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Abstract

We prove some properties of sequence A335294 from the On-Line Encyclopedia of

Integer Sequences, defined by

an = π(n)− π

(
∑n−1

k=1 ak

)

,

where π(x) is the number of primes ≤ x. In particular we show that the sequence (an)
assumes every non-negative integral value infinitely often.

1 Introduction

Let π(x) = #{p prime : p ≤ x} denote the prime counting function. In this paper we
consider the sequence (an)n≥1 defined by

an = π(n)− π
(
∑n−1

k=1 ak
)

for n ≥ 1.

Apart from a difference in the first three terms, this is sequence A335294 in the OEIS,1 and
its initial terms are

0, 1, 2, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2, 1,

1, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 0,

1, 1, 1, 1, 2, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, . . .

A brief examination reveals that the sequence is not monotonic and displays a remarkably
slow rate of growth. In this direction, see Table 1, which shows the smallest solutions to
an = k for each k ≤ 13. (This is a subsequence of the prime numbers for k ≥ 1; note that
for k ∈ {3, 4, 5, 6, 9, 10, 13} the corresponding n is also the larger of a twin prime pair.)

k 0 1 2 3 4 5 6
n 1 2 3 229 3259 15739 449569

k 7 8 9 10 11 12 13
n 6958841 130259903 2404517671 56014949761 538155413969 21692297487587 21692297487589

Table 1: Smallest n satisfying an = k, cf. A335337

Let sn denote the summatory sequence,

sn =
n
∑

k=1

ak for n ≥ 0.

1Sequence A335294 imposes the initial condition a1 = 1, whereas we adopt the convention that the empty
sum is 0, so that a1 = π(1) − π(0) = 0. We prefer this convention since it is more elegant and simplifies
some proofs. As we show in Section 3, the sequence is eventually stable under any perturbation of the initial
terms, so this is not a significant alteration.
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Our main result establishes some distributional properties of (an)n≥1 and (sn)n≥0. In order
to state them, we define g(x) to be the maximum distance between a real number y ≤ x and
the largest prime p ≤ y, i.e.,

g(x) = sup
y∈[2,x]

min{y − p : p ≤ y} for x ≥ 2.

Note that g is a continuous, piecewise linear, non-decreasing function, and

π(n)− π(n− g(n)− 1) ≥ 1 for all integers n ≥ 2.

Conjecturally one has g(x) = O(log2 x); the best result to date, due to Baker, Harman, and
Pintz [2], is that g(x) ≤ x21/40 for all sufficiently large x.

Theorem 1. The following conclusions hold:

(i) an ≥ 0 and an −max{1, 2π(an)} ≤ an+1 ≤ an + 1 for all n ≥ 1;

(ii) an = O
(
√

g(n)/ log g(n)
)

for all n ≥ 5;

(iii) for each k ≥ 0, there are infinitely many n such that an = k;

(iv) n− g(n) ≤ sn ≤ n− 2 for all n ≥ 9;

(v) sn = n− g(n) for infinitely many n.

Proof. We begin with the upper estimate in (iv). Suppose that sn ≤ n holds for some n ≥ 0;
note that this is the case for n = 0. By definition we have

sn+1 = sn + an+1 = sn + π(n+ 1)− π(sn), (1)

so that
n+ 1− sn+1 =

(

n+ 1− sn
)

−
(

π(n+ 1)− π(sn)
)

. (2)

Since sn ≤ n, the right-hand side is non-negative, and in fact it counts the number of non-
prime integers in the interval (sn, n+1]. Hence we have sn+1 ≤ n+1. By induction it follows
that sn ≤ n for all n ≥ 0.

Next we improve this to sn ≤ n − 2. Suppose n ≥ 9 is such that sn+i ≤ n + i − 2 for
i ∈ {0, 1, 2, 3}; we verify this directly for n = 9. If sn+4 ≥ n+ 3 then we have

n+ 4− sn+4 ≤ 1 =⇒ (sn+3, n+ 4] contains at most one composite number

=⇒ n+ 2 and n+ 4 are prime

=⇒ n+ 3, n+ 1, n and n− 1 are composite

=⇒ sn+3 ≥ n+ 1 =⇒ n+ 3− sn+3 ≤ 2

=⇒ (sn+2, n+ 3] contains at most two composite numbers
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=⇒ sn+2 ≥ n =⇒ n+ 2− sn+2 ≤ 2

=⇒ (sn+1, n+ 2] contains at most two composite numbers

=⇒ sn+1 ≥ n− 1 =⇒ n+ 1− sn+1 ≤ 2

=⇒ (sn, n+ 1] contains at most two composite numbers

=⇒ sn ≥ n− 1.

