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Abstract

In this paper, we propose several explicit bounds for the function that counts the
number of primorial integers less than or equal to a given positive real number. As ap-
plications, we obtain an effective version of Pósa’s inequality, and a method to estimate
the maximal value of the sum over prime divisors

∑
p|q f(p) for a positive decreasing

function f , when q ranges over all integers less than x. In particular, we improve the
upper bound for the maximal value of

∑
p|q

log p
p−1 .
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1 Introduction and statement of results

As usual, let (pk)k≥1 denote the increasing sequence of prime numbers, and let Nk be the
primorial (prime-factorial) integer of index k, the product of its k first terms. The integers
Nk are the terms of the sequence A002110 in the On-line Encyclopedia of Integer Sequences
(OEIS) [22], and play an important role in number theory from Euclid’s proof of the infinity
of primes to the remarkable equivalences of the Riemann hypothesis due to Nicolas [13] and
Robin [19].

The approximations linked to Nk have found some unexpected applications in various
areas of number theory; see the papers of Betts [5], Planat et al. [16] and Zhang [23].
However, the most frequently used results concern their logarithm θ(pk) where θ denotes the
Chebyshev function, here we cite the recent papers of Axler [1] and Dusart [8].

The principal object of this manuscript is to study the function K(x) which counts the
number of primorial integers less than or equal to x; for instance K(1) = 0, K(2) = 1,
K(3) = 1, K(5) = 1, K(6) = 2,. . . and a table of some large values of x is given in Section 7.

The function K(x) is very close to π(x) (the usual prime counting function) since it will
be shown in what follows that K(x) ≈ π(log x). It often appears implicitly as an important
key in the demonstration of several results; see, for instance, Balazard [2] and Hassani [11].

We let logi denote the i-fold iterated logarithm. The asymptotic expansion of K(x) is
easy to evaluate. Let us show this using less precise results than those in Balazard [2]:

Theorem 1 (Balazard). For every real number x ≥ 2 and every integer m ≥ 0, we have

K(x) =
log x

log2 x

(
m∑
j=0

j!

logj2 x
+O

(
1

logm+1
2 x

))
.

Proof. Since for a real x ≥ 2, the integer K := K(x) is also given by the inequalities

θ(pK) ≤ log x < θ(pK+1),

using the prime number theorem in the forms

θ(t) = t+Om

(
t

logm+2 t

)
and

π(t) = li(t) +Om

(
t

logm+2 t

)
,

where li(x) indicates the usual logarithmic integral function, one gets successively

pK = log x+Om

(
log x

logm+2
2 x

)
,

K(x) = π(pK) = li(log x) +Om

(
log x

logm+2
2 x

)
.
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Finally, by substituting log x in the classic asymptotic expansion of li(x) below

li(x) =

∫ x

2

dt

log t
=

x

log x

(
0! +

1!

log x
+ · · ·+ m!

logm x
+O

(
1

logm+1 x

))
,

we establish the result.

Consequently, the asymptotic expansion of the function xK(x) corresponds to a type
of formula among a large class of expansions related to the iterated logarithms studied
in Belbachir and Berkane [4] to which an asymptotic expansion for the sum of inverses is
determined. The following proposition is a straightforward application of Belbachir and
Berkane [4, Theorem 1]:

Proposition 2. For every real number x ≥ 2 and every integer m ≥ 2, we have∑
2≤n≤x

1

nK(n)
=

1

2
log2

2 x− log2 x− log3 x+ C

+
δ2

log2 x
+ · · ·+ δm

(m− 1) logm−1
2 x

+O

(
1

logm2 x

)
,

where C is an absolute constant, and {δj}j≥0 is the sequence A233824 in the OEIS [22] given
by the recurrence relation δn + 1!δn−1 + 2!δn−2 + · · ·+ (n− 1)!δ1 = n · n!.

In this article, by comparing K(x) with π(log x) over large and special ranges, our first
result (see Theorem 10) is an effective version of an inequality of Pósa [15], where he proved
that for all n > 1 there is a kn such that Nk > pnk+1 for all n ≥ kn. We describe an algorithm
calculate kn for every n.

