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Abstract

In this paper we obtain new parametric ideal solutions of the well-known Tarry-
Escott problem of degrees 2, 3 and 5. While several mathematicians have obtained
ideal solutions of the Tarry-Escott problem, the parametric solutions given in this
paper have a remarkable symmetry that is not to be found in any of the already known
solutions of the problem.

1 Introduction

The Tarry-Escott problem (written briefly as TEP) of degree k consists of finding two distinct
sets of integers, {x1,z2,...,2,} and {y1,y2, ..., yn}, such that

ixg:iyg, j=1,2...k, (1)
=1 =1

where k is a given positive integer. It is well-known that for a non-trivial solution of (1) to
exist, we must have n > k+1 [9, p. 616]. Solutions of (1) with n = k+ 1 are known as ideal
solutions of the problem.

It would be recalled that simple solutions of the TEP of degree 2 were first noticed by
Goldbach and by Euler in 1750-51. Ever since then, numerous authors have given parametric
ideal solutions of the TEP when 2 < k£ < 7 and numerical ideal solutions when k = 8,9 or
11 [1; 3-5; 6, pp. 705-713; 8, pp. 33-57; 11]. Dickson [7, pp. 52, 55-58] has given a complete
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parametric ideal solution of the TEP of degree 2 as well as a method of generating all integer
solutions of the TEP of degree 3. The complete solution of the TEP is not known for any
value of k£ > 3.

In this paper, for the TEP of degrees 2 and 3, we obtain new parametric ideal solutions
that have a remarkable symmetry that is not to be found in any of the known solutions of
the TEP.

With reference to the diophantine system defined by (1), for each value of the exponent
J, let o; denote the common sum of either side of (1). For the TEP of degree 2, i.e., for the
diophantine system Zle x) = 2?21 y!,j = 1,2, we will obtain the complete ideal solution
in terms of polynomials in six parameters p,q,r,a,b, and ¢ such that both o; and oy are
nonzero symmetric functions of the three parameters p,q,r, and also symmetric functions
of the three parameters a, b, c. Further, the values of z;,y;,7 = 1,2, 3, will all be expressible
as polynomials ¢(y, s, ..., &), where &1,&, ..., & is some permutation of the parameters
p,q,7,a,b, and c.

For the TEP of degree 3, i.e., for the diophantine system Ele xf = Z?Zl yf,j =1,2,3,
we will obtain an ideal solution in terms of polynomials in four parameters p, ¢, r, and s such
that all the common sums 05,7 = 1,2,3, are nonzero symmetric functions of all the four
parameters p, ¢, 7, and s, and the values of x;,y;,7 = 1,...,4, are expressible as polynomials
d(&1y ..., &), where &, ..., &y is some permutation of the parameters p, ¢, r, and s.

For the TEP of degree 5, we will derive an ideal solution in terms of six parameters
p,q,7,a,b, and ¢ using the solution already obtained for the TEP of degree 2. In this case,
while the common sums o0;, j = 1, 3, 5, are all zero, the nonzero sums o, and o4 are symmetric
functions of p, ¢, and r, as well as symmetric functions of a, b, and c.

2 Ideal solutions of the Tarry-Escott problem of de-
grees 2, 3 and 5

2.1 A parametric ideal solution of the TEP of degree 2

Theorem 1. A parametric solution of the simultaneous diophantine equations,
i +ay+as =y +ys +ys, =12, (2)
s given in terms of siz arbitrary parameters p,q,r,a,b, and ¢ by

€T = ¢(p7Q7T7avb7 C), To = Cb(pyan, ba c, (I), T3 = Cb(pyan, ¢ a, b)a (3)
Y1 = ¢(p7QJT7CL7cv b)a Yz = <Z5(p,q,7“, & b7 CL), Ys = <Z5(p,q,7“, b,(l,C),

where ¢(f, g, h,u,v,w) = fu+gv+hw. All integer solutions of the simultaneous diophantine
Eqgs. (2) may be generated by taking scalar multiples of the solution given by (3).