This contradicts the assumption that sn ≤ n−2, so we must have sn+4 ≤ n+2. By induction
it follows that sn ≤ n− 2 for all n ≥ 9.

Next, for all n ≥ 1 we have

an = π(n)− π(sn−1) ≥ π(n)− π(n− 1) ≥ 0. (3)

It follows that sn is non-decreasing, and thus

an+1 − an =
(

π(n+ 1)− π(n)
)

−
(

π(sn)− π(sn−1)
)

≤ π(n+ 1)− π(n) ≤ 1. (4)

Moreover, by Montgomery and Vaughan’s upper estimate [8, Corollary 2] for primes in short
intervals, we have

an+1 ≥ an −
(

π(sn−1 + an)− π(sn−1)
)

≥ an −max{1, 2π(an)}.

This proves (i). We also note that the lower estimate can be improved to an+1 ≥ an − π(an)
for n ≥ 4 and 2 ≤ an ≤ 1731, by work of Gordon and Rodemich [6].

Let n be a natural number satisfying

sn ≥ n− g(n). (5)

Note that this holds for n = 3. If sn ≥ n+ 1− g(n+ 1) then

sn+1 ≥ sn ≥ n+ 1− g(n+ 1).

Otherwise we have n− g(n) ≤ sn ≤ n− g(n+ 1), so that

sn+1 = sn + π(n+ 1)− π(sn) ≥ n− g(n) + π(n+ 1)− π(n− g(n+ 1)).

By the definition of g we have π(n+ 1)− π(n− g(n+ 1)) ≥ 1, so

sn+1 ≥ n+ 1− g(n) ≥ n+ 1− g(n+ 1).

Thus, in either case, (5) holds with n replaced by n+1. By induction, (5) holds for all n ≥ 3,
and this completes the proof of (iv).

Turning to (ii), let n be a natural number, and suppose that k = an ≥ 3. Applying (4)
inductively, we see that

an−i ≥ k −
(

π(n)− π(n− i)
)

for all i < n. (6)
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Let h ≥ 2 be the largest integer such that π(h) ≤ k/3. Taking i = n− 1 in (6) we see that
π(n) ≥ k ≥ 3π(h) > π(h), whence h < n. Moreover, by the prime number theorem we have
h ≍ k log k. By [8, Corollary 2], for any non-negative integer i ≤ h we have

π(n)− π(n− i) ≤ max{1, 2π(i)} ≤ 2π(h) ≤ 2k/3,

so that an−i ≥ k/3. Therefore,

sn − sn−h =
h−1
∑

i=0

an−i ≥
hk

3
≫ k2 log k.

By (iv), sn − sn−h = h+O(g(n)) ≪ k log k + g(n). Thus, k2 log k ≪ k log k + g(n), and (ii)
follows.

Next, let p, q be a pair of consecutive odd primes attaining a maximal prime gap. Define
sequences (s′n)n≥p and (dn)n≥p by

s′p = p, s′n+1 = s′n + π(n+ 1)− π(s′n) for n ≥ p, (7)

and
dn = s′n − sn for n ≥ p.

Subtracting (7) and (1), we find that

dn+1 = dn −
(

π(sn + dn)− π(sn)
)

for n ≥ p.

It follows that 0 ≤ dn+1 ≤ dn, so that sn ≤ s′n for all n ≥ p. From (7) we see that
s′p+1 = s′p+2 = · · · = s′q−1 = p. Hence

q − 1− sq−1 ≥ q − 1− s′q−1 = q − 1− p = g(q − 1),

and by (iv) it follows that sq−1 = q − 1− g(q − 1). This proves (v).

(Moreover we have sq−1 = p, sq = p+ 1, sq+1 = p+ 2, and if p > 3 then

max{sn : sn < p} = p− 1;

thus sn + h is infinitely often prime for each h ∈ {−2,−1, 0, 1}. By the estimate of Ford et
al. on large prime gaps [4], we also see that n− sn ≫ log n log log n log log log logn

log log logn
infinitely often.)

Next we prove (iii). First note that if there were only finitely many n with an = 0 then
we would have sn ≥ n − O(1), contradicting (v); hence (iii) is true for k = 0. Since an can
increase by at most 1 at each step and there are infinitely many n with an = 0, to complete
the proof of (iii) it suffices to show that (an)n≥1 is unbounded.
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To that end, for a given integer m ≥ 2 we apply the main result of Banks, Freiberg, and
Turnage-Butterbaugh [3] to find a sequence of m + 1 consecutive primes with a large gap
followed by a relatively dense cluster. Precisely, let k = km+1 in the notation of [3], and set
bj = −mk+1−j for j = 1, . . . , k. Then it is easy to see that the polynomial

∏k
j=1(x+ bj) has

no fixed prime divisor, so by [3, Theorem 1] there exists a subset {h0, . . . , hm} ⊆ {b1, . . . , bk}
such that x+ h0, . . . , x+ hm are consecutive primes for infinitely many x ∈ Z.