The second result (see Theorem 19) is a good improvement of an approximation of the
greatest sum over prime divisors L(q) =

∑
p|q

log p
p−1

when q ranges over all integers not ex-
ceeding x. The method employed to prove this theorem can also be applied to evaluate the
maximum of sum of type Lf (q) =

∑
p|q f(p) for any positive decreasing function f on (1,∞).

In Section 5, we show that the maximal value of Lf (q) is Lf (NK(x)).
These results are follow-ups of fully explicit bounds for the O-term in the formula of

K(x), mainly Theorems 14–18.
Finally, throughout this paper, e represents Napier’s constant, p a prime number and the

calculations are made by using Maple 17.

2 Technical lemmas

The sequence log pk has the same asymptotic behavior as its Cesàro average logNk

k
, where

the first few terms are

logNk

k
= log k + log2 k − 1 +

log2 k − 2

log k
− log2

2 k − 6 log2 k + 11

2 log2 k
+O

(
log3

2 k

log3 k

)
.
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Robin [20] and Dusart [7] obtained fully explicit bounds for pk and θ(pk), we gathered the
ones we need in the following lemma.

Lemma 3.
θ(pk) > k log k, ∀k ≥ 3, (1)

θ(pk) ≥ k(log k + log2 k − a), ∀k ≥ 2, and a = 1.0769, (2)

θ(pk) ≥ k(log k + log2 k − 1 +
log2 k − 2.1454

log k
), ∀k ≥ 3, (3)

θ(pk) ≤ k(log k + log2 k − 0.9465), ∀k ≥ 14, (4)

pk ≤ k(log k + log2 k −
1

2
), ∀k ≥ 20, (5)

pk ≤ k log pk, ∀k ≥ 4. (6)

Similarly, the following lemma directly gives an upper bound of θ(pk+1) in terms of k
instead of k + 1. Note that c = 1− log 2 is an absolute constant.

Lemma 4. We have, when k ≥ 2:

θ(pk+1) ≤ k

(
log k + log2 k − c+

log2 k + c

log k

)
. (7)

Proof. From inequality (5), by taking the logarithm and using the fact that log(1 + x) ≤ x
for all x > 0, we easily obtain

log pk ≤ log k + log2 k +
log2 k − 0.5

log k
; (8)

this is valid even for k ≥ 18. In particular, replacing k by 2m − 1 and using the inequality
log(2m− 1) < log(m) + log(2), one gets that for all m ≥ 2:

log p2m−1 ≤ logm+ log2m+ log 2 +
log2m+ log 2− 0.5

logm
+

log 2

log2m
.

Since the right-hand side is a strictly increasing function M(m), the sum of all log p2m−1

until k − 1 is bounded above by
∫ k

2
M(t)dt, and we have

k−1∑
m=1

log p2m−1 ≤ k

(
log k + log2 k − c+

log2 k + c

log k

)
−D(k),

where

D(k) =

(
2 log 2− 3

2

)
li(k) +

(
3

2
− 2 log 2

)
li(2)− 3 log 2− 2 log2 2 + 4− 2

log2 2

log 2
− 2

log 2
.

Finally, since the function D(x) is negative when x ≥ 11, by applying the logarithm to the
inequality obtained in the lemma below, one gets the result for k ≥ 11. A computer check
handles the cases 2 ≤ k ≤ 11.
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Lemma 5. We have, when k ≥ 11:

Nk+1 <
k−1∏
i=1

p2i−1.

Proof. We proceed by induction on k. The inequality holds for k = 11. As k ≥ 3 implies
2k − 1 ≥ k + 2 and then pk+2 ≤ p2k−1, the lemma follows from the fact that

Nk+2 < pk+2

k∏
i=1

p2i−1 ≤
k+1∏
i=1

p2i−1.

Lemma 6. For all k ≥ 1, we have

pk+1 ≤
5

3
pk,

and the inequality is sharp at k = 2.