Proof. When z;,y;,i = 1,2, 3, are defined by (3), direct computation shows that

3 3
oxi=> yi=@+q+r)atbto),
=1 i=1
3 3 (4)
S oal ="yl ="+ + )@’ + 0+ )+ 2pg + gr + rp)(ab + be + ca).
i=1 =1

The relations (4) prove that (3) gives a solution of the simultaneous Egs. (2) such that
the common sums o; and o, are symmetric functions of the parameters p, ¢, r, and also of
the parameters a, b, and c.

To show that the solution given by (3) generates all integer solutions of the simultaneous

Egs. (2), we will use the following complete solution of these simultaneous equations given
by Dickson [7, p. 52]:

$1:AD+C, $2:AG—|—BD—|—C, $3:BG—|—C,

5
y1 = AD + BG + C, vy, = BD +C, ys = AG + C, (5)

where A, B,C, D and G are arbitrary parameters.
In our solution of the simultaneous Eqgs. (2) given by (3), we take a = D,b = G,c =
0,p=AD+AG+C,q=C,r = BD+ BG+ C, when our solution may be written as follows:

r1 = (D+G)(AD + C),
9= (D + G)(AG + BD + (),
z3=(D+ G)(BG+ (),
y1 = (D +G)(AD + BG + C),
yo = (D + G)(BD + C),
ys = (D + G)(AG + C).

The values of z;,y;,7 = 1,2, 3, given by (6) have a common factor D + G, and since both
the Eqgs. (2) are homogeneous, the common factor D + G may be removed by appropriate
scaling, and then the solution (6) coincides exactly with the complete solution (5) of the
Egs. (2) given by Dickson. It follows that the solution of the simultaneous Eqs. (2) given by
(3) generates all integer solutions of these equations. O

As a numerical example, when (a,b,c,p,q,r) = (0,1,2,0,1,3), Theorem 1 yields the
following ideal solution of the TEP of degree 2:

P43+ 7 =V 4546, j=12



2.2 A parametric ideal solution of the TEP of degree 3

We will first give a theorem that gives, in parametric terms, two triads of integers with equal
sums and equal products. We note that two complete solutions of the problem of finding
two triads of integers with equal sums and equal products have been given independently by
Choudhry [2] and by Kelly [10]. While the solution of this problem given below in Theorem 2
is not complete, it is much simpler and is noteworthy for its symmetry, and we will use it to
obtain a parametric solution of the TEP of degree 3.

Theorem 2. A parametric solution of the diophantine system,

XP+ X3+ X5 =Y +Y7 +Yy, (7)
X1 X, X5 = 1Y,V (8)

1s given in terms of four arbitrary parameters p,q,r, and s by

Xl :¢(p7Q7T78)a X2:¢(par787q)7 X3:¢(p787qu)7
YVi=9dé(p,q,s,7), Yo=0p,1.q5s), Ys=0(p s rq),

where ¢(a,b,c,d) = (ab+ cd)(ac — bd).
Proof. We begin by writing

X1 = flpg+rs), Xo=g(pr+gs), Xs=h(ps+qr),
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Yi=g(pg+rs), Yo=h(pr+gs), Ys= f(ps+qr), (10)

where f,g,h,p,q,r, and s are arbitrary parameters. Now (8) is identically satisfied, while
(7) reduces to

(pg +rs)*(f* = g°) + (pr + as)*(g* — B*) + (ps + rq)*(h* — [*) = 0,
or, equivalently,
((pg +78)* = (ps +ra)*)(f* = 1*) + ((pr + ¢5)* = (pa +75)*)(g* — h*) = 0,
and hence we may take,

2 =h*=(pr+qs)” — (pqg+rs)’,
9> = h* = —((pg+rs)* = (ps +rq)).