Fix any such x, denote the corresponding primes by p0, . . . , pm, and write hi = −mk+1−ji ,
where 1 ≤ j0 < · · · < jm ≤ k. Then

(m− 1)(hm − h1) = (m− 1)(mk+1−j1 −mk+1−jm)

< mk+2−j1 −mk+1−j1 ≤ mk+1−j0 −mk+1−j1 = h1 − h0,

so that
p1 − p0 > (m− 1)(pm − p1) ≥ (m− 1)pm − (p1 + p2 + · · ·+ pm−1).

As in the proof of (v) above, we define sequences (s′n)n≥p1 , (a
′
n)n>p1 , and (dn)n≥p1 by

s′p1 = p1, s′n+1 = s′n + π(n+ 1)− π(s′n) for n ≥ p1,

a′n = s′n − s′n−1 for n > p1,

and
dn = s′n − sn for n ≥ p1.

As above we find that 0 ≤ dn+1 ≤ dn, so

a′n = an + dn − dn−1 ≤ an for n > p1.

A straightforward inductive argument now shows that

s′n = p0 for p0 ≤ n < p1,

s′n = p0 + n− p1 + 1 for p1 ≤ n < p2,

s′n = p0 + (p2 − p1) + 2(n− p2 + 1) for p2 ≤ n < p3,

...

s′n = p0 + (p2 − p1) + 2(p3 − p2) + · · ·
+ (m− 2)(pm−1 − pm−2) + (m− 1)(n− pm−1 + 1) for pm−1 ≤ n < pm.

In particular,
s′pm−1 = p0 + (m− 1)pm − (p1 + p2 + · · ·+ pm−1) < p1,

so that
apm ≥ a′pm = π(pm)− π(s′pm−1) = m.

Since m was arbitrary, this completes the proof of (iii).
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2 Some conjectures

It follows from (ii) and (iv) that

lim
n→∞

an
n

= 0 and lim
n→∞

sn
n

= 1. (8)

We further conjecture the following.

Conjecture 2.

(A) For any k ≥ 0, the set {n ≥ 1 : an = k} has a positive density δk, satisfying

δ1 > δ0 > δ2 > δ3 > δ4 > · · ·

(B) lim infn→∞(n− sn) < ∞.

(C) For any integer b ≥ 2, the number A(b) =
∑

n≥1 anb
−n ∈ R is transcendental.

Part (A) of the conjecture is based on the numerical data shown in Table 2; note that
the convergence is very slow, so it is difficult to measure the densities precisely, and in any
case we do not expect them to be recognizable constants. In connection with (B), it seems
likely from numerical computations that sn = n−2 infinitely often; by (iv) this would imply
that lim infn→∞(n − sn) = 2. If (an)n≥1 were an automatic sequence then (C) would follow
from the main result of Adamczewski, Bugeaud, and Luca [1].

k

i 0 1 2 3 4 5

1 4 5 1 0 0 0
2 21 65 14 0 0 0
3 219 577 195 9 0 0
4 2663 4990 2065 275 7 0
5 27671 48507 20265 3287 257 13
6 284408 475421 199765 36779 3443 181
7 2918543 4650175 1991476 395418 41464 2800
8 29607905 45960839 19809319 4108991 473258 37723
9 299530722 455176760 197289962 42282008 5235205 456865
10 3022594978 4517557589 1965289965 432413509 56484650 5291355
11 30450733004 44894741076 19590459294 4400511075 599692839 59396517
12 306392386246 446604857931 195374867235 44626996156 6295691446 652786704
13 3080065196771 4446030725007 1949223822125 451486351994 65543491929 7053078276
14 30940285500711 44287714979733 19452797930000 4559198048883 678055064108 75277782875

Table 2: Values of #{n ≤ 10i : an = k} for 0 ≤ k ≤ 5 and 1 ≤ i ≤ 14.

In addition to the numerical evidence noted above, we provide the following theoretical
evidence in support of the conjectures.
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Theorem 3.

(i) #{n ≥ 1 : an = k} has positive upper density for at least one k ∈ {0, 1}.

(ii) We have #{n ≤ x : an = 0} ≫ x log log x
log2 x

for all x ≥ 3 under the hypothesis that

g(x) ≪ (log x)C for some C > 1, and #{n ≤ x : an = 0} ≥ exp
(

(log x)
1

4
−o(1)

)

unconditionally.

(iii) lim infn→∞
n−sn
logn

≤ 1.