Proof. According to Dusart [7], the interval [x, 1
25 log2(x)

] contains at least one prime for all

x ≥ 396738. As 396833 is prime, we have that, for pk ≥ 396833 = p33609,

pk+1 ≤ (1 +
1

25 log2(pk)
)pk <

4001

4000
pk <

5

3
pk.

Finally, by computer, the last inequality is shown to be also valid for 2 ≤ pk ≤ 396832.

Lemma 7. For every positive integer m, we have

m∏
k=1

Nk ≤ Nm(m+1)
2

.

Proof. By setting s :=
∑m

k=1 k, we want to show that
∏m

k=1 Nk is less than the primorial of
index s. This is equivalent to

m∑
k=1

θ(pk) ≤ θ(ps).

According to the inequality(2), we have

θ(ps) ≥ s(log s+ log2 s− a)

≥ s

(
logm+ log

(
m+ 1

2

)
+ log2m− a

)
,

which implies for m ≥ 14 that

θ(ps) ≥ s

(
logm+ log2m+ log

15

2
− a
)
. (9)
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On the other hand, according to the inequality (4), it follows that for m ≥ 14:

m∑
k=1

θ(pk) ≤ s(logm+ log2m− 0.9465) +
13∑
k=1

θ(pk). (10)

However, the left-hand side of the subtraction of the inequality (10) from (9) is an increasing
function on m, which is already positive for m ≥ 14. So, our inequality holds when m ≥ 14
and, we checked m ≤ 13 by computer to end the proof.

3 Effective version of Pósa’s inequality

Let us start by giving explicit formulations of the equivalence K(x) ≈ π (log x).

Lemma 8. For all ε > 0, there is a real number x0 such that

π

(
log x

1 + ε

)
≤ K(x)

for all x ≥ x0. In particular, ∀x ≥ 1 we have π
(

log x
1.00000075

)
≤ K(x).

Proof. First, a form of the prime number theorem asserts that there exists a decreasing
sequence to zero of positive real numbers (δn)n≥0 and a sequence (un)n≥0 such that |θ(x)−x| <
δnx for all x ≥ un. Hence, for all ε > 0 there exists n0(ε) such that |θ(x) − x| < εx for all
x ≥ un0 . Then, for a given ε, θ(x) < (1 + ε)x we have

K(x) = max {k ∈ N∗, Nk ≤ x} = max {k ∈ N∗, θ(pk) ≤ log x}
≥ max {k ∈ N∗, pk ≥ un0 , (1 + ε)pk ≤ log x}
≥ max {k ∈ N∗, (1 + ε)pk ≤ log x} .

However, the maximum in the last inequality is just π(log x/(1 + ε)).
In particular, according to Platt and Trudgian [17] we have θ(x) < 1.00000075x for all

x > 0. Then, for all x ≥ 8 and further by computer for x ≥ 1 we deduce that

K(x) ≥ π

(
log x

1.00000075

)
.

Lemma 9. For all ε > 0, there is a real number x0 such that

∀x ≥ x0, K(x) ≤ π

(
log x

1− ε

)
.
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In particular, for x ≥ x0 we have

K(x) ≤ π

(
log x

logα

)
,

for the values in Table 1.

α 1.7 2 2.1 2.2 2.5
x0 3 32 3503 N11 N50

Table 1: Some values of x0.

Proof. Similarly to the first part of the above proof, for all ε > 0 there exists n0(ε) such that
|θ(x)− x| < εx for all x ≥ un0 . Thus, for a given ε, θ(x) < (1− ε)x implies readily that

K(x) ≤ max {k ∈ N∗, pk ≥ un0 , (1− ε)pk ≤ log x}
≤ max {k ∈ N∗, (1− ε)pk ≤ log x} .

However, the maximum in the last inequality is just π(log x/(1− ε)).
For the effective upper bounds, the idea is to look at the best practical values of α > 1

and k0(α) such as Nk0 > αpk0 , since this would result in K(x) is not being greater than
π(log x/ logα) for all x ≥ Nk0 . Using inequality (3) combined with inequality (8), the
problem is reduced to finding α > 1 and k0 such that(

log k + log2 k +
log2 k

log k

)
(1− logα) ≥ 1 +

2.1454

log k
− 0.5 logα

log k
,∀k ≥ k0.

