-type functional
equation satisfied by Mc(z),

Mc(z)− (1 + z2)Mc(z
3) = 0.

Note that the divergent behavior of Mc(z) is governed by the Hausdorff dimension of C; that
is, dimH C = log3(2). This relationship, generalized, is our first result.

Theorem 1. Let q ≥ 2 be an integer, A ⊆ {0, . . . , q − 1} containing 0 and F be the subset
of [0, 1] consisting of numbers that can be represented in base-q using only q-ary digits from
A. Then, with F there is a naturally associated q-automatic binary sequence f such that

dimH F = logq(|A|) = logq(λf ), (1)

where λf is the Mahler eigenvalue of the generating function Mf (z) of f and logq(·) denotes
the base-q logarithm.

Remark 2. We note that the new contribution of Theorem 1 concerns the connection to the
Mahler eigenvalue. In particular, the second equality of (1) is new—the first follows directly
from Falconer [14, Thm. 9.3].

Returning to our motivating example, analogous to the Cantor measure νC , we may
construct a mass distribution µc associated with the sequence c, called the ghost1 measure.
This construction was introduced by Baake and Coons [5]. Here, for each n, we take the
sequence c up to 3n − 1 (a kind of ‘fundamental region’) and reinterpret its (renormalized)

1The term ghost measure was introduced by the second author [13], inspired by the phrase “the ghost of
departed quantities” as appearing in Berkeley’s critique of calculus. Evans [13] writes, “The terms of the
sequence are (usually) much smaller than the sum of the terms, so the individual pure points of the µn are
driven to zero by the averaging as n tends to infinity. The measure µ is the ghost of the departed pure points
of the µn.”
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values as the weights of a pure point probability measure µc,n on the torus T = [0, 1) with
support supp(µc,n) =

{
j
3n

: 0 ≤ j < 3n, c(j) = 1
}

. That is,

µc,n := 2−n
3n−1∑
j=0

c(j) δj/3n ,

where δx denotes the unit Dirac measure at x. The ghost measure µc is the (weak) limit of
the sequence (µc,n)n≥0 as n→∞. With the obvious generalization in notation, we state our
second result.

Theorem 3. With the notation above and assumptions of Theorem 1, the standard mass
distribution νF supported on F is equal to the ghost measure µf .

In particular, the Cantor measure νC is equal to the ghost measure µc. In this way, Theorem 3
provides an alternative construction of standard mass distributions supported on fractals,
and does so in a way that takes the countable to the uncountable.

Remark 4. Self-similar sets—attractors of affine contractions—have been used by many au-
thors to model physical phenomena; see Mandelbrot [18] for a detailed history and references.
The study of self-similar sets was put into a rigorous general framework by Hutchinson [15]
and the study of self-similar measures and their Fourier transforms was studied in detail by
Strichartz [20, 21]; see also Makarov [16, 17]. See Baake and Moody [7] for the generalization
to compact families of contractions.

2 Hausdorff dimension and the Mahler eigenvalue

In this section, we prove Theorem 1.
To this end, let q ≥ 2 be an integer, A ⊆ {0, . . . , q− 1} containing 0 and F be the subset

of [0, 1] consisting of numbers that can be represented in base-q using only q-ary digits form
A. We enumerate the set A as

0 = a1 < a2 < · · · < am−1 < am ≤ q − 1.

Then F is the unique attractor of the iterated function system S = {S1, . . . , Sm}, where the
functions Si are given by

Si(x) =
x+ ai
q

. (2)

Moreover, we have [14, Thm. 9.3]

dimH F = logq(m). (3)

We associate with F the q-automatic binary sequence f , which is the infinite fixed point
%∞f (1) of the substitution %f defined by

%f :

{
1 7→ 10a2−(a1+1)1 · · · 0ak−(ak−1+1)1 · · · 0am−(am−1+1)10q−1−(am) ,

0 7→ 0q ,
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where 0j indicates a string of zeros of length j with the convention that the string 00 is
equal to the empty string. The power series generating function Mf (z) :=

∑
n≥0 f(n) zn

of f has an infinite product representation, easily read off from the substitution; indeed,
Mf (z) =

∏
j≥0 pf (z

qj), where

pf (z) =
m∑
k=1

zak = 1 + za2 + za3 + · · ·+ zam−1 + zam ,

and where we have used the fact that a1 = 0. This product representation shows that Mf (z)
is a Mahler function.