(iv) The number A(b) is irrational.

2.1 Proof of (i) and (ii)

We begin with an overview of the proof. First we show that if an has few zero terms then
there must exist many long intervals I such that an = 1 for all n ∈ I. This immediately
yields (i), and in turn implies that c := n−sn is constant for n+1 ∈ I. In view of (4), for any
n such that n, n+ 1 ∈ I and n+ 1 is prime, sn must also be prime. Thus, the constellation
of primes occurring in I is repeated on the shifted interval {n − c : n, n + 1 ∈ I}. Now
the idea is to use results from the Selberg sieve (in particular [5, Lemma 5.1]) that bound
the frequency of such coincidences of the constellations, and this results in a contradiction
if an has too few zeros. There is a tradeoff between increasing the dimension of the sieve,
which reduces the overall frequency asymptotically, and the combinatorial price paid for that
increase. Optimizing the dimension then yields (ii).

Next we set some notation to be used in the proof. Let x > 0 be a large real number,
and let r, T ∈ Z be parameters, to be specified in due course, satisfying

2 ≤ r ≤ T ≤ r(log x)
r−1

4r+2/ log log x.

We regard r as fixed throughout the proof, so the meaning of ≪, O, o, “sufficiently large”,
etc. may depend implicitly on r. Let K ≥ 1 be a large (absolute) constant, and define

Hj = Kj2(log x)(log T ) for 0 ≤ j ≤ T.

Next, set N = ⌊x⌋ and

Nk = #{1 ≤ n ≤ x : an = k} for k ≥ 0.

Then
N0 +N1 +N2 + · · · = N and N1 + 2N2 + · · · = sN ,

so that
N0 − (N2 + 2N3 + · · · ) = N − sN > 0.

Thus
N0 + (N2 +N3 + · · · ) ≤ N0 + (N2 + 2N3 + · · · ) < 2N0.
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This also shows that N1 + 2N0 > N , so that max{N0, N1} > 1
3
N . It follows that at least

one of the sets {n ≥ 1 : an = k} for k ∈ {0, 1} has upper density ≥ 1
3
. This proves (i).

Next, setting N = {1 ≤ n ≤ x : an 6= 1}, we have #N < 2N0. Let

L = {ℓ ∈ Z : 1 ≤ ℓ ≤ x and an 6= 1 for some n ∈ [ℓ− 1, ℓ+HT ] ∩ Z>0}.

By [8, Corollary 2], the number of primes contained in L is at most

2π(HT + 2)(#N + 1) ≤ 4π(HT + 2)N0.

Suppose, for the sake of contradiction, that 4π(HT + 2)N0 ≤ 1
2
π(x). From now on we

consider primes p ∈ [1, x] \ L, which is at least half of the primes p ≤ x. These primes have
the property that an = 1 for all integers n satisfying p− 1 ≤ n ≤ p+HT .

We need two easy facts about primes.

Lemma 4. Let pi denote the ith prime. For a suitable choice of the constant K and all suf-
ficiently large x, there are at most 1

4
π(x) primes pi ≤ x for which there exists j ∈ {1, . . . , T}

satisfying pi+j − pi > Hj.

Proof. Fix j ∈ {1, . . . , T}. Then, since j ≤ T = o(π(x)), we have

π(x)
∑

i=1

(pi+j − pi) <

π(x)+j
∑

k=π(x)+1

pk = (1 + o(1))jx,

by the prime number theorem. Therefore, the number of i such that pi+j − pi > Hj is
≪ jx/Hj = x/(jH1). Summing this over all j ≤ T , we get a bound of

≪ x

H1

∑

j≤T

1

j
≪ x log T

H1

≪ π(x)

K
.

For K sufficiently large this is less than 1
4
π(x).

Lemma 5. For a fixed choice of r ≥ 2, there are at most o(π(x)) primes pi ≤ x satisfying
the following conditions:

(i) pi+j − pi ≤ Hj for all j ∈ {0, . . . , T};

(ii) there are vectors (j1, . . . , jr), (j
′
1, . . . , j

′
r) ∈ Zr such that

0 ≤ j1 < j2 < · · · < jr ≤ T, 0 ≤ j′1 < j′2 < · · · < j′r ≤ T,

and
pi+j1 − pi+j′

1
= · · · = pi+jr − pi+j′r 6= 0.
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Proof. Let pi be such a prime, and set

hj = pi+j − pi for j ∈ {0, . . . , T}.

