

Journal of Integer Sequences, Vol. 24 (2021), Article 21.7.8

Explicit Estimates Involving the Primorial Integers and Applications

Safia Aoudjit and Djamel Berkane University of Blida Department of Mathematics P. O. Box 270, Route de Soumaa Blida Algeria safiaoudjit90gmail.com djaber720univ-blida.dz

Pierre Dusart XLIM UMR 7252 Faculté des sciences et techniques Université de Limoges P. O. Box 123, avenue Albert Thomas 87060 Limoges Cedex France pierre.dusart@unilim.fr

Abstract

In this paper, we propose several explicit bounds for the function that counts the number of primorial integers less than or equal to a given positive real number. As applications, we obtain an effective version of Pósa's inequality, and a method to estimate the maximal value of the sum over prime divisors $\sum_{p|q} f(p)$ for a positive decreasing function f, when q ranges over all integers less than x. In particular, we improve the upper bound for the maximal value of $\sum_{p|q} \frac{\log p}{p-1}$.

1 Introduction and statement of results

As usual, let $(p_k)_{k\geq 1}$ denote the increasing sequence of prime numbers, and let N_k be the primorial (prime-factorial) integer of index k, the product of its k first terms. The integers N_k are the terms of the sequence <u>A002110</u> in the *On-line Encyclopedia of Integer Sequences* (OEIS) [22], and play an important role in number theory from Euclid's proof of the infinity of primes to the remarkable equivalences of the Riemann hypothesis due to Nicolas [13] and Robin [19].

The approximations linked to N_k have found some unexpected applications in various areas of number theory; see the papers of Betts [5], Planat et al. [16] and Zhang [23]. However, the most frequently used results concern their logarithm $\theta(p_k)$ where θ denotes the Chebyshev function, here we cite the recent papers of Axler [1] and Dusart [8].

The principal object of this manuscript is to study the function K(x) which counts the number of primorial integers less than or equal to x; for instance K(1) = 0, K(2) = 1, K(3) = 1, K(5) = 1, K(6) = 2,... and a table of some large values of x is given in Section 7.

The function K(x) is very close to $\pi(x)$ (the usual prime counting function) since it will be shown in what follows that $K(x) \approx \pi(\log x)$. It often appears implicitly as an important key in the demonstration of several results; see, for instance, Balazard [2] and Hassani [11].

We let \log_i denote the *i*-fold iterated logarithm. The asymptotic expansion of K(x) is easy to evaluate. Let us show this using less precise results than those in Balazard [2]:

Theorem 1 (Balazard). For every real number $x \ge 2$ and every integer $m \ge 0$, we have

$$K(x) = \frac{\log x}{\log_2 x} \left(\sum_{j=0}^m \frac{j!}{\log_2^j x} + O\left(\frac{1}{\log_2^{m+1} x}\right) \right).$$

Proof. Since for a real $x \ge 2$, the integer K := K(x) is also given by the inequalities

$$\theta(p_K) \le \log x < \theta(p_{K+1}),$$

using the prime number theorem in the forms

$$\theta(t) = t + O_m\left(\frac{t}{\log^{m+2} t}\right)$$

and

$$\pi(t) = \operatorname{li}(t) + O_m\left(\frac{t}{\log^{m+2} t}\right),$$

where li(x) indicates the usual logarithmic integral function, one gets successively

$$p_K = \log x + O_m \left(\frac{\log x}{\log_2^{m+2} x} \right),$$

$$K(x) = \pi(p_K) = \operatorname{li}(\log x) + O_m \left(\frac{\log x}{\log_2^{m+2} x} \right)$$

Finally, by substituting $\log x$ in the classic asymptotic expansion of li(x) below

$$\operatorname{li}(x) = \int_{2}^{x} \frac{dt}{\log t} = \frac{x}{\log x} \left(0! + \frac{1!}{\log x} + \dots + \frac{m!}{\log^{m} x} + O\left(\frac{1}{\log^{m+1} x}\right) \right),$$
ash the result.

we establish the result.

Consequently, the asymptotic expansion of the function xK(x) corresponds to a type of formula among a large class of expansions related to the iterated logarithms studied in Belbachir and Berkane [4] to which an asymptotic expansion for the sum of inverses is determined. The following proposition is a straightforward application of Belbachir and Berkane [4, Theorem 1]:

Proposition 2. For every real number $x \ge 2$ and every integer $m \ge 2$, we have

$$\sum_{2 \le n \le x} \frac{1}{nK(n)} = \frac{1}{2} \log_2^2 x - \log_2 x - \log_3 x + C + \frac{\delta_2}{\log_2 x} + \dots + \frac{\delta_m}{(m-1)\log_2^{m-1} x} + O\left(\frac{1}{\log_2^m x}\right),$$

where C is an absolute constant, and $\{\delta_j\}_{j\geq 0}$ is the sequence <u>A233824</u> in the OEIS [22] given by the recurrence relation $\delta_n + 1!\delta_{n-1} + 2!\delta_{n-2} + \cdots + (n-1)!\delta_1 = n \cdot n!$.

In this article, by comparing K(x) with $\pi(\log x)$ over large and special ranges, our first result (see Theorem 10) is an effective version of an inequality of Pósa [15], where he proved that for all n > 1 there is a k_n such that $N_k > p_{k+1}^n$ for all $n \ge k_n$. We describe an algorithm calculate k_n for every n.