Starting from a certain k0(α), the function on the right is greater than the one on the left
as long as 1 < α < e. After checking the small values, we obtain the results in Table 2.

α 1.7 2 2.1 2.2 2.5
k0 2 4 6 11 50

Table 2: Some values of k0.

The values of x0 given in Table 1 are the possible minimums except for α = 2.2 and
α = 2.5, where the calculations showed that K(x) is smaller than π(log x/ logα) for x = N10

and x = N49.

Through an elementary method, this last proposition permits us to get an effective version
of a result of Pósa [15] which proved that for all n > 1 there is a kn such that Nk > pnk+1 for
all n ≥ kn.
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Theorem 10. For all integer n ≥ 1, there exists x0(n) ≥ 1 such that for all x ≥ x0(n),(
∀k ∈ N∗, K(x) < k < π( n

√
x)
)
⇒ Nk > pnk+1.

Furthermore, if k verifies pk+1 ≥ (5
3
)n:

∀m ≥ k, Nm > pnm+1.

Proof. For n ≥ 1 and x0(n) = n2n

(log 1.7)2n
, we can show easily that log x

log 1.7
≤ n
√
x as long as

x ≥ x0(n). Thus, we obtain that Nk > x ≥ pnk+1 for all k satisfying the inequalities

K(x) < k < π( n
√
x ), x ≥ x0(n).

Furthermore, if k fulfils previous inequalities together with pk+1 ≥ (5/3)n, it implies by
induction on k that Nm > pnm+1 for all m > k. Indeed, according to Lemma 6, we have

pnm+2 ≤ (5/3)npnm+1 < (5/3)nNm ≤ pm+1Nm = Nm+1.

In practice, using the Maple algorithm below, the calculations of the values of kn listed in
Table 3, show that the first choice x0(n) for n ≤ 30 is sufficient.

// Algorithm1 Computation of K(x).

restart; with(numtheory);

K := proc (L) local s, k;

s := 2; for k from 2 do

if s <= L then s := s*ithprime(k)

else return k-2 end

if end do end proc

// Algorithm2 Computation of kn.

posa := proc (n) local x0, x, k, R, m, s, i, t;

x0 := floor((n/ln(1.7))^(4*n)); R := (5/3)^n;

for x from x0 to x0+5 do

for k from K(x)+1 to pi(floor(x^(1/n)))-1 do

if R <= ithprime(k+1) then m := k end if end do

end do; for s to m do

if ithprime(s+1)^n < product(ithprime(i), i = 1 .. s) then t := s;

return t end if

end do end proc
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We thus regain the results of Euclid: Nk > pk+1 for k ≥ 1 and those of Bonse [18]:
Nk > p2

k+1 for k ≥ 4 and Nk > p3
k+1 for k ≥ 5. The sequence (kn)n≥1 is sequence A056127 in

the OEIS [22].
Pósa’s inequality has been studied extensively. The reader can find similar forms in

papers of Hassani [10] and Sándor [21].
Let us end this section by giving some special approximations for limited ranges.

Theorem 11. (i) For 1 < x ≤ exp(1019), we have π(log x) ≤ K(x).

(‘ii) For 2310 ≤ x ≤ exp(1019), we have log x
log2 x

(1 + 1
4 log2 x

) ≤ K(x).

(iii) For 210 ≤ x ≤ exp(1019), we have log x
log2 x

≤ K(x).

Proof. Let 0 < log x ≤ 1019. According to Büthe [6], the primes pk smaller than log x verify
θ(pk) < pk. So,

π(log x) = max {k ∈ N∗, pk ≤ log x}
≤ max {k ∈ N∗, θ(pk) ≤ log x} = K(x).