Let (j1, . . . , jr), (j
′
1, . . . , j

′
r) be as in (ii), and write

{j1, . . . , jr} ∪ {j′1, . . . , j′r} = {ℓ1, . . . , ℓk},

with ℓ1 < · · · < ℓk. From our hypotheses it is clear that r + 1 ≤ k ≤ 2r. Let

d = hj1 − hj′
1
= · · · = hjr − hj′r

denote the common difference. Swapping (j1, . . . , jr) and (j′1, . . . , j
′
r) if necessary, we may

assume without loss of generality that d > 0, and it follows that js > j′s for each s ∈
{1, . . . , r}.

For a fixed value of k, there are O(T k) ways of choosing {j1, . . . , jr} and {j′1, . . . , j′r} of
total cardinality k. If k = 2r then for each choice of indices, there are at most Hr+1

T choices
for the pair of vectors v = (hj1 , . . . , hjr), v

′ = (hj′
1
, . . . , hj′r), since v′ is determined by v and

d. If k < 2r then there are 2r − k pairs (s, t) such that js = j′t; for each pair we have
d = hjt − hj′t

= hjt − hjs , so that hjt is determined by hjs and d. Hence, in general there are

at most Hk+1−r
T choices for v, v′ for a given choice of indices. Thus, in total we find

≪ T kHk+1−r
T ≪ T 3k+2−2r((log T )(log x))k+1−r

choices for v, v′ for our fixed k.
Let us first suppose that ℓ1 > 0. Then n = pi is an integer such that the k + 1 distinct

linear forms n, n+hℓ1 , . . . , n+hℓk are all prime. By [9, Ch. II, Satz 4.2], the number of such
n ≤ x is

≪k
x

(log x)k+1

(

E

ϕ(E)

)k

, where E =
∏

1≤s≤k

hℓs ·
∏

1≤s<t≤k

(

hℓt − hℓs

)

.

Since hℓ1 , . . . , hℓk ≤ HT ≪ log2 x, we have E
ϕ(E)

≪ log log log x. Hence, the number of
possibilities for pi is

≪ T 3k+2−2r(log T )k+1−rx(log log log x)k

(log x)r
≤ T 4r+2(log T )r+1x(log log log x)2r

(log x)r

≪ x(log log log x)2r

(log x)(log log x)3r+1
= o(π(x)).

If ℓ1 = 0 then we lose one linear form, but gain from the fact that j′1 and hj′
1
are fixed

at 0. This effectively replaces k by k − 1 in the above analysis, so we again find o(π(x))
possibilities for pi. Finally, summing over k ∈ {r + 1, . . . , 2r} concludes the proof of the
lemma.
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The following is Lemma 5.1 of Ford, Konyagin, and Luca [5].

Lemma 6. There is a positive constant δ so that the following holds. Let a1, . . . , ak be
positive integers, let b1, . . . , bk be integers and let ξ(p) be the number of solutions of

k
∏

i=1

(ain+ bi) ≡ 0 (mod p).

If x ≥ 10, 1 ≤ k ≤ δ
log x

log log x
, and

B :=
∑

p

(

k − ξ(p)

p

)

log p ≤ δ log x,

then the number of integers n ≤ x for which a1n+ b1, . . . , akn+ bk are all prime and > k is

≪ 2kk!Sx

(log x)k
exp

(

O

(

kB + k2 log log x

log x

))

, where S =
∏

p

(

1− ξ(p)

p

)(

1− 1

p

)−k

. (9)

We are now ready to go. As we said, we work with primes pi ≤ x that are not in L.
The number of them is at least 1

2
π(x). We discard all pi such that pi+j − pi > Hj holds

for some j = 1, . . . , T . By Lemma 4, there are at most 1
4
π(x) such primes. Next, applying

Lemma 5, by removing a further o(π(x)) values of pi, we may assume that as j and j′ range
over {0, . . . , T}, each non-zero difference pi+j − pi+j′ occurs with multiplicity at most r − 1.
After this we are left with at least (1

4
− o(1))π(x) primes pi.

Set c = pi − spi . By Theorem 1(iv) and the definition of N0, we have

0 < c ≤ M := min{g(x), N0}.

Now consider pi, pi+1, . . . , pi+T . These are of the form pi+j = pi + hj for some hj ≤ Hj,
as in the proof of Lemma 5. On the other hand, pi+T − pi ≤ HT , and since an = 1 for
pi − 1 ≤ n ≤ pi + HT , we have sn = n − c for pi − 2 ≤ n ≤ pi+T . Applying (4) with
n = pi+j − 1, we have

0 = api+j
− api+j−1 =

(

π(pi+j)− π(pi+j − 1)
)

−
(

π(spi+j−1)− π(spi+j−2)
)

= 1−
(

π(pi+j − 1− c)− π(pi+j − 2− c)
)

.