(11)

If we now take h = pg — rs, it follows from (11) that

J=pr—gqs, g=ps—qr,

and, on substituting the values of f,g,h in (10), we get the solution (9) stated in the
theorem. 0



Theorem 3. A parametric solution of the simultaneous diophantine equations,

T+ 2o+ 23+ 2Ty =Y+ Y2+ Y3+ Ya, (12)
o3+ o+ o+l =yl + s +ys + v (13)
o3+ a4+ 2+l =y +ys 4+ s+ (14)

18 given in terms of four arbitrary parameters p,q,r, and s by

T = ¢(p7Q7T S) To = (p,T‘ 5,4),

)
(p,s q,7 )7 Ly = (Q7Tp7 )7
¢( p.q,s, T‘), y2:¢( p,7,q,s )’ (15)
=o(p,s;1.q), ya=0(q,s,p,7),

where
d(a,b,c,d) = a’bc + abc® + ac*d + acd® + b*cd + be?d.

Proof. To solve the simultaneous Eqs. (12), (13) and (14), we write,

1 =X1—Xo— X3, xo=-X;+ Xy — Xj,

r3=—X1 —Xo+ X3, 14=X1+Xo+ X,

n =Y —-Y—Ys, Yo = —Y1+Ys — Y3,

ys=—Y1—Yo+Y;5, wy=Y1+Yo+Y;,
when Eq. (12) is identically satisfied while Eqs. (13) and (14) reduce to Egs. (7) and (8)
respectively. Using the solution (9) of the simultaneous Egs. (7) and (8) given by Theorem 2,

we obtain the following solution of the simultaneous Egs. (12), (13) and (14) in terms of four
arbitrary parameters p,q,r, and s:

1 =vY(p,q,r,8), w2 =1(p,1,5,q),
x3 =Y(p,s,q,7), x4 =1vY(q,7,p,9), (16)
yi =P, q,87), y2=1v(p1,q,s),
ys = U(p,s,1,q), ya=(q,s,p,7),

where

Y(a,b,c,d) = (bc — bd — cd)a® — (ac + ad — cd)b?
+ (ab + ad + bd)c* — (ab — ac + be)d*.

We will now use a well-known theorem [7, Thm. 46, p. 50] according to which if z;, y;,7 =
1,...,n, is a solution of the diophantine system (1), then for arbitrary rational numbers M
and K, another solution of the diophantine system (1) is given by Mx; + K, My; + K,i =
1,...,n.

On taking M = 1/2 and

K = (p*(qr +gs +7rs) + ¢*(pr + ps +75) + r*(pg + ps + qs) + s*(pg + pr +qr)) /2,

and applying the aforesaid theorem to the solution (16), we get the solution of the simulta-
neous Egs. (12), (13) and (14) stated in Theorem 3. O
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For the solution of the simultaneous Eqs. (12), (13) and (14) given by (15), we note that
the values of the common sums 0,7 = 1,2, 3, may be written as,

o1 = 26163 — 864,
09 = —26%6264 + 26%63 — 8eqjesey + 46%64 — 26263, (17)
o3 = 3eje? — 3eleqesey + 23 — 12e2eley + Geieaesey

— 361€2€§ — 246%6?1 + 24626?))64 — 3€§ + 6463,
where e;,i = 1,...,4, are the elementary symmetric functions defined by

ep=p+qg+r—+s, es = pq+pr—+ps—+qr+qs—+rs,
es = pqr + pgs + prs + qrs, €4 = pqrs.
The relations (17) show that the common sums ¢}, j = 1,2, 3, are symmetric functions
of the parameters p, ¢, r, and s.
As a numerical example of an ideal solution of the TEP of degree 3, when (p,q,r,s) =

(1,2,3,4), Theorem 3 yields a solution which, on removing the common factor 2, may be
written as follows:

537 + 997 + 1147 + 1387 =547 + 937 4+ 1237 + 1347, j=1,2,3.