In general, for an integer q ≥ 2, a power series M(z) ∈ Z[[z]] is called a q-Mahler
function (or a just a Mahler function when q is understood) provided there is an integer
d ≥ 1 and polynomials p0(z), . . . , pd(z) ∈ Z[z] with p0(z)pd(z) 6= 0 such that M(z) satisfies
the functional equation

p0(z)M(z) + p1(z)M(zq) + · · ·+ pd(z)M(zq
d

) = 0. (4)

We call the integer q, the base of the Mahler function; the minimal integer d for which such
an equation exists is called the degree of M(z). So in the case of the sequence f above,
the function Mf (z) is a degree-one q-Mahler function. The leading asymptotic behavior of
Mahler functions, as z → 1−, is governed by a number called the Mahler eigenvalue. This
concept was introduced by Bell and Coons [9] in order to produce a quick transcendence test
for Mahler functions. Our focus here is on its connection to the Hausdorff dimension of a
related fractal, the self-affine set F .

To formalize this notion, suppose that M(z) satisfies (4), set pi := pi(1), and form the
characteristic polynomial of M(z),

χM(λ) := p0λ
d + p1λ

d−1 + · · ·+ pd−1λ+ pd.

Bell and Coons [9] showed that if χM(λ) has d distinct zeros, then there exists an eigenvalue
λf with χM(λM) = 0, which is naturally associated with M(z). We call λM the Mahler
eigenvalue of M(z). This natural association is best seen through the asymptotics. For
example, in the case of degree-one q-Mahler functions, if M(z) =

∏
j≥0 p(z

qj) for some
polynomial p(z) ∈ Z[z] with p(0) = 1 and p(1) 6= 0, we have that λM = p(1) and, as z → 1−,

M(z) � 1

(1− z)logq p(1)
(1 + o(1)). (5)

With the above concepts and definitions in hand, it is immediate that

λf := λMf
= pf (1) = m,

since there are m terms in the polynomial pf (z) each with coefficient equal to one. The
validity of Theorem 1 is now readily apparent by combining this equality with (3).
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Remark 5. Note that (5) implies that as z → 1− the function (1− z)logq p(1)M(z) potentially
oscillates between two positive real numbers. In fact, this is the case—see, e.g., Brent,
Coons and Zudilin [10], Bell and Coons [9] and Coons [11]—though little is known about
the consequences and properties of this oscillation. In the light of Theorem 1, it seems
a reasonable question to ask if this oscillation has a relation to certain fractals or their
properties.

3 Fractal mass distributions are ghost measures

In this section, we start by describing both the standard mass distribution νF supported
on the attractor F of an iterated function system S of rational affine contractions and the
ghost measure µf of the associated automatic sequence f . We then prove Theorem 3, that
νF = µf , by showing that the Fourier–Stieltjes coefficients ν̂F (n) and µ̂f (n) are equal for
every integer n. Details and results showing this equivalence can be found in Rudin [19,
Thm. 1.3.6]; see also Baake and Grimm [6, Ch. 8] for a more recent discussion on Fourier
analysis and measures focussing on those important to the study of aperiodic order.

Let S = {S1, . . . , Sm} be an iterated function system satisfying (2) and define, for any
set E ⊆ [0, 1], the function

S(E) :=
m⋃
i=1

Si(E).

In particular, we have that F := limk→∞ S
k([0, 1]), where, as before, Sk indicates k-fold

function composition of S with itself. Analogous to the construction of the Cantor set in
Figure 1, we let Ek := Sk([0, 1]) be the level sets in the construction of F . Each of the level
sets Ek is a union of mk intervals of length q−k. We divide the unit mass of the interval
equally among each of these intervals and construct a mass distribution νF supported on
the attractor F as the limit of the mass distributions νF,k supported on the level sets Ek.
Initially, we have that νF,0 = λ

∣∣
[0,1]

is Lebesgue measure restricted to the interval [0, 1], and

for k ≥ 1, we have

νF,k =
q

m
· νF,k−1

∣∣
Ek
. (6)

Each measure νF,k is absolutely continuous with respect to Lebesgue measure. The measure
νF is the (weak) limit of the νF,k as k → ∞. For example, Figure 3 contains the graph of
the distribution function of νC over the interval [0, 1], known as the devil’s staircase—there
are uncountably many steps, one at each element of the Cantor set C.