The second result (see Theorem 19) is a good improvement of an approximation of the greatest sum over prime divisors $\mathfrak{L}(q) = \sum_{p|q} \frac{\log p}{p-1}$ when q ranges over all integers not exceeding x. The method employed to prove this theorem can also be applied to evaluate the maximum of sum of type $\mathfrak{L}_f(q) = \sum_{p|q} f(p)$ for any positive decreasing function f on $(1, \infty)$. In Section 5, we show that the maximal value of $\mathfrak{L}_f(q)$ is $\mathfrak{L}_f(N_{K(x)})$.

These results are follow-ups of fully explicit bounds for the O-term in the formula of K(x), mainly Theorems 14–18.

Finally, throughout this paper, e represents Napier's constant, p a prime number and the calculations are made by using Maple 17.

2 Technical lemmas

The sequence $\log p_k$ has the same asymptotic behavior as its Cesàro average $\frac{\log N_k}{k}$, where the first few terms are

$$\frac{\log N_k}{k} = \log k + \log_2 k - 1 + \frac{\log_2 k - 2}{\log k} - \frac{\log_2^2 k - 6\log_2 k + 11}{2\log^2 k} + O\left(\frac{\log_2^3 k}{\log^3 k}\right)$$

Robin [20] and Dusart [7] obtained fully explicit bounds for p_k and $\theta(p_k)$, we gathered the ones we need in the following lemma.

Lemma 3.

$$\theta(p_k) > k \log k, \ \forall k \ge 3,\tag{1}$$

$$\theta(p_k) \ge k(\log k + \log_2 k - a), \ \forall k \ge 2, \ and \ a = 1.0769,$$
(2)

$$\theta(p_k) \ge k(\log k + \log_2 k - 1 + \frac{\log_2 k - 2.1454}{\log k}), \ \forall k \ge 3,$$
(3)

$$\theta(p_k) \le k(\log k + \log_2 k - 0.9465), \ \forall k \ge 14,$$
(4)

$$p_k \le k(\log k + \log_2 k - \frac{1}{2}), \ \forall k \ge 20,$$
(5)

$$p_k \le k \log p_k, \ \forall k \ge 4. \tag{6}$$

Similarly, the following lemma directly gives an upper bound of $\theta(p_{k+1})$ in terms of k instead of k + 1. Note that $c = 1 - \log 2$ is an absolute constant.

Lemma 4. We have, when $k \geq 2$:

$$\theta(p_{k+1}) \le k \left(\log k + \log_2 k - c + \frac{\log_2 k + c}{\log k} \right).$$
(7)

Proof. From inequality (5), by taking the logarithm and using the fact that $\log(1 + x) \le x$ for all x > 0, we easily obtain

$$\log p_k \le \log k + \log_2 k + \frac{\log_2 k - 0.5}{\log k};$$
(8)

this is valid even for $k \ge 18$. In particular, replacing k by 2m - 1 and using the inequality $\log(2m - 1) < \log(m) + \log(2)$, one gets that for all $m \ge 2$:

$$\log p_{2m-1} \le \log m + \log_2 m + \log 2 + \frac{\log_2 m + \log 2 - 0.5}{\log m} + \frac{\log 2}{\log^2 m}$$

Since the right-hand side is a strictly increasing function M(m), the sum of all $\log p_{2m-1}$ until k-1 is bounded above by $\int_2^k M(t)dt$, and we have

$$\sum_{m=1}^{k-1} \log p_{2m-1} \le k \left(\log k + \log_2 k - c + \frac{\log_2 k + c}{\log k} \right) - D(k),$$

where

$$D(k) = \left(2\log 2 - \frac{3}{2}\right)\operatorname{li}(k) + \left(\frac{3}{2} - 2\log 2\right)\operatorname{li}(2) - 3\log 2 - 2\log_2 2 + 4 - 2\frac{\log_2 2}{\log 2} - \frac{2}{\log 2}.$$

Finally, since the function D(x) is negative when $x \ge 11$, by applying the logarithm to the inequality obtained in the lemma below, one gets the result for $k \ge 11$. A computer check handles the cases $2 \le k \le 11$.

Lemma 5. We have, when $k \ge 11$:

$$N_{k+1} < \prod_{i=1}^{k-1} p_{2i-1}$$

Proof. We proceed by induction on k. The inequality holds for k = 11. As $k \ge 3$ implies $2k - 1 \ge k + 2$ and then $p_{k+2} \le p_{2k-1}$, the lemma follows from the fact that

$$N_{k+2} < p_{k+2} \prod_{i=1}^{k} p_{2i-1} \le \prod_{i=1}^{k+1} p_{2i-1}.$$

Lemma 6. For all $k \ge 1$, we have

$$p_{k+1} \le \frac{5}{3}p_k,$$

and the inequality is sharp at k = 2.