2.3 A parametric ideal solution of the TEP of degree 5

We will first give, in Theorem 4, a parametric solution of the diophantine system Z?:1 wi =
Z?Zl yl,5 =1, 2, 4, and we will use it in Theorem 5 to obtain ideal solutions of the TEP of

)

degree 5.

Theorem 4. A parametric solution of the simultaneous diophantine equations,

3 3
Dl =)yl =124 (18)
i=1 i=1

s given in terms of siz arbitrary parameters p,q,r,a,b, and c by

€Ty = ¢(p, q,T,a, ba C)7 Ty = w(p7Q7r> ba ¢, CL), €T3 = 1/’(1%%% C, a, b)a

(19)
n :w(p7Q7T’a7cvb)7 Y2 :¢(p7Qar7cabaa)7 Y3 :q/J(p)qu)baa)c)a
where Y(f, g, h,u,v,w) = f(v —w) + g(w —u) + h(u —v).

Proof. In the solution (3) of the simultaneous Eqs. (2), if we replace p,q,r, by r — q, p —
r, q — p, respectively, the new values of z;,y;,i = 1,2,3, are given by (19), and with these



values of x;,y;, direct computation gives,

3 3
i=1 i=1
3 3
Zx?:ny:2(p2+q2+7"2—pq—qr—rp)(a2+b2+62—ab—bc—ca), (20)
i=1 i=1

3 3
Zx? = Zy;; =20+ ¢ +1° —pg— qr —rp)*(a® +b* + & — ab — bc — ca)®.
i=1 i=1

It now follows that (19) gives a parametric solution of the simultaneous diophantine Egs. (18).

]

Theorem 5. A parametric solution of the simultaneous diophantine equations,

6 6
ol =Yy, =125 (21)
=1 =1

in terms of six arbitrary parameters p,q,r,a,b, and c is given by

Ty = —T1, T5= —T2, o= —T3, Y4= —Y1, Ys = —Y2, Yo = —Ys, (22)
and the values of z;,y;,i = 1,2,3, are defined by (19).

Proof. If we take the values of x;,y;,7 = 4,5,6, as given by (22), the relations (21) are
identically satisfied for £k = 1,3 and 5, and the diophantine system (21) reduces to the
simultaneous diophantine equations

3 3
doal=) ul j=24 (23)
=1 1=1

Since a solution of the simultanecous Eqgs. (23) is given by (19), it follows that a solution of
the simultaneous diophantine Eqs. (21) is as stated in the theorem. ]

It follows from the relations (22) that for the solution of the TEP of degree 5 given by
Theorem 5, the sums ¢;,j = 1, 3,5, are all zero. Further, it follows from the relations (20)
that the common sums o5 and o4 are symmetric functions of p, ¢, and r, as well as symmetric
functions of a, b, and c.

As a numerical example, when (a,b,c,p,q,r7) = (0,1,3,0,1,4), Theorem 5 yields the
following ideal solution of the TEP of degree 5:

V49 +107 +(=1) +(=9)7 +(=10)7 = 5/ +67 +117 +(=5)7 +(—=6) +(—11)/, j=1,2,...,5.



3 Concluding remarks

In view of the simplicity and symmetry of the ideal solutions given by Theorems 1, 3, and
5, it seems that these solutions could be used to obtain new results on equal sums of like
powers.

Further, the symmetry of the ideal solutions obtained in this paper suggests that there
may exist similar solutions of the TEP of degree k when k # 2,3 or 5. It would be interesting
to find new parametric solutions of the TEP of degrees k where k& > 3 such that all the
common sums o0;,j = 1,...,k, are nonzero symmetric functions of the parameters. Such
solutions may be of interest even if the solutions are not ideal solutions.

More generally, it would be of interest to find parametric solutions, with similar symmetric
properties, of other symmetric diophantine systems of the type > ., a:i =3, yf, where
the equality holds for certain values of the exponent j that are not the first k consecutive
positive integers as in the case of the TEP.
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