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Abstract

All known nontrivial parametric solutions of the diophantine equation

x41 + x42 + x43 + x44 = y2

give the values of xi, i = 1, . . . , 4, in terms of polynomials in two parameters. In the

three simplest solutions, these polynomials are of degrees 2, 4 and 12 respectively.

In this paper we obtain infinitely many solutions of the equation under consideration

in terms of quadratic polynomials in two parameters, as well as a solution in terms

of quartic polynomials in three parameters. We also show how more general multi-

parameter solutions of the equation may be obtained.

1 Introduction

This paper is concerned with the problem of finding four biquadrates whose sum is a perfect
square, that is, we are required to find four integers xi, i = 1, . . . , 4, such that

x4
1
+ x4

2
+ x4

3
+ x4

4
= y2. (1)

where y is an integer. If we take three of the integers xi, i = 1, . . . , 4, as 0, we immediately
get a trivial solution of Eq. (1). All other solutions of the diophantine equation (1) will be
considered as nontrivial.
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All known nontrivial parametric solutions of Eq. (1) are expressed in terms of polynomials
in two parameters—the simplest being given by the identity,

(a4 + b4)2 = a8 + (ab)4 + (ab)4 + b8.

Dickson [3, pp. 657–658]) has mentioned two other solutions—found by Fauquembergue—in
which the values of xi, i = 1, . . . , 4, are given by polynomials of degrees 4 and 12 in terms of
two parameters. Recently Alvarado and Delorme [1] have obtained two solutions in which
xi, i = 1, . . . , 4, are given by polynomials of degrees 16 and 28, and they have shown how
infinitely many such solutions may be obtained by using elliptic curves.

In this paper we will obtain infinitely many solutions of Eq. (1) in terms of quadratic
polynomials in two parameters, as well as a solution in terms of quartic polynomials in three
parameters. We also show how more general multi-parameter solutions of the equation may
be obtained.

2 Four biquadrates whose sum is a square

2.1 Solutions in terms of quadratic polynomials in two parameters

In this section we will obtain solutions of the diophantine equation (1) in terms of polynomials
of degree 2 in two parameters by using the well-known composition of forms identity,

(f 2 + fg + g2)(u2 + uv + v2) = p2 + pq + q2, (2)

where f, g, u, v are arbitrary parameters and

p = fu− gv, q = fv + gu+ gv,

together with the identity,

r4 + s4 + (r + s)4 = 2(r2 + rs+ s2)2, (3)

where r and s are arbitrary parameters.
It follows from (2) that

(f 2 + fg + g2)(u2 + uv + v2)2 = (p2 + pq + q2)(u2 + uv + v2),

= r2 + rs+ s2,
(4)

where
r = fu2 − 2guv − (f + g)v2, s = gu2 + (2f + 2g)uv + fv2. (5)

Thus, when the values of r and s are given by (5), we get, on combining the two identities
(3) and (4),

r4 + s4 + (r + s)4 = 2(f 2 + fg + g2)2(u2 + uv + v2)4, (6)
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and on adding h4(u2 + uv + v2)4 to both sides of (6), we get the identity,

r4 + s4 + (r + s)4 + h4(u2 + uv + v2)4 = (2(f 2 + fg + g2)2 + h4)(u2 + uv + v2)4. (7)

If we choose integer values of f, g, and h such that

2(f 2 + fg + g2)2 + h4 = t2, (8)

where t is some integer, it follows from (5) and (7) that a solution of (1) is given by

(x1, x2, x3, x4, y) = (fu2 − 2guv − (f + g)v2, gu2 + (2f + 2g)uv + fv2,

(f + g)u2 + 2fuv − gv2, h(u2 + uv + v2), t(u2 + uv + v2)2),

where u and v are arbitrary parameters.
We readily found, by computer trials, the following four sets of values of (f, g, h, t) that

satisfy Eq. (8):

(2, 2, 1, 17), (2, 4, 7, 63), (2, 14, 17, 433), (4, 22, 7, 833).