After a direct computation of the small values, we derive the last two lower bounds from
the first result together with the lower bounds for π(x), namely (see Dusart [7]):

x

log x
≤ π(x), for x ≥ 17 and

x

log x

(
1 +

1

log x

)
≤ π(x), for x ≥ 599.

4 Explicit bounds for the primorial counting function

First, we give some upper bounds for K(x) by using a classical method. We will use appro-
priate bounds for θ(pk) (essentially formulas (1) and (2)) while taking advantage of the fact
that K(x) is constant over the intervals [Nk, Nk+1). Thankfully, with the following lemma,
we rediscover the estimates given by Robin [20] of the large values of ω(n). Here ω(n) denotes
the number of prime distinct divisors of n.

Lemma 12. For all real numbers x ≥ 1, we have K(x) = max
1≤n≤x

ω(n). Furthermore, if

K(x) = K, then for all integers n ≤ x with ω(n) = K, we have n ≥ NK.

In other words, NK(x) is the smallest integer less than x whose decomposition into prime
numbers is the longest. Thus, (K(n))n≥1 is the sequence A111972 in the OEIS [22].

Proof. As Nk ≤ n ≤ x < Nk+1 means that ω(n) ≤ k and K(n) = k, one sees that ω(n) ≤
K(n) in every interval [Nk, Nk+1), which implies that

max
1≤n≤x

ω(n) = max
1≤n<NK+1

ω(n) = K.

9
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Let q1q2 · · · qK be an integer less than x such that q1 < q2 < . . . < qK are prime numbers.
For K = 1 it is obvious that q1 ≥ p1. Now, assuming qi ≥ pi for i < K, it is necessary that
qK ≥ pK otherwise qK < qK−1.

For to prove our first upper bound, we need the following lemma.

Lemma 13. For a large real number A > 0, if κ(A) is a root of the equation t log t = A,
then

κ(A) =
A

logA
(1 + o(1)),

furthermore, for A > e:
A

logA
< κ(A) ≤

(
1 +

1

e

) A

logA
.

Proof. See Olver [14, Theorem 5. 1, Ex. 5. 7].

Theorem 14. We have, when x ≥ N13:

K(x) ≤
(
1 +

1

e

) log x

log2 x
,

and

K(x) ≤ 1.3841
log x

log2 x
, for x ≥ 3.

Proof. From inequality (1), one easily deduces that, for x ≥ N13:

K(x) ≤ max {k ∈ N∗, k log k ≤ log x} ,

however this last set is only a part of the set of roots of inequality t log t ≤ log x. So,
according to Lemma 13, one gets

K(x) ≤ κ(log x) ≤ (1 +
1

e
)

log x

log2 x
, ∀x ≥ N13.

Now, as the function F0(x) = K(x) log2 x
log x

is decreasing over every interval [Nk, Nk+1) once
k ≥ 3, then, a computer verification can be done only on Nk where 3 ≤ k ≤ 12. This
verification shows that the maximum is reached on N9 and it is also true for all real numbers
x < N3 with F0(N9) ≤ 1.3841, which concludes the proof.

Theorem 15. We have, when x ≥ 3, the inequality

K(x) ≤ log x

log2 x

(
1 +

1.4575

log2 x

)
.
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Proof. For x ≥ 2, we consider the function

F1(x) =
K(x)(log2 x)2

log x
− log2 x.

The function F1 is decreasing over every interval [Nk, Nk+1) as long as k ≥ 5 since − log2 x is

decreasing and the function K(x)(log2 x)2

log x
decreases when x ≥ 1619. So, F1 reaches its maximum

at an integer Nk0 where k0 ≥ 5. On the other hand, for k ≥ 6, using inequality (2), invoking

the decrease of (log(x))2

x
(valid for x ≥ 8) together with the fact that log(1 + x) < x and

1
1+x
≤ 1, we obtain after a long expansion that

F1(Nk) =
k(log θ(pk))

2

θ(k)
− log θ(pk)) ≤ G(k),

with

G(k) = a+
log2 k − a

log k
+

1

log k

(
log2 k − a

log k

)2

+
2a

log k

(
log2 k − a

log k

)
+

a2

log k
.