Turning now to the ghost measure of the related sequence f , for each k, analogous to the
construction of µc in the Introduction, we take the sequence f up to qk − 1 and reinterpret
its (renormalized) values as the weights of a pure point probability measure µf,k on the torus
T = [0, 1) with support supp(µf,k) = {j/qk : 0 ≤ j < qk, f(j) = 1}. That is,

µf,k := m−k
qk−1∑
j=0

f(j) δj/qk ,
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Figure 3: The devil’s staircase: the distribution function of νC = µc.

where δx denotes the unit Dirac measure at x. The measures µf,k are the mass distributions
associated with the finite sequences %kf (1), analogous to the mass distributions νF,k associated
with the level sets Ek. The ghost measure µf is the (weak) limit of the sequence (µf,k)k≥0
as k →∞.

With this terminology in hand, we are now ready to prove Theorem 3.

Proof of Theorem 3. As stated at the beginning of this section, to show that νF = µf , it is
enough (equivalent, actually) to show that their Fourier–Stieltjes coefficients are equal [19,
Thm. 1.3.6]; that is, for every integer n, ν̂F (n) = µ̂f (n).

For νF , we note that given an integer n, applying (6) followed by a change of variable,
we have

ν̂F,k(n) :=

∫ 1

0

e2πinx dνF,k(x) =
q

m

∫ 1

0

e2πinx dνF,k−1(x)
∣∣
Ek

=
1

m

m∑
j=1

∫ 1

0

e
2πin

(
aj+y

q

)
dνF,k−1(y) =

1

m

m∑
j=1

e2πinaj/q
∫ 1

0

e2πi(n/q)y dνF,k−1(y)

=

(
1

m
· pf
(
e2πin/q

))
ν̂F,k−1(n/q) =

k∏
`=1

(
1

m
· pf
(
e2πin/q

`
))
·
∫ 1

0

e2πi(n/q
k)x dx,

where the last equality follows by repeated application of the penultimate equality, and the
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fact that νF,0(x) = λ
∣∣
[0,1]

. Taking the limit as k →∞, we thus have

ν̂F (n) =
∏
`≥1

(
1

m
· pf
(
e2πin/q

`
))

, (7)

since limk→∞
∫ 1

0
e2πi(n/q

k)x dx = 1 for any integer n.
The calculation for µf is more straight-forward. Indeed, by inspecting the iterates %kf (1),

it is clear that
qk−1∑
j=0

f(j) zj =
k−1∏
`=0

pf

(
zq

`
)
,

so that

µ̂f,k(n) := m−k
qk−1∑
j=0

f(j) e−2πinj/q
k

= m−k
k−1∏
`=0

pf

(
e−2πinq

`−k
)

=
k∏
`=1

(
1

m
· pf
(
e−2πin/q

`
))

.

Taking the limit as k →∞, µ̂f (n) is equal to the righthand side of (7) and so also to ν̂F (n),
thus µf = νF , which finishes the proof of the theorem.

4 Further comments

The idea of fractals arising from automatic sequences is by no means new. The limiting
sets of automatic sequences and their relation to fractals was investigated by Barbé and
von Haeseler [8]. In fact, even our paradigmatic example—the Cantor sequence—has been
around for some time. It played an emphatic role in the paper of Allouche and Skordev [4];
one of the purposes of their paper was to remind the mathematical community that there is
an abundance of literature connecting automatic sequences to fractals. See their paper [4] for
a detailed reference list. There are even several examples given in Allouche and Shallit [3],
e.g., the dragon curve is related to the regular paperfolding sequence [3, p. 155] and one
can obtain von Koch’s famous snowflake via an 8-automatic sequence on three letters [3,
p. 202]. As well, the notion of relating the Hausdorff dimension to properties of automatic
fractals is not new; Adamczewski and Bell explored the possibility of a relationship between
the Hausdorff dimension and entropy of an automatic fractal, which led them to ask several
questions; see [1].

In this paper, we demonstrated how two objects, attractors of certain rational affine
iterated function systems and automatic sequences, can be related and explored a few of
the consequences of that relationship. As described above, the connection between fractal
and automatic sequences is well-established. Our contribution is an explicit relationship
of some invariants related to either object. In particular, we showed that the Hausdorff
dimension of the attractor is related to the asymptotics of the generating function of the
automatic sequence. The class of iterated function systems we considered has attractors
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that are self-affine sets, and so the relationship we describe is with a very tangible, and well-
understood, geometric object. That said, there is no reason not to desire a generalization
beyond this straight-forward class of examples. Ghost measures exist for a much larger class
of sequences, e.g., for a large subset of regular sequences [12] as defined by Allouche and
Shallit [2]. The ghost measures of the so-called ‘affine’ 2-regular sequences have been recently
completely described by Evans [13]. The existence of such measures begs the question of
further relationships between automatic and regular sequences to fractals.
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