Hence, pi+j − 1− c = pi + hj − c− 1 is prime.
Therefore, n = pi is such that n+ hj and n+ hj − c− 1 are all primes for j = 0, . . . , T .

This is 2T + 2 linear forms, but they might not all be distinct. Let m be the cardinality of
the intersection

{hj : 0 ≤ j ≤ T} ∩ {hj − c− 1 : 0 ≤ j ≤ T}.
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Then there exist j0 < j1 < · · · < jm and j′0 < j′1 < · · · < j′m with

hj1 − hj′
1
= · · · = hjm − hj′m = c+ 1,

so that
pi+j1 − pi+j′

1
= · · · = pi+jm − pi+j′m > 0.

By our construction, we must have m < r; in particular, there are at least 2T +3−r distinct
forms among the n+ hj and n+ hj − c− 1 for j = 0, . . . , T . Hence we may apply Lemma 6
for some k ∈ [2T + 3− r, 2T + 2] ∩ Z.

We need to check the hypothesis on B and estimate some of the parameters in (9). For
B, we partition the primes into S1 ∪ S2 ∪ S3, where

S1 =
{

p : p ≤ log2 x or p | (c+ 1)
}

, S2 = {p : ξ(p) < k} \ S1, S3 = {p : ξ(p) = k} \ S1.

Since c ≤ x, c+ 1 has O(log x/ log log x) prime factors exceeding log2 x. Hence,

∑

p∈S1

(

k − ξ(p)

p

)

log p ≤ k
∑

p≤log2 x

log p

p
+ k

∑

p|(c+1)

p>log2 x

log p

p

≪ T log log x+
T

log x
≪ T log log x.

For any prime p ∈ S2, there is a double solution n modulo p to
∏

0≤j≤T

(n+ hj) ·
∏

0≤j≤T
hj−c−1/∈{h0,...,hT }

(n+ hj − c− 1) ≡ 0 (mod p).

If the double root comes from the forms n + hj for j = 0, . . . , T , we get that p divides
hj2 − hj1 for some j1, j2 with 0 ≤ j1 < j2 ≤ T . But this is impossible since p > log2 x and
hj ≤ HT < log2 x for large x. The same argument shows that the double solution cannot
come from two factors of the form n + hj − c − 1 for j ∈ {0, . . . , T}. So any double root
must appear once from the first set of forms and once from the second, so that p divides
c + 1 + hj′ − hj 6= 0 for some j, j′ ∈ {0, . . . , T}. These numbers all lie in the interval
[c+1−HT , c+1+HT ], and since c ≤ x, each has O(log x/ log log x) prime factors exceeding
log2 x. Thus,

#S2 ≪
HT log x

log log x
≪ log3 x.

Moreover, writing m = k − ξ(p), there exist j1 < · · · < jm, j
′
1 < · · · < j′m such that

hj1 − hj′
1
≡ · · · ≡ hjm − hj′m ≡ c+ 1 (mod p).

Since p ∤ (c+ 1) and 2HT + 1 < log2 x for large x, this implies that

hj1 − hj′
1
= · · · = hjm − hj′m 6= 0.
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Thus we have m < r, so that ξ(p) ≥ k + 1− r. Therefore

∑

p∈S2

(

k − ξ(p)

p

)

log p ≤ (r − 1)
∑

log2 x<p≤O(log3 x)

log p

p
≪ log log x.

Finally, the primes in S3 do not contribute to B. Thus, the bound on B holds, and in fact
B = O(T log log x).

We now estimate (9). Since B = O(T log log x), the factor involving exp tends to 1 as
x → ∞, so it is smaller than 2 for large x. In the expression for S, the primes p ∈ S1

contribute at most

(

c+ 1

ϕ(c+ 1)

)k
∏

p≤log2 x

(

1− 1

p

)−k

= O(log log x)k exp

(

k
∑

p≤log2 x

O(1)

p

)

= exp
(

O(T log log log x)
)

.

The contribution from p ∈ S2 is at most

∏

p∈S2

(

1− k + 1− r

p

)(

1− 1

p

)−k

=
∏

p∈S2

(

1− k + 1− r

p

)(

1 +
k

p
+O

(

k2

p2

))

=
∏

p∈S2

(

1 +O

(

1

p

))

= exp

(

∑

p∈S2

O(1)

p

)

= eO(1).

Similarly, from p ∈ S3 we get a contribution of

∏

p∈S3

(

1− k

p

)(

1− 1

p

)k

= exp

(

k
∑

p>log2 x

O(1)

p2

)

= exp

(

O

(

k

log x

))

= eO(1).

Thus, in total we have
S = exp

(

O(T log log log x)
)

.

Applying Lemma 6, the number of n ≤ x of this form is

≪ 2kk!x

(log x)k
exp
(

O(T log log log x)
)

.