These four solutions of Eq. (8) immediately yield four solutions of Eq. (1) in which the values
of xi are given by quadratic polynomials in the arbitrary parameters u and v. The first two
solutions of Eq. (1) thus obtained may be written explicitly as follows:

(x1, x2, x3, x4, y) = (2u2 − 4uv − 4v2, 2u2 + 8uv + 2v2, 4u2 + 4uv − 2v2,

u2 + uv + v2, 17(u2 + uv + v2)2),
(9)

and
(x1, x2, x3, x4, y) = (2u2 − 8uv − 6v2, 4u2 + 12uv + 2v2, 6u2 + 4uv − 4v2,

7(u2 + uv + v2), 63(u2 + uv + v2)2).
(10)

We will now show how infinitely many solutions in integers of Eq. (8) may be obtained.
For fixed rational numerical values of g and h, Eq. (8) is a quartic model of an elliptic curve.
If this elliptic curve is of positive rank, we can obtain infinitely many rational points on this
elliptic curve, and by appropriate scaling, we can obtain infinitely many integer solutions of
Eq. (8). For instance, when (g, h) = (2, 1), we may write Eq. (8) as

2f 4 + 8f 3 + 24f 2 + 32f + 33 = t2, (11)

and one rational point on the curve (11) is known to be (f, t) = (2, 17).
The birational transformation defined by

f = −2(145X + 17Y + 1208)/(144X − 17Y + 1176),

t = (4913X3 + 121584X2 + 982600X − 6864Y + 2585088)

× (144X − 17Y + 1176)−2,

(12)
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and
X = 2(20f 2 + 64f + 17t+ 81)/(f − 2)2,

Y = 4(102f 3 + 408f 2 + 72ft+ 816f + 145t+ 833)/(f − 2)3,
(13)

reduces the elliptic curve (11) to the Weierstrass form,

Y 2 = X3
− 200X − 1088. (14)

A reference to Cremona’s elliptic curve tables [2] shows that the rank of the elliptic curve
(14) is 1. In fact, using APECS (a package written in Maple for working with elliptic curves),
we readily found the rational point P = (217/9, 2431/27) on the curve (14). Since the point
P does not have rational coordinates, it follows from the Nagell-Lutz theorem [4, p. 56] on
elliptic curves that P is a point of infinite order. We can now find infinitely many rational
points on the curve (14) using the group law, and using the relations (12), we can find
infinitely many rational points on the curve (11). We can now obtain infinitely many integer
solutions of Eq. (8) and thus generate infinitely many parametric solutions of Eq. (1).

As a numerical example, the point P on the curve (14) generates a solution that is
equivalent to the solution (9) while the point 2P generates the following parametric solution
of Eq. (1):

x1 = 162278u2 + 667292uv + 171368v2,

x2 = 333646u2 + 342736uv − 162278v2,

x3 = 171368u2 − 324556uv − 333646v2,

x4 = 166823(u2 + uv + v2),

y = 121336214273(u2 + uv + v2)2,

where u and v are arbitrary parameters.

2.2 Solutions in terms of quartic polynomials in three parameters

We will now obtain a solution of (1) in which the values of xi, i = 1, . . . , 4, are given by
quartic polynomials in three parameters.

We write
x1 = t+ a, x2 = t+ b, x3 = t+ c, x4 = t, (15)

when the left-hand side of Eq. (1) becomes a quartic function of t in which the coefficient of
t4 is a perfect square, namely 4. Dickson [3, p. 639] has described a method, originally given
by Fermat, for making such a quartic function a perfect square. Applying this method, we
find that the left-hand side of Eq. (1) becomes a perfect square if we take

t = φ(a, b, c)/(24(a+ b− c)(a− b+ c)(a− b− c)),

where
φ(a, b, c) = 9(a4 + b4 + c4)− 20(a3(b+ c) + b3(c+ a) + c3(a+ b))

+ 54(a2b2 + b2c2 + c2a2)− 12abc(a+ b+ c).
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Using the relations (15), we now get four biquadrates whose sum is a perfect square. On
appropriate scaling, we may write these biquadrates as x4

i
, i = 1, . . . , 4, with the values of xi

being given by the quartic polynomials,

x1 = ψ(a, b, c), x2 = ψ(b, c, a), x3 = ψ(c, a, b), x4 = φ(a, b, c), (16)

where
ψ(a, b, c) = 33a4 − 44a3b− 44a3c+ 30a2b2 + 36a2bc

+ 30a2c2 + 4ab3 − 36ab2c− 36abc2 + 4ac3

+ 9b4 − 20b3c+ 54b2c2 − 20bc3 + 9c4.