The function G is decreasing and smaller than 1.3832444 for k ≥ exp(exp(a + 1)) ' 2922.
Then, F1(Nk) ≤ 1.3833 for k ≥ 2922.

Finally, for 5 ≤ k ≤ 2921, we conclude by computer verification over intervals [Nk, Nk+1)
that the maximum of F1(x) is reached at N47 with F1(N47) ≤ 1.4575 and our upper bound
is valid for x < N5 as well.

With the techniques used above, the inequality in the following theorem requires a wider
estimate of θ(pk). Nevertheless, for this last round, we will use a strong relation between
π(x) and θ(x) were given by Robin [20], namely

∀x ≥ 2,
π(x) log θ(x)

θ(x)
≤ 1 +

1

log θ(x)
+

2.89726

log2 θ(x)
. (11)

Theorem 16. We have, when x ≥ 3, the inequality

K(x) ≤ log x

log2 x

(
1 +

1

log2 x
+

2.89726

log2
2 x

)
.

Proof. Similarly, by studying F2(Nk) which corresponds to the function

F2(x) =
K(x)(log2 x)3

log x
− (log2 x)2 − log2 x, when k ≥ 10.

Since π(pk) = K(Nk) = k, formula (11) guarantees that F2(Nk) ≤ 2.89726, ∀k ≥ 10. Hence,
we must now verify that our inequality is valid for x < N10.

For x ≥ 863, let M be the strictly increasing function that appears on the right side of
our upper bound. A verification by computer over the intervals [Nk, Nk+1), with 5 ≤ k ≤ 9,
shows that M(x) is always greater than K(x), by a difference of at least 1.5. The calculations
also show that the upper bound is also true for x < N5, which concludes the proof.
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Theorem 17. If the Riemann hypothesis holds, we have

K(x) ≤ li−1(log x) + 0.12
√

log x, ∀x ≥ 42, (12)

where li−1 is the inverse of the logarithmic integral function.

Proof. According to Robin [20], for k ≥ 5

θ(pk) > li−1(k)− 0.12

√
k log3 k,

and as li(x) is an increasing function, one gets successively

k ≤ li
(
θ(pk)

)
+

∫ θ(pk)+0.12
√
k log3 k

θ(pk)

dx

log x

≤ li(θ(pk)) + 0.12

√
k log3 k

log θ(pk)
.

Now, applying inequality (1), one gets

k ≤ li(θ(pk)) + 0.12

√
θ(pk) log k

log θ(pk)
≤ li(θ(pk)) + 0.12

√
θ(pk), ∀k ≥ 5,

which is equivalent to

K(Nk) ≤ li(logNk) + 0.12
√

logNk, ∀k ≥ 5.

Simply, the term on the right side is an increasing function of k, which yields that

K(x) ≤ li−1(log x) + 0.12
√

log x, ∀x ≥ N5.

Finally, with computer verifications, we extend the result to x ≥ 42.

Theorem 18. We have, when x ≥ 2310

K(x) ≥ log x

log2 x

(
1 +

1

4 log2 x

)
.

Moreover, for x ≥ 210

K(x) ≥ log x

log2 x
.

Proof. Let κ(x) = log x
log2 x

(1+ 1
4 log2 x

) and fa(x) = k
(
log k+log2 k−a

)
. As the function log2 x−c

log x

is decreasing for x ≥ 8, inequality (7) gives that

θ(pk+1) ≤ f(k) = k
(
log k + log2 k − c+ 0.006389

)
, when x ≥ 10500.
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Hence, for x ≥ 10500, the function K(x) is greater than the minimum of the set of positive
integer solutions of the inequality fa(k) > log x, where a = c− 0.006389 ≤ 0.30046382.