Proof. According to Dusart [7], the interval $[x, \frac{1}{25 \log^2(x)}]$ contains at least one prime for all $x \ge 396738$. As 396833 is prime, we have that, for $p_k \ge 396833 = p_{33609}$,

$$p_{k+1} \le (1 + \frac{1}{25 \log^2(p_k)})p_k < \frac{4001}{4000}p_k < \frac{5}{3}p_k$$

Finally, by computer, the last inequality is shown to be also valid for $2 \le p_k \le 396832$. \Box

Lemma 7. For every positive integer m, we have

$$\prod_{k=1}^m N_k \le N_{\frac{m(m+1)}{2}}$$

Proof. By setting $s := \sum_{k=1}^{m} k$, we want to show that $\prod_{k=1}^{m} N_k$ is less than the primorial of index s. This is equivalent to

$$\sum_{k=1}^{m} \theta(p_k) \le \theta(p_s).$$

According to the inequality (2), we have

$$\theta(p_s) \ge s(\log s + \log_2 s - a)$$

$$\ge s\left(\log m + \log\left(\frac{m+1}{2}\right) + \log_2 m - a\right)$$

which implies for $m \ge 14$ that

$$\theta(p_s) \ge s \left(\log m + \log_2 m + \log \frac{15}{2} - a \right).$$
(9)

On the other hand, according to the inequality (4), it follows that for $m \ge 14$:

$$\sum_{k=1}^{m} \theta(p_k) \le s(\log m + \log_2 m - 0.9465) + \sum_{k=1}^{13} \theta(p_k).$$
(10)

However, the left-hand side of the subtraction of the inequality (10) from (9) is an increasing function on m, which is already positive for $m \ge 14$. So, our inequality holds when $m \ge 14$ and, we checked $m \le 13$ by computer to end the proof.

3 Effective version of Pósa's inequality

Let us start by giving explicit formulations of the equivalence $K(x) \approx \pi (\log x)$.

Lemma 8. For all $\varepsilon > 0$, there is a real number x_0 such that

$$\pi\left(\frac{\log x}{1+\varepsilon}\right) \le K(x)$$

for all $x \ge x_0$. In particular, $\forall x \ge 1$ we have $\pi\left(\frac{\log x}{1.00000075}\right) \le K(x)$.

Proof. First, a form of the prime number theorem asserts that there exists a decreasing sequence to zero of positive real numbers $(\delta_n)_{n\geq 0}$ and a sequence $(u_n)_{n\geq 0}$ such that $|\theta(x)-x| < \delta_n x$ for all $x \geq u_n$. Hence, for all $\varepsilon > 0$ there exists $n_0(\varepsilon)$ such that $|\theta(x) - x| < \varepsilon x$ for all $x \geq u_{n_0}$. Then, for a given ε , $\theta(x) < (1 + \varepsilon)x$ we have

$$K(x) = \max \{k \in \mathbb{N}^*, \ N_k \le x\} = \max \{k \in \mathbb{N}^*, \ \theta(p_k) \le \log x\}$$
$$\geq \max \{k \in \mathbb{N}^*, \ p_k \ge u_{n_0}, \ (1+\varepsilon)p_k \le \log x\}$$
$$\geq \max \{k \in \mathbb{N}^*, \ (1+\varepsilon)p_k \le \log x\}.$$

However, the maximum in the last inequality is just $\pi(\log x/(1+\varepsilon))$.

In particular, according to Platt and Trudgian [17] we have $\theta(x) < 1.00000075x$ for all x > 0. Then, for all $x \ge 8$ and further by computer for $x \ge 1$ we deduce that

$$K(x) \ge \pi \left(\frac{\log x}{1.00000075}\right).$$

Lemma 9. For all $\varepsilon > 0$, there is a real number x_0 such that

$$\forall x \ge x_0, \ K(x) \le \pi\left(\frac{\log x}{1-\varepsilon}\right).$$

In particular, for $x \ge x_0$ we have

$$K(x) \le \pi\left(\frac{\log x}{\log \alpha}\right),$$

for the values in Table 1.

α	1.7	2	2.1	2.2	2.5
x_0	3	32	3503	N_{11}	N_{50}

Table 1: Some values of x_0 .

Proof. Similarly to the first part of the above proof, for all $\varepsilon > 0$ there exists $n_0(\varepsilon)$ such that $|\theta(x) - x| < \varepsilon x$ for all $x \ge u_{n_0}$. Thus, for a given ε , $\theta(x) < (1 - \varepsilon)x$ implies readily that

$$K(x) \le \max \{ k \in \mathbb{N}^*, \ p_k \ge u_{n_0}, \ (1-\varepsilon)p_k \le \log x \}$$

$$\le \max \{ k \in \mathbb{N}^*, \ (1-\varepsilon)p_k \le \log x \}.$$

However, the maximum in the last inequality is just $\pi(\log x/(1-\varepsilon))$.

For the effective upper bounds, the idea is to look at the best practical values of $\alpha > 1$ and $k_0(\alpha)$ such as $N_{k_0} > \alpha^{p_{k_0}}$, since this would result in K(x) is not being greater than $\pi(\log x/\log \alpha)$ for all $x \ge N_{k_0}$. Using inequality (3) combined with inequality (8), the problem is reduced to finding $\alpha > 1$ and k_0 such that

$$\left(\log k + \log_2 k + \frac{\log_2 k}{\log k}\right)(1 - \log \alpha) \ge 1 + \frac{2.1454}{\log k} - \frac{0.5\log\alpha}{\log k}, \forall k \ge k_0.$$

Starting from a certain $k_0(\alpha)$, the function on the right is greater than the one on the left as long as $1 < \alpha < e$. After checking the small values, we obtain the results in Table 2.

α	1.7	2	2.1	2.2	2.5
k_0	2	4	6	11	50

Table 2: Some values of k_0 .