On making the invertible linear transformation,

a = (v + w)/2, b = (u+ w)/2, c = (u+ v)/2,

the values of xi given by (16) may be written as

x1 = f(u,−v,−w), x2 = (−u, v,−w),

x3 = f(−u,−v, w), x4 = f(u, v, w),
(17)

where f(u, v, w) is defined in terms of arbitrary parameters u, v, and w as follows:

f(u, v, w) = 2(u4 + v4 + w4) + 3(u2v2 + v2w2 + w2u2) + 6uvw(u+ v + w).

With the values of xi, i = 1, . . . , 4, given by (17), it is readily verified that
∑

4

i=1
x4
i
= y2

where
y = 8(u8 + v8 + w8) + 24(u6(v2 + w2) + v6(w2 + u2) + w6(u2 + v2))

+ 34(u4v4 + v4w4 + w4u4) + 276u2v2w2(u2 + v2 + w2).
(18)

Thus a solution of Eq. (1) is given by (17) and (18) in terms of the arbitrary parameters
u, v, and w.

2.3 Multi-parameter solutions

We will now describe a method of obtaining more general solutions of Eq. (1) in several
parameters by using the known solutions of Eq. (1).

Let a solution of Eq. (1) be (x1, x2, x3, x4, y) = (α1, α2, α3, α4, β). Instead of choosing the
values of xi, i = 1, . . . , 4, given by (15), we now write,

x1 = α1t1 + γ1t2, x2 = α2t1 + γ2t2,

x3 = α3t1 + γ3t2, x4 = α4t1 + γ4t2,
(19)

where γi, i = 1, . . . , 4, are arbitrary parameters, and proceeding as before, we again observe
that the left-hand side of Eq. (1) becomes a quartic function of t1 in which the coefficient of
t4
1
is a perfect square, namely β2 and hence, as before, we can obtain a value of t1 that yields
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four biquadrates whose sum is a perfect square. We thus obtain more parametric solutions
of Eq. (1).

We could also choose the parameters γi in (19) such the sum of the four biquadrates γ4
i

is a perfect square, say δ2, and now the left-hand side of Eq. (1) becomes a binary quartic
form in t1 and t2 such that the coefficients of t4

1
and t4

2
are β2 and δ2, respectively. If we now

write

y = βt2
1
+ 2

(

4
∑

i=1

α3

i
γi

)

t1t2/β + δt2
2
, (20)

and substitute the values of xi, i = 1, . . . , 4, and y given by (19) and (20), respectively, in
Eq. (1), we get after suitable transposition and removal of common factors, a linear equation
in t1 and t2 whose solution is as follows:

t1 = 2

(

4
∑

i=1

αiγ
3

i

)

β2
− 2

(

4
∑

i=1

α3

i
γi

)

βδ,

t2 = β3δ − 3

(

4
∑

i=1

α2

i
γ2
i

)

β2 + 2

(

4
∑

i=1

α3

i
γi

)2

.

(21)

With the values of t1 and t2 given by (21), a solution of Eq. (1) is given by (19) and
(20). Since we can choose the values of αi, γi, i = 1, . . . , 4, in terms of 2 or 3 parameters,
the solutions of Eq. (1) thus obtained are in terms of 4, 5 or 6 parameters. All the multi-
parameter solutions of Eq. (1) obtained in this manner are too cumbersome to write and
accordingly we do not give any of them explicitly.

It would of considerable interest to find a parametric solution of Eq. (1) in which the
parameters can be so chosen that the value of y becomes a perfect square. If that can be
achieved, we will obtain four biquadrates whose sum is also a biquadrate. There seems to
be no simple way of finding such a parametric solution of Eq. (1).
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