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Abstract

We prove some general combinatorial identities involving a variable, a parameter,
and partial sums of arbitrary sequences. Applying these formulas, we deduce many
finite binomial and central binomial sum identities involving the harmonic numbers.
Most of our results are new and some known formulas are particular cases of those
obtained here.

1 Introduction

Let s be a complex number and n ∈ N. We recall that the generalized
harmonic numbers H

(s)
n of order s are defined by ,

H(s)
n =

n
∑

k=1

1

ks
.

H
(s)
0 = 0 and H

(1)
n is the familiar harmonic number Hn = 1+ 1

2 + · · ·+ 1
n
. See

[18, Section 6.3]. Alternating or skew-harmonic numbers H−
n are defined by

H−
n =

n
∑

k=1

(−1)k+1

k
,
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which is the n th partial sum of log 2 =
∑∞

k=1
(−1)k+1

k
, see [4, 18]. The har-

monic numbers have been studied since antiquity, and they have involved in
a wide range of diverse areas of science and mathematics such as number
theory, combinatorics, analysis, computer science, and differential equations.
It is a well-known fact that the Riemann zeta function ζ has many series
representations involving harmonic numbers; see, for example, the excellent
book by Vǎlean [31], and [2]. Lagarias [21] proved that the Riemann hypoth-
esis is equivalent to the statement σ(n) ≤ Hn + (logHn)e

Hn, where σ(n) is
the sum of positive divisors of n. In a very recent paper, Elliot [12] discov-
ered many expressions involving the harmonic numbers, which are equivalent
to the Riemann hypothesis. Throughout this paper, we let N0 = N ∪ {0},
Z
− = {−1,−2,−3, · · · }, and Z

−
0 = Z

− ∪ {0}. We let Cn denote the central
binomial coefficients, that is,

Cn =

(

2n

n

)

.

Let Γ be the classical gamma function of Euler, and ψ(x) = Γ′(x)/Γ(x)
(x > 0) be the digamma function. We may recall some basic properties of
these important functions, which will be used extensively in this paper. The
gamma function satisfies the reflection formula

Γ(s)Γ(1− s) =
π

sin(πs)
(s ∈ C\Z) (1)

(see [23, p. 344] and [11, p. 253]) and the duplication formula

Γ

(

s+
1

2

)

=
Γ(2s)Γ(1/2)

22s−1Γ(s)
(2)

(see [23, p. 349] and [11, p. 252]). The binomial coefficients
(

s

t

)

(s, t ∈ C\Z−)
are defined by

(

s

t

)

=
Γ(s+ 1)

Γ(t+ 1)Γ(s− t+ 1)
. (3)

Making use of formulas (1) and (2) with s = 1/2− k, we obtain

Γ

(

1

2
− k

)

=
(−1)kΓ(1/2)k!22k

(2k)!
. (4)
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We shall extensively use the following form of the binomial coefficients, which
can be shown using the expressions (1), (2) and (3).

(

−1
2

k

)

=
(−1)kCk

4k
and

(

−3
2

k

)

=
(−1)k(2k + 1)Ck

4k
. (5)

The digamma function ψ and harmonic numbers Hn are connected with

ψ(n+ 1) = −γ +Hn (n ∈ N0); (6)

see [28, p. 31], where γ = 0.57721 · · · is the Euler-Mascheroni constant.
The digamma function ψ possesses the following properties:

ψ(s)− ψ(1− s) = −π cot(πs) (s ∈ C\Z), (7)

and

ψ

(

s+
1

2

)

= 2ψ(2s)− ψ(s)− 2 log 2 (s ∈ C\Z−); (8)

see [28, p. 25]. Using (6), (7) and (8) we get

ψ

(

1

2
− k

)

= ψ

(

1

2
+ k

)

= 2H2k −Hk + ψ(1/2). (9)

The binomial coefficients satisfy the following useful identities for n, k ∈ N

with k ≤ n
(

n+ 1

k

)

=

(

n

k

)

+

(

n

k − 1

)

and
n+ 1

k + 1

(

n+ 1

k + 1

)

=

(

n

k

)

. (10)

In the literature, there exist many interesting identities for finite sums in-
volving the harmonic numbers and the binomial coefficients. As examples,

n
∑

k=0

(

n

k

)2(
2n+ k

k

)

(Hk −Hn−k) = C2
n(H2n −Hn);

see [9],
n
∑

k=0

(−1)k
(

n

k

)

H2
n+k =

1

nCn

(

Hn −H2n −
2

n

)

;
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see [32],
n
∑

k=1

HkCk

4k
= 2 +

(Hn − 2)(2n+ 1)Cn

4n
,

see [7], and finally

n
∑

k=0

(−1)kHk
(

n

k

) = (n+ 1)

(

(−1)nHn+1

n+ 2
−

1 + (−1)n

(n+ 2)2

)