The values of x_0 given in Table 1 are the possible minimums except for $\alpha = 2.2$ and $\alpha = 2.5$, where the calculations showed that K(x) is smaller than $\pi(\log x/\log \alpha)$ for $x = N_{10}$ and $x = N_{49}$.

Through an elementary method, this last proposition permits us to get an effective version of a result of Pósa [15] which proved that for all n > 1 there is a k_n such that $N_k > p_{k+1}^n$ for all $n \ge k_n$. **Theorem 10.** For all integer $n \ge 1$, there exists $x_0(n) \ge 1$ such that for all $x \ge x_0(n)$,

$$(\forall k \in \mathbb{N}^*, K(x) < k < \pi(\sqrt[n]{x})) \Rightarrow N_k > p_{k+1}^n.$$

Furthermore, if k verifies $p_{k+1} \ge \left(\frac{5}{3}\right)^n$:

$$\forall m \ge k, \ N_m > p_{m+1}^n.$$

Proof. For $n \ge 1$ and $x_0(n) = \frac{n^{2n}}{(\log 1.7)^{2n}}$, we can show easily that $\frac{\log x}{\log 1.7} \le \sqrt[n]{x}$ as long as $x \ge x_0(n)$. Thus, we obtain that $N_k > x \ge p_{k+1}^n$ for all k satisfying the inequalities

$$K(x) < k < \pi(\sqrt[n]{x}), \ x \ge x_0(n).$$

Furthermore, if k fulfils previous inequalities together with $p_{k+1} \ge (5/3)^n$, it implies by induction on k that $N_m > p_{m+1}^n$ for all m > k. Indeed, according to Lemma 6, we have

$$p_{m+2}^n \le (5/3)^n p_{m+1}^n < (5/3)^n N_m \le p_{m+1} N_m = N_{m+1}$$

In practice, using the Maple algorithm below, the calculations of the values of k_n listed in Table 3, show that the first choice $x_0(n)$ for $n \leq 30$ is sufficient.

// Algorithm1 Computation of K(x).

```
restart; with(numtheory);
K := proc (L) local s, k;
s := 2; for k from 2 do
if s <= L then s := s*ithprime(k)
else return k-2 end
if end do end proc
```

// Algorithm2 Computation of kn.

```
posa := proc (n) local x0, x, k, R, m, s, i, t;
x0 := floor((n/ln(1.7))^(4*n)); R := (5/3)^n;
for x from x0 to x0+5 do
for k from K(x)+1 to pi(floor(x^(1/n)))-1 do
if R <= ithprime(k+1) then m := k end if end do
end do; for s to m do
if ithprime(s+1)^n < product(ithprime(i), i = 1 ... s) then t := s;
return t end if
end do end proc
```

We thus regain the results of Euclid: $N_k > p_{k+1}$ for $k \ge 1$ and those of Bonse [18]: $N_k > p_{k+1}^2$ for $k \ge 4$ and $N_k > p_{k+1}^3$ for $k \ge 5$. The sequence $(k_n)_{n\ge 1}$ is sequence <u>A056127</u> in the OEIS [22].

Pósa's inequality has been studied extensively. The reader can find similar forms in papers of Hassani [10] and Sándor [21].

Let us end this section by giving some special approximations for limited ranges.

Theorem 11. (i) For $1 < x \le \exp(10^{19})$, we have $\pi(\log x) \le K(x)$.

- ('ii) For $2310 \le x \le \exp(10^{19})$, we have $\frac{\log x}{\log_2 x}(1 + \frac{1}{4\log_2 x}) \le K(x)$.
- (iii) For $210 \le x \le \exp(10^{19})$, we have $\frac{\log x}{\log_2 x} \le K(x)$.

Proof. Let $0 < \log x \le 10^{19}$. According to Büthe [6], the primes p_k smaller than $\log x$ verify $\theta(p_k) < p_k$. So,

$$\pi(\log x) = \max \{k \in \mathbb{N}^*, \ p_k \le \log x\}$$
$$\le \max \{k \in \mathbb{N}^*, \ \theta(p_k) \le \log x\} = K(x)$$

After a direct computation of the small values, we derive the last two lower bounds from the first result together with the lower bounds for $\pi(x)$, namely (see Dusart [7]):

$$\frac{x}{\log x} \le \pi(x)$$
, for $x \ge 17$ and $\frac{x}{\log x} \left(1 + \frac{1}{\log x}\right) \le \pi(x)$, for $x \ge 599$.

4 Explicit bounds for the primorial counting function

First, we give some upper bounds for K(x) by using a classical method. We will use appropriate bounds for $\theta(p_k)$ (essentially formulas (1) and (2)) while taking advantage of the fact that K(x) is constant over the intervals $[N_k, N_{k+1})$. Thankfully, with the following lemma, we rediscover the estimates given by Robin [20] of the large values of $\omega(n)$. Here $\omega(n)$ denotes the number of prime distinct divisors of n.

Lemma 12. For all real numbers $x \ge 1$, we have $K(x) = \max_{1 \le n \le x} \omega(n)$. Furthermore, if K(x) = K, then for all integers $n \le x$ with $\omega(n) = K$, we have $n \ge N_K$.

In other words, $N_{K(x)}$ is the smallest integer less than x whose decomposition into prime numbers is the longest. Thus, $(K(n))_{n\geq 1}$ is the sequence <u>A111972</u> in the OEIS [22].