Now, let us show that the function κ(x) = log x
log2 x

(1+ 1
4 log2 x

) is not in the above set. Indeed,

for x ≥ 10500

log κ(x) ≤ log2 x− log3 x+
0.25

log2 x
, log2 κ(x) ≤ log3 x,

log κ(x) + log2 κ(x) ≤ log2 x+
0.25

log2 x
≤ log2 x+

0.25

log2 x
,

so, we obtain the following

fa(κ(x)) ≤ log x(1 +
1

4 log2 x
)(1 +

1

4 log2
2 x
− a

log2 x
) < log x.

Now suppose that f(k) > log x. Then x → ∞ implies k → ∞, since f is bounded on
every bounded subset of the set of all positive integers. Therefore, for x ≥ 10500, we have
f(k) ≤ fa(k) and, since fa(k) is increasing in k, we also have fa(k) ≤ fa(κ(x)) if k < κ(x),
so that

f(k) ≤ fa(k) ≤ fa(κ(x)) < log x,

which means that, if x ≥ 10500 and f(k) ≥ log x, then k ≥ κ(x) and so K(x) ≥ κ(x).
For the values of x < 10500, Theorem 11 is used as 10500 < exp 1019. The last lower bound

is partly due to the fact that log x
4 log2

2 x
≥ 1 when x ≥ 1.7·1030 and again to Theorem 11-(iii).

5 Maximal value of sums over prime divisors

Sums over primes and their evaluations are one of the main subjects of multiplicative number
theory. Through a special case, we are concerned in this section to give an idea allowing
to estimate the maximal value of sum of type Lf (q) =

∑
p|q f(p) for a positive decreasing

function f on (1,∞), when q ranges over all integers not exceeding x.
This type of sum appears without estimates in several papers, as in the work of Gordon

and Rogers [9] where they derive refined forms of the sums of the divisor function; and in
the work of Lehmer [12] where he studied a generalization of the Euler constant.

Our idea can be summarized as follows. As f is a positive decreasing function, then
max
1<q≤x

Lf (q) is reached on the smallest integer q(x) less than x among those having the

longest decomposition in prime numbers. However, according to Lemma 12, we can clearly
specify that q(x) is nothing other than NK(x).

Finally, for a given real x ≥ 1, if K(x) = K, we deduce the following for all positive
decreasing functions f on (1,∞):

max
1<q≤x

Lf (q) = Lf (NK) =
∑
p≤pK

f(p).
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In particular, there is an approximation of the maximal value of L(q) =
∑

p|q
log p
p−1

. For a

constant C, Hassani [11] proved the following result

max
1<q≤x

L(q) ≤ log2 x+ C and L(q) ≥ log q

q − 1
for q ≥ 2.

We propose the following improvements:

Theorem 19. We have, when x ≥ N7, the inequality

max
1<q≤x

L(q) ≤ logK(x) + log2K(x).

Proof. As in Hassani [11], we start the estimation of the maximum as follows:

max
1<q≤x

L(q) =
∑
p≤pK

log p

p
+
∑
p≤pK

log p

p(p− 1)

=
∑
p≤pK

log p

p
+
∑
p>1

log p

p(p− 1)
−
∑
p>pK

log p

p(p− 1)
.

However, Rosser and Shoenfeld [3] proved the following:

∀t ≥ 32,
∑
p≤t

log p

p
≤ log t+ E +

1

log t
and

∑
p>1

log p

p(p− 1)
+ E ≈ −0.58.

So, recalling that
pk ≤ k(log k + log2 k),

once k ≥ 6, we have for K ≥ 331 (pK ≥ 32 and log2K/ logK < 0.3) then after checking by
hand for K ≥ 7 that∑

p≤pK

log p

p
+
∑
p>1

log p

p(p− 1)
≤ logK + log2K +

log2K

logK
+

1

log p12

− 0.58

≤ logK + log2K.

Hence, for x ≥ N7 we obtain

max
1<q≤x

L(q) ≤ logK(x) + log2K(x). (13)

Finally, an computer verifications show that inequality 13 is not true for integers smaller
than N7.

Corollary 20. We have, when x ≥ 3, the inequality

max
1<q≤x

L(q) ≤ log2 x+
1.4575

log2 x
.