,

which is a slightly simplified form of [3, Identity 15)]. Recently, many other
remarkable finite and infinite sum identities involving the harmonic numbers
have been developed by many authors in different forms using a variety of
methods. In [9] and [29] the authors used some identities for classical hy-
pergeometric functions. By making use of the residue theorem in complex
analysis, Flajolet and Sedgewick [14] established many elegant harmonic sum
identities. Wang [32] obtained many nice harmonic number identities using
the method of Riordan arrays. In [27] the author used generating function
method to evaluate many finite and infinite harmonic sums in closed form.
In [7] and [20] the authors evaluated many finite harmonic sums in closed
form by using Abel-Gosper algorithm. By using finite difference method,
Spivey [26] presented many summation formulas involving the binomial coef-
ficients and harmonic numbers. We refer the interested readers to the papers
given in [2, 5, 8, 10, 15, 16, 17, 19, 22, 24, 25, 29, 30] and the references therein
for more identities. As we have seen in the brief review, harmonic numbers
appear in a variety of useful identities. In a very recent paper, Batır and
Sofo [1, Theorem 2.2] proved the following identity: Let x ∈ C and (an)n≥1

be any sequence of complex numbers, and An = a1 + a2 + · · ·+ an. Then

n
∑

k=1

(

n

k

)

Akx
k = (1 + x)n−1

n−1
∑

k=0

( k
∑

j=0

(

k

j

)

aj+1x
j+1

)

1

(1 + x)k
. (11)

Using this identity, they deduced many interesting binomial sum identities
involving the harmonic numbers, and Fibonacci and Lucas sequences. This
article can be regarded as a continuation of the papers [3] and [1]. Our aim
in this paper is to generalize formula (11), and to prove the formula (12)
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noted below. This formula allows us to establish further interesting finite
binomial and central binomial sum identities involving harmonic numbers.
To demonstrate the usefulness of our formula we present many finite binomial
and central binomial sum identities involving harmonic numbers by choosing
particular values for s, x and the sequence (an). Most of our results are new
and many known formulas are special cases of those obtained here.

Now we are ready to present our main results.

2 Main Results

Theorem 1. Let (an) be a sequence in C, x ∈ C, and s ∈ C\Z−. Let
An = a1 + a2 + · · ·+ an. Then

n
∑

k=0

(

n+ s

k

)

Akx
k = (1 + x)n

( n−1
∑

k=0

(

s+ k

1 + k

)

Ak+1

(

x

x+ 1

)k+1

+
n−1
∑

k=0

( k
∑

j=0

(

s+ k

j

)

aj+1x
j+1

)

1

(x+ 1)k+1

)

. (12)

Proof. The proof is by mathematical induction on n. The theorem is obvi-
ously true for n = 1. Assume that it is also true for n. Let us define

fn(x) =
n
∑

k=1

(

n+ s

k

)

Akx
k.

Then we have by the first identity in (10)

fn+1(x) =
n+1
∑

k=1

(

n+ s+ 1

k

)

Akx
k

=

(

n+ s+ 1

n+ 1

)

An+1x
n+1 +

n
∑

k=1

((

n+ s

k

)

+

(

n+ s

k − 1

))

Akx
k

=

(

n+ s+ 1

n+ 1

)

An+1x
n+1 + fn(x) +

n−1
∑

k=0

(

n+ s

k

)

Ak+1x
k+1.
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Using Ak+1 = Ak + ak+1, we get after a simple computation

fn+1(x) = fn(x) +

(

n+ s+ 1

n+ 1

)

An+1x
n+1 +

n−1
∑

k=0

(

n+ s

k

)

Akx
k+1

+
n−1
∑

k=0

(

n+ s

k

)

ak+1x
k+1.

Making some algebraic manipulations, this becomes

fn+1(x) = (1 + x)fn(x) +

((

n+ s+ 1

n+ 1

)

−

(

n+ s

n

))

Anx
n+1

+

((

n+ s+ 1

n+ 1

)

−

(

n+ s

n

))

an+1x
n+1 +

n
∑

k=0

(

n+ s

k

)

ak+1x
k+1.

By the first identity in (10), we have

fn+1(x) = (1 + x)fn(x) +

(

n+ s

n+ 1

)

An+1x
n+1 +

n
∑

k=0

(

n+ s

k

)

ak+1x
k+1. (13)

Now using the inductive hypothesis and (13), we obtain

fn+1(x) = (1 + x)n+1
n−1
∑

k=0

(

s+ k

1 + k

)

Ak+1

(

x

x+ 1

)k+1

+ (1 + x)n+1
n−1
∑

k=0

( k
∑

j=0

(

s+ k

j

)

aj+1x
j+1

)

1

(x+ 1)k+1

+

(

n+ s

n+ 1

)

An+1x
n+1 +

n
∑

k=0

(

n+ s

k

)

ak+1x
k+1.

This can be simplified to

fn+1(x) = (1 + x)n+1

( n
∑

k=0

(

s+ k

1 + k

)

Ak+1

(

x

x+ 1

)k+1

+
n
∑

k=0

( k
∑

j=0

(

s+ k

j

)

aj+1x
j+1

)

1

(x+ 1)k+1

)

.

So, identity (12) is also valid for n+ 1 and the proof is completed.
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Corollary 2. Letting x = −1 in (12) yields for n ∈ N, and s ∈ C\Z−

n
∑

k=1

(−1)k
(

n+ s

k

)

Ak

= (−1)n
(

s+ n− 1

n

)

An +
n−1
∑

k=0

(−1)k+1

(

s+ n− 1

k

)

ak+1. (14)

Corollary 3. For s ∈ C\Z−, and n ∈ N the following identity holds.

n
∑

k=1

(−1)k
(

n+ s

k

)

Hk

= (−1)n
(

s+ n− 1

n

)

Hn +
(−1)n

s+ n

(

s+ n− 1

n

)

−
1

s+ n
.

Proof. If we put ak =
1
k
in (14) we get

n
∑

k=0

(−1)k
(

n+ s

k

)