Since 2k ≤ 4T + 4 < log x for large x, this is largest when k = 2T + 3− r. Using also that

22T+3−r(2T + 3− r)! = T 2T+8−4reO(r log T )+O(T ) = T 2T+8−4reO(T ),

we obtain

≪ T 2T+8−4rπ(x)

(log x)2T+2−r
exp
(

O(T log log log x)
)

.
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This is for fixed c, h1, . . . , hT . The number of choices for these parameters is at most

MH1 · · ·HT = M(T !)2HT
1 ≤ MT 2T (log x)T exp

(

O(T log log log x)
)

.

Thus, in total the number of possibilities is

≪ Mπ(x)

exp
(

(T + 2− r) log
(

log x
T 4

)) exp
(

O(T log log log x)
)

.

This must account for at least (1
4
− o(1))π(x) primes, so for sufficiently large x we have

M = min{g(x), N0} ≫ exp

(

(T + 2− r) log

(

log x

T 4

)

−O(T log log log x)

)

.

If g(x) ≪ (log x)C for some C > 1, then taking r = 2 and T = ⌊C⌋ + 1 results in a
contradiction for sufficiently large x. Hence, our hypothesis that 4π(HT + 2)N0 ≤ 1

2
π(x)

must be false, and it follows that N0 ≫ x(log log x)/ log2 x.
On the other hand, assuming that N0 ≪ x/ log2 x (and making no hypothesis on g(x)),

we can take T = ⌊r(log x) r−1

4r+2/ log log x⌋, and we conclude that N0 ≥ exp
(

(log x)
r−1

4r+2

)

for all

sufficiently large x. Since this is true for every r ≥ 2, we have N0 ≥ exp
(

(log x)
1

4
−o(1)

)

.

2.2 Proof of (iii)

Consider positive integers M < N , and let h = min{n− sn : M ≤ n < N}. Then

sN − sM =
N−1
∑

n=M

an+1 =
N−1
∑

n=M

(

π(n+ 1)− π(sn)
)

≥
N−1
∑

n=M

(

π(n+ 1)− π(n− h)
)

=
h
∑

i=0

(

π(N − i)− π(M − i)
)

≥ (h+ 1)
(

π(N − h)− π(M)
)

.

By Theorem 1(iv) and the result of Baker, Harman, and Pintz [2], we have

h ≤ g(M) ≤ M21/40 for sufficiently large M.

Choosing N = ⌈M +M7/12⌉ and applying Heath-Brown’s asymptotic [7] for primes in short
intervals, we have

π(N − h)− π(M) = (1 + o(1))
N −M

logM
as M → ∞.

On the other hand,

sN − sM ≤ N − (M − g(M)) ≤ (1 + o(1))(N −M),

so that h ≤ (1+ o(1)) logM . Thus, every sufficiently large interval [M,M +M7/12) contains
an integer n with n− sn ≤ (1 + o(1)) log n.
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2.3 Proof of (iv)

Let N be a large natural number, and write {1, . . . , N} as a disjoint union I1 ∪ · · · ∪ IJ
of intervals Ij such that an is constant on each Ij and J is as small as possible. Setting
mj = max Ij for j ≤ J , we have either mj = N or amj+1 6= amj

. From (4) we see that if
an+1 6= an then either π(n + 1) 6= π(n) or π(sn) 6= π(sn−1). Since both sequences π(n) and
π(sn−1) are non-decreasing and sn ≤ n for all n, it follows that

J ≤ 1 + #{n < N : an+1 6= an} ≤ 1 + 2π(N).

Thus, for at least one of the intervals, say Ij = {n1, . . . , n2}, we have

#Ij = n2 − n1 + 1 ≥ N

1 + 2π(N)
.

By the prime number theorem, for any fixed ε > 0 this exceeds (1
2
−ε) logN for all sufficiently

large N .
Suppose A(b) = u/v is rational. Then, multiplying by v(b− 1)bn1−1, we obtain

u(b− 1)bn1−1 = v(b− 1)bn1−1

∞
∑

n=1

an
bn

.

Let c = an1
. Since an is constant for n1 ≤ n ≤ n2, we have

u(b− 1)bn1−1 = v(b− 1)

n1−1
∑

n=1

anb
n1−1−n + v(b− 1)c

n2
∑

n=n1

bn1−1−n + v(b− 1)
∑

n≥n2+1

anb
n1−1−n

= v(b− 1)

n1−1
∑

n=1

anb
n1−1−n + vc(1− bn1−n2−1) + v(b− 1)bn1−n2−1

∑

m≥1

an2+m

bm
.

Hence,

vbn1−n2−1

(

(b− 1)
∑

m≥1

an2+m

bm
− c

)

= u(b− 1)bn1−1 − v(b− 1)

n1−1
∑

n=1

anb
n1−1−n − vc (10)

is an integer.
On the other hand, since 0 ≤ an2+m ≤ c+m for m ≥ 1, we have

−c ≤ (b− 1)
∑

m≥1

an2+m

bm
− c ≤ (b− 1)

∑

m≥1

c+m

bm
− c =

b

b− 1
.

Hence the left-hand side of (10) is bounded in modulus by

(c+ 2)v

bn2−n1+1
≤ (c+ 2)v

N ( 1
2
−ε) log b

≪ v
√

g(N)

N ( 1
2
−ε) log b

.
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From Baker, Harman, and Pintz [2], we have g(N) ≤ N21/40 for sufficiently large N . Since
log b ≥ log 2 > 21

40
, for small enough ε this expression tends to 0 as N → ∞. Since it has to

be an integer, it must be 0 for all sufficiently large N .
Therefore,

∑

m≥1

an2+m

bm
=

c

b− 1
=
∑

m≥1

c

bm
.

By Theorem 1(iii) there exists n3 > n2 such that an3
= 0. Thus, we have

∞
∑

j=1

an3+j

bn3+j
=
∑

m≥1

c

bm
−

n3−n2−1
∑

m=1

an2+m

bm
=

n3−n2−1
∑

m=1

c− an2+m

bm
+

cbn2−n3+1

b− 1
.

Multiplying both sides by (b− 1)bn3−1, we see that the right-hand side is an integer, so

(b− 1)
∑

j≥1

an3+j

bj+1
∈ Z.

On the other hand, we have 0 ≤ an3+j ≤ j, and by Theorem 1(iii) both inequalities are strict
for infinitely many j. Hence,

0 < (b− 1)
∑

j≥1

an3+j

bj+1
< (b− 1)

∑

j≥1

j

bj+1
= 1.

This is a contradiction, so A(b) must be irrational.

3 Generalizations and suggestions for further work

The sequence an admits a vast generalization via sequences of the form

af (n) = π(f(n))− π
(
∑n−1

k=1 af (k)
)

for various functions f . For instance, choosing f(n) = tn for a fixed integer t > 0, our proof
of (8) can be generalized to show that

lim
n→∞

af (n)

n
= 0 and lim

n→∞

sf (n)

n
= t,

where sf (n) =
∑n

k=1 af (k) denotes the summatory function. One can pose many of the same
questions and conjectures for these sequences.

Another possible generalization is to consider the same recurrence formula with different
initial conditions. However, it turns out that this offers no increase in generality, in the sense
that if (a′n)n≥1 is any sequence satisfying

a′n = π(n)− π
(
∑n−1

k=1 a
′
k

)

for n > n0

16



for some n0 ≥ 0, then a′n = an for all sufficiently large n. (The same proof shows that taking
f(n) = n + c for some c ∈ Z in the above, we have af (n) = an+c for sufficiently large n.)
To see this, let s′n be the summatory sequence of a′n, and set dn = s′n − sn. Then, as in the
proof of Theorem 1(v), we find that |dn+1| ≤ |dn|. From that proof we also see that each of
the sequences (sn)n≥1 and (sn + 1)n≥1 assumes infinitely many prime values, and it follows
that dn eventually reaches 0. Thus s′n = sn and a′n = an for sufficiently large n.

At the same time, there are several possible avenues for further research on (an). We
conclude with a few speculative suggestions.

1. Assuming Cramér’s conjecture, by Theorem 1(ii) we have

#{n ≤ x : an 6= 0} ≥
∑

n≤x an

maxn≤x an
≫ x

√
log log x

log x
.

This could be improved with some information on higher moment statistics of an. For
instance, can one give a non-trivial upper bound for

∑

n≤x a
2
n?

2. It is easy to see that the difference sequence an+1−an is almost always 0, so an has many
long constant runs. (This idea was used in the proof of Theorem 3(iv).) Assuming
either Conjecture 2(A) or Dickson’s conjecture, one can see that for any k ≥ 0 there
are arbitrarily long runs of n with an = k. Unconditionally, by Theorem 3(i) this holds
for at least one k ∈ {0, 1}, and from the proof of Theorem 1(iii) we get arbitrarily long
runs on which an is both constant and arbitrarily large. Can one give an unconditional
proof of long constant runs for a specific value of k?

3. The previous question admits many generalizations. For instance, assuming Dickson’s
conjecture, one can see that there are arbitrarily long arithmetic progressions n, n +
d, . . . , n+kd such that an+jd = j for j = 0, . . . , k. Can this be proved unconditionally?
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