14



Proof. Using the upper bound of Theorem 15, we obtain successively

logK(x) ≤ log2 x− log3 x+
1.4575

log2 x

log2K(x) ≤ log3 x+ log(1− log3 x

log2 x
+

1.4575

log2
2 x

)

logK(x) + log2K(x) ≤ log2 x+
1.4575

log2 x
, x ≥ 2219.

Combining this with inequality (13), this gives the result for x ≥ N7. We conclude the proof
using computer verifications for the small values.

Corollary 21. We have, when x ≥ 43, the inequality

max
1<q≤x

L(q) ≤ log2 x+ log(1.3841).

Proof. Similarly to the previous proof, but using the second upper bound of Theorem 14,
we obtain that, for x ≥ 3

logK(x) ≤ log2 x− log3 x+ log(1.3841).

And as K(x) ≤ log x by definition, we get that log2K(x) ≤ log3 x. Therefore, using in-
equality (13) gives the result for x ≥ N7; then computer verification gives the result for
x ≥ 43.

Figure 1: Graph of points (q,L(q)) for 1 ≤ q ≤ 2 · 106. The upper bound of Theorem 19
(resp., Corollary 21) is shown in red (resp., in blue).
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6 Minimal value of sums over prime divisors

Concerning min
1<q≤x

L(q), we obtain the following optimal inequality

∀x ≥ 2, min
1<q≤x

L(q) ≥ l(x).

Indeed, as the minimal value of L(q) is reached on the largest prime number less than x, we
can deduce that if π(x) = r, then

min
1<q≤x

L(q) = l(pr) ≥ l(x),

since l is a decreasing function. According to the proof of Lemma 6, this lower bound is the
best since we already have that, for x not large enough (≥ 396833)

x < pr+1 ⇔
pr
x
>

pr
pr+1

≥ 4000

4001
,

which implies

l(x) ≤ min
1<q≤x

L(q) < l(
4000

4001
x).

7 Appendix

In Table 3 we give the values of K(10n) and the terms of the sequence

kn = min{k, p1 · · · pk > pnk+1}

for n ≤ 30.

n K(10n) kn n K(10n) kn n K(10n) kn
1 2 2 11 10 16 21 16 29
2 3 4 12 11 18 22 17 30
3 4 5 13 12 19 23 17 32
4 5 7 14 12 20 24 18 33
5 6 8 15 13 21 25 19 34
6 7 10 16 13 23 26 19 35
7 8 11 17 14 24 27 20 36
8 8 13 18 15 25 28 20 38
9 9 14 19 15 26 29 21 39
10 10 15 20 16 28 30 21 40

Table 3: Some values of K(10n) and kn = min{k, p1 · · · pk > pnk+1}.

We can also give K(1040) = 26, K(1050) = 31, K(1060) = 36, K(10100) = 53, K(10200) =
92, K(10300) = 128, K(10103) = 350 and, K(10104) = 2584.
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[7] P. Dusart, Inégalités explicites pour ψ(x), θ(x), π(x) et les nombres premiers, C. R. Math.
Acad. Sci. Soc. R. Can. 21 (1999), 53–59.

[8] P. Dusart, Estimates of the kth prime under the Riemann hypothesis, Ramanujan J. 47
(2018), 141–154.

[9] B. Gordon and K. Rogers, Sums of the divisor function, Can. J. Math. 16 (1964), 151–
158.

[10] M. Hassani, A remark on the Mandl’s inequality, Octogon Mathematical Magazine 15
(2007), 567-572.

[11] M. Hassani, On a function associated with the generalized Euler constant for an arith-
metic progression, J. Math. Inequal. 6 (2012), 249–252.

[12] D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975), 125–
142.

[13] J. L. Nicolas, Petites valeurs de la fonction d’Euler, J. Number Theory 17 (1983), 375–
388.

17

https://cs.uwaterloo.ca/journals/JIS/VOL22/Axler/axler17.html
https://cs.uwaterloo.ca/journals/JIS/VOL10/Betts/betts7.html


[14] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, 1974.
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