Proof. As $N_k \leq n \leq x < N_{k+1}$ means that $\omega(n) \leq k$ and K(n) = k, one sees that $\omega(n) \leq K(n)$ in every interval $[N_k, N_{k+1})$, which implies that

$$\max_{1 \le n \le x} \omega(n) = \max_{1 \le n < N_{K+1}} \omega(n) = K.$$

Let $q_1q_2 \cdots q_K$ be an integer less than x such that $q_1 < q_2 < \ldots < q_K$ are prime numbers. For K = 1 it is obvious that $q_1 \ge p_1$. Now, assuming $q_i \ge p_i$ for i < K, it is necessary that $q_K \ge p_K$ otherwise $q_K < q_{K-1}$.

For to prove our first upper bound, we need the following lemma.

Lemma 13. For a large real number A > 0, if $\kappa(A)$ is a root of the equation $t \log t = A$, then

$$\kappa(A) = \frac{A}{\log A}(1 + o(1)),$$

furthermore, for A > e:

$$\frac{A}{\log A} < \kappa(A) \le \left(1 + \frac{1}{e}\right) \frac{A}{\log A}.$$

Proof. See Olver [14, Theorem 5. 1, Ex. 5. 7].

Theorem 14. We have, when $x \ge N_{13}$:

$$K(x) \le \left(1 + \frac{1}{e}\right) \, \frac{\log x}{\log_2 x},$$

and

$$K(x) \le 1.3841 \frac{\log x}{\log_2 x}, \text{ for } x \ge 3.$$

Proof. From inequality (1), one easily deduces that, for $x \ge N_{13}$:

$$K(x) \le \max\left\{k \in \mathbb{N}^*, \ k \log k \le \log x\right\},\$$

however this last set is only a part of the set of roots of inequality $t \log t \leq \log x$. So, according to Lemma 13, one gets

$$K(x) \le \kappa(\log x) \le (1 + \frac{1}{e}) \frac{\log x}{\log_2 x}, \ \forall x \ge N_{13}.$$

Now, as the function $F_0(x) = \frac{K(x)\log_2 x}{\log x}$ is decreasing over every interval $[N_k, N_{k+1})$ once $k \geq 3$, then, a computer verification can be done only on N_k where $3 \leq k \leq 12$. This verification shows that the maximum is reached on N_9 and it is also true for all real numbers $x < N_3$ with $F_0(N_9) \leq 1.3841$, which concludes the proof.

Theorem 15. We have, when $x \ge 3$, the inequality

$$K(x) \le \frac{\log x}{\log_2 x} \left(1 + \frac{1.4575}{\log_2 x} \right).$$

Proof. For $x \ge 2$, we consider the function

$$F_1(x) = \frac{K(x)(\log_2 x)^2}{\log x} - \log_2 x.$$

The function F_1 is decreasing over every interval $[N_k, N_{k+1})$ as long as $k \ge 5$ since $-\log_2 x$ is decreasing and the function $\frac{K(x)(\log_2 x)^2}{\log x}$ decreases when $x \ge 1619$. So, F_1 reaches its maximum at an integer N_{k_0} where $k_0 \ge 5$. On the other hand, for $k \ge 6$, using inequality (2), invoking the decrease of $\frac{(\log(x))^2}{x}$ (valid for $x \ge 8$) together with the fact that $\log(1 + x) < x$ and $\frac{1}{1+x} \le 1$, we obtain after a long expansion that

$$F_1(N_k) = \frac{k(\log \theta(p_k))^2}{\theta(k)} - \log \theta(p_k)) \le G(k),$$

with

$$G(k) = a + \frac{\log_2 k - a}{\log k} + \frac{1}{\log k} \left(\frac{\log_2 k - a}{\log k}\right)^2 + \frac{2a}{\log k} \left(\frac{\log_2 k - a}{\log k}\right) + \frac{a^2}{\log k}.$$

The function G is decreasing and smaller than 1.3832444 for $k \ge \exp(\exp(a+1)) \simeq 2922$. Then, $F_1(N_k) \le 1.3833$ for $k \ge 2922$.

Finally, for $5 \le k \le 2921$, we conclude by computer verification over intervals $[N_k, N_{k+1})$ that the maximum of $F_1(x)$ is reached at N_{47} with $F_1(N_{47}) \le 1.4575$ and our upper bound is valid for $x < N_5$ as well.

With the techniques used above, the inequality in the following theorem requires a wider estimate of $\theta(p_k)$. Nevertheless, for this last round, we will use a strong relation between $\pi(x)$ and $\theta(x)$ were given by Robin [20], namely

$$\forall x \ge 2, \quad \frac{\pi(x)\log\theta(x)}{\theta(x)} \le 1 + \frac{1}{\log\theta(x)} + \frac{2.89726}{\log^2\theta(x)}.$$
 (11)

Theorem 16. We have, when $x \ge 3$, the inequality

$$K(x) \le \frac{\log x}{\log_2 x} \left(1 + \frac{1}{\log_2 x} + \frac{2.89726}{\log_2^2 x} \right).$$

Proof. Similarly, by studying $F_2(N_k)$ which corresponds to the function

$$F_2(x) = \frac{K(x)(\log_2 x)^3}{\log x} - (\log_2 x)^2 - \log_2 x, \text{ when } k \ge 10.$$

Since $\pi(p_k) = K(N_k) = k$, formula (11) guarantees that $F_2(N_k) \leq 2.89726$, $\forall k \geq 10$. Hence, we must now verify that our inequality is valid for $x < N_{10}$.

For $x \ge 863$, let M be the strictly increasing function that appears on the right side of our upper bound. A verification by computer over the intervals $[N_k, N_{k+1})$, with $5 \le k \le 9$, shows that M(x) is always greater than K(x), by a difference of at least 1.5. The calculations also show that the upper bound is also true for $x < N_5$, which concludes the proof. \Box Theorem 17. If the Riemann hypothesis holds, we have

$$K(x) \le \operatorname{li}^{-1}(\log x) + 0.12\sqrt{\log x}, \ \forall x \ge 42,$$
 (12)

where li^{-1} is the inverse of the logarithmic integral function.

Proof. According to Robin [20], for $k \ge 5$

$$\theta(p_k) > \operatorname{li}^{-1}(k) - 0.12\sqrt{k \log^3 k}$$

and as li(x) is an increasing function, one gets successively

$$k \leq \operatorname{li}(\theta(p_k)) + \int_{\theta(p_k)}^{\theta(p_k)+0.12\sqrt{k \log^3 k}} \frac{dx}{\log x}$$
$$\leq \operatorname{li}(\theta(p_k)) + 0.12 \frac{\sqrt{k \log^3 k}}{\log \theta(p_k)}.$$

Now, applying inequality (1), one gets

$$k \le \operatorname{li}(\theta(p_k)) + 0.12 \frac{\sqrt{\theta(p_k)} \log k}{\log \theta(p_k)} \le \operatorname{li}(\theta(p_k)) + 0.12 \sqrt{\theta(p_k)}, \ \forall k \ge 5$$

which is equivalent to

$$K(N_k) \le \operatorname{li}(\log N_k) + 0.12\sqrt{\log N_k}, \ \forall k \ge 5.$$

Simply, the term on the right side is an increasing function of k, which yields that

$$K(x) \le \operatorname{li}^{-1}(\log x) + 0.12\sqrt{\log x}, \ \forall x \ge N_5.$$

-

Finally, with computer verifications, we extend the result to $x \ge 42$.

Theorem 18. We have, when $x \ge 2310$

$$K(x) \ge \frac{\log x}{\log_2 x} \left(1 + \frac{1}{4\log_2 x}\right).$$

Moreover, for $x \ge 210$

$$K(x) \ge \frac{\log x}{\log_2 x}.$$

Proof. Let $\kappa(x) = \frac{\log x}{\log_2 x} (1 + \frac{1}{4\log_2 x})$ and $f_a(x) = k(\log k + \log_2 k - a)$. As the function $\frac{\log_2 x - c}{\log x}$ is decreasing for $x \ge 8$, inequality (7) gives that

$$\theta(p_{k+1}) \le f(k) = k (\log k + \log_2 k - c + 0.006389), \text{ when } x \ge 10^{500}.$$

Hence, for $x \ge 10^{500}$, the function K(x) is greater than the minimum of the set of positive integer solutions of the inequality $f_a(k) > \log x$, where $a = c - 0.006389 \le 0.30046382$.

Now, let us show that the function $\kappa(x) = \frac{\log x}{\log_2 x} (1 + \frac{1}{4\log_2 x})$ is not in the above set. Indeed, for $x \ge 10^{500}$

$$\log \kappa(x) \le \log_2 x - \log_3 x + \frac{0.25}{\log_2 x}, \ \log_2 \kappa(x) \le \log_3 x,$$
$$\log \kappa(x) + \log_2 \kappa(x) \le \log_2 x + \frac{0.25}{\log_2 x} \le \log_2 x + \frac{0.25}{\log_2 x},$$

so, we obtain the following

$$f_a(\kappa(x)) \le \log x (1 + \frac{1}{4\log_2 x})(1 + \frac{1}{4\log_2^2 x} - \frac{a}{\log_2 x}) < \log x.$$

Now suppose that $f(k) > \log x$. Then $x \to \infty$ implies $k \to \infty$, since f is bounded on every bounded subset of the set of all positive integers. Therefore, for $x \ge 10^{500}$, we have $f(k) \leq f_a(k)$ and, since $f_a(k)$ is increasing in k, we also have $f_a(k) \leq f_a(\kappa(x))$ if $k < \kappa(x)$, so that

$$f(k) \le f_a(k) \le f_a(\kappa(x)) < \log x,$$

which means that, if $x \ge 10^{500}$ and $f(k) \ge \log x$, then $k \ge \kappa(x)$ and so $K(x) \ge \kappa(x)$. For the values of $x < 10^{500}$, Theorem 11 is used as $10^{500} < \exp 10^{19}$. The last lower bound is partly due to the fact that $\frac{\log x}{4 \log_2^2 x} \ge 1$ when $x \ge 1.7 \cdot 10^{30}$ and again to Theorem 11-(iii). \Box

5 Maximal value of sums over prime divisors

Sums over primes and their evaluations are one of the main subjects of multiplicative number theory. Through a special case, we are concerned in this section to give an idea allowing to estimate the maximal value of sum of type $\mathfrak{L}_f(q) = \sum_{p|q} f(p)$ for a positive decreasing function f on $(1,\infty)$, when q ranges over all integers not exceeding x.

This type of sum appears without estimates in several papers, as in the work of Gordon and Rogers [9] where they derive refined forms of the sums of the divisor function; and in the work of Lehmer [12] where he studied a generalization of the Euler constant.

Our idea can be summarized as follows. As f is a positive decreasing function, then $\max_{1 \le q \le x} \mathfrak{L}_f(q)$ is reached on the smallest integer q(x) less than x among those having the longest decomposition in prime numbers. However, according to Lemma 12, we can clearly specify that q(x) is nothing other than $N_{K(x)}$.

Finally, for a given real $x \ge 1$, if K(x) = K, we deduce the following for all positive decreasing functions f on $(1,\infty)$:

$$\max_{1 < q \le x} \mathfrak{L}_f(q) = \mathfrak{L}_f(N_K) = \sum_{p \le p_K} f(p).$$

In particular, there is an approximation of the maximal value of $\mathfrak{L}(q) = \sum_{p|q} \frac{\log p}{p-1}$. For a constant C, Hassani [11] proved the following result

$$\max_{1 < q \le x} \mathfrak{L}(q) \le \log_2 x + C \text{ and } \mathfrak{L}(q) \ge \frac{\log q}{q-1} \text{ for } q \ge 2.$$

We propose the following improvements:

Theorem 19. We have, when $x \ge N_7$, the inequality

$$\max_{1 < q \le x} \mathfrak{L}(q) \le \log K(x) + \log_2 K(x).$$

Proof. As in Hassani [11], we start the estimation of the maximum as follows:

$$\max_{1 < q \le x} \mathfrak{L}(q) = \sum_{p \le p_K} \frac{\log p}{p} + \sum_{p \le p_K} \frac{\log p}{p(p-1)} \\ = \sum_{p \le p_K} \frac{\log p}{p} + \sum_{p > 1} \frac{\log p}{p(p-1)} - \sum_{p > p_K} \frac{\log p}{p(p-1)}.$$

However, Rosser and Shoenfeld [3] proved the following:

$$\forall t \ge 32, \ \sum_{p \le t} \frac{\log p}{p} \le \log t + E + \frac{1}{\log t} \text{ and } \sum_{p > 1} \frac{\log p}{p(p-1)} + E \approx -0.58.$$

So, recalling that

$$p_k \le k(\log k + \log_2 k),$$

once $k\geq 6,$ we have for $K\geq 331~(p_K\geq 32$ and $\log_2 K/\log K<0.3)$ then after checking by hand for $K\geq 7$ that

$$\sum_{p \le p_K} \frac{\log p}{p} + \sum_{p>1} \frac{\log p}{p(p-1)} \le \log K + \log_2 K + \frac{\log_2 K}{\log K} + \frac{1}{\log p_{12}} - 0.58$$
$$\le \log K + \log_2 K.$$

Hence, for $x \ge N_7$ we obtain

$$\max_{1 < q \le x} \mathfrak{L}(q) \le \log K(x) + \log_2 K(x).$$
(13)

Finally, an computer verifications show that inequality 13 is not true for integers smaller than N_7 .

Corollary 20. We have, when $x \ge 3$, the inequality

$$\max_{1 < q \le x} \mathfrak{L}(q) \le \log_2 x + \frac{1.4575}{\log_2 x}.$$

Proof. Using the upper bound of Theorem 15, we obtain successively

$$\log K(x) \le \log_2 x - \log_3 x + \frac{1.4575}{\log_2 x}$$
$$\log_2 K(x) \le \log_3 x + \log(1 - \frac{\log_3 x}{\log_2 x} + \frac{1.4575}{\log_2^2 x})$$
$$\log K(x) + \log_2 K(x) \le \log_2 x + \frac{1.4575}{\log_2 x}, \ x \ge 2219.$$

Combining this with inequality (13), this gives the result for $x \ge N_7$. We conclude the proof using computer verifications for the small values.

Corollary 21. We have, when $x \ge 43$, the inequality

$$\max_{1 < q \le x} \mathfrak{L}(q) \le \log_2 x + \log(1.3841).$$

Proof. Similarly to the previous proof, but using the second upper bound of Theorem 14, we obtain that, for $x \ge 3$

$$\log K(x) \le \log_2 x - \log_3 x + \log(1.3841).$$

And as $K(x) \leq \log x$ by definition, we get that $\log_2 K(x) \leq \log_3 x$. Therefore, using inequality (13) gives the result for $x \geq N_7$; then computer verification gives the result for $x \geq 43$.

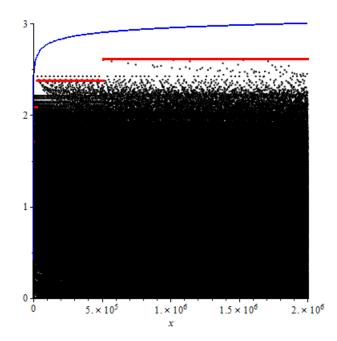


Figure 1: Graph of points $(q, \mathfrak{L}(q))$ for $1 \leq q \leq 2 \cdot 10^6$. The upper bound of Theorem 19 (resp., Corollary 21) is shown in red (resp., in blue).

6 Minimal value of sums over prime divisors

Concerning $\min_{1 < q \le x} \mathfrak{L}(q)$, we obtain the following optimal inequality

$$\forall x \ge 2, \ \min_{1 < q \le x} \mathfrak{L}(q) \ge l(x)$$

Indeed, as the minimal value of $\mathfrak{L}(q)$ is reached on the largest prime number less than x, we can deduce that if $\pi(x) = r$, then

$$\min_{1 < q \le x} \mathfrak{L}(q) = l(p_r) \ge l(x),$$

since l is a decreasing function. According to the proof of Lemma 6, this lower bound is the best since we already have that, for x not large enough (≥ 396833)

$$x < p_{r+1} \Leftrightarrow \frac{p_r}{x} > \frac{p_r}{p_{r+1}} \ge \frac{4000}{4001}$$

which implies

$$l(x) \le \min_{1 < q \le x} \mathfrak{L}(q) < l(\frac{4000}{4001}x).$$

7 Appendix

In Table 3 we give the values of $K(10^n)$ and the terms of the sequence

$$k_n = \min\{k, p_1 \cdots p_k > p_{k+1}^n\}$$

for $n \leq 30$.

n	$K(10^n)$	k_n	n	$K(10^n)$	k_n	n	$K(10^n)$	k_n
1	2	2	11	10	16	21	16	29
2	3	4	12	11	18	22	17	30
3	4	5	13	12	19	23	17	32
4	5	7	14	12	20	24	18	33
5	6	8	15	13	21	25	19	34
6	7	10	16	13	23	26	19	35
7	8	11	17	14	24	27	20	36
8	8	13	18	15	25	28	20	38
9	9	14	19	15	26	29	21	39
10	10	15	20	16	28	30	21	40

Table 3: Some values of $K(10^n)$ and $k_n = \min\{k, p_1 \cdots p_k > p_{k+1}^n\}$.

We can also give $K(10^{40}) = 26$, $K(10^{50}) = 31$, $K(10^{60}) = 36$, $K(10^{100}) = 53$, $K(10^{200}) = 92$, $K(10^{300}) = 128$, $K(10^{10^3}) = 350$ and, $K(10^{10^4}) = 2584$.

8 Acknowledgments

The second author would like to thank Professor H. Belbachir for fruitful discussions about an early version of this paper.

References

- [1] C. Axler, New estimates for the *n*th prime number, *J. Integer Sequences* **22** (2019), Article 19.4.2.
- [2] M. Balazard, Unimodalité de la distribution du nombre de diviseurs premiers d'un entier, Ann. Inst. Fourier 2 (1990), 255–270.
- [3] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, *Ill. J. Math.* 6 (1962), 64–94.
- [4] H. Belbachir and D. Berkane, Asymptotic expansion for the sum of inverses of arithmetical functions involving iterated logarithms, *Appl. Anal. Discrete Math.* 5 (2011), 80–86.
- [5] R. J. Betts, Using Bonse's inequality to find upper bounds on prime gaps, J. Integer Sequences 10 (2007), Article 07.3.8.
- [6] J. Büthe, An analytic method for bounding $\psi(x)$, Math. Comput. 87 (2018), 1991–2009.
- [7] P. Dusart, Inégalités explicites pour $\psi(x)$, $\theta(x)$, $\pi(x)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. **21** (1999), 53–59.
- [8] P. Dusart, Estimates of the kth prime under the Riemann hypothesis, Ramanujan J. 47 (2018), 141–154.
- [9] B. Gordon and K. Rogers, Sums of the divisor function, Can. J. Math. 16 (1964), 151– 158.
- [10] M. Hassani, A remark on the Mandl's inequality, Octogon Mathematical Magazine 15 (2007), 567-572.
- [11] M. Hassani, On a function associated with the generalized Euler constant for an arithmetic progression, J. Math. Inequal. 6 (2012), 249–252.
- [12] D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975), 125–142.
- [13] J. L. Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory 17 (1983), 375– 388.

- [14] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, 1974.
- [15] L. Pósa, Uber eine Eigenschaft der Primzahlen (Hungarian), Mat. Lapok. 11 (1960), 124–129.
- [16] M. Planat, P. Solé, and S. Omar, Riemann hypothesis and quantum mechanics, J. Phys. A. Math. Theor. 44 (2011), 145203.
- [17] D. J. Platt and T. Trudgian, On the first sign change of $\theta(x) x$, Math. Comput. 85 (2016), 1539–1547.
- [18] H. Rademacher and O. Toeplitz, *The Enjoyment of Mathematics*, Princeton Univ. Press, 1957.
- [19] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187–213.
- [20] G. Robin, Estimation de la fonction de Tchebychef θ sur le k^{ieme} nombre premier et grande valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith. 42 (1983), 367–389.
- [21] J. Sándor, Über die Folge der Primzahlen, Mathematica (Cluj) 30 (1988), 67–74.
- [22] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, https://oeis. org, last accessed January 2021.
- [23] S. Zhang, La conjecture de Goldbach et le plus petit nombre premier dans une progression arithmétique, C. R. Math. Acad. Sci. Paris **348** (2010), 241–242.

2000 Mathematics Subject Classification: Primary 11A25; Secondary 11A41, 11L20, 11N64. *Keywords*: primorial integer, sum over prime divisors, Pósa's inequality, arithmetic function.

(Concerned with sequences <u>A000040</u>, <u>A002110</u>, <u>A056127</u>, <u>A111972</u>, and <u>A233824</u>.)

Received February 6 2021; revised versions received February 17 2021; February 19 2021; July 11 2021; July 28 2021. Published in *Journal of Integer Sequences*, July 28 2021.

Return to Journal of Integer Sequences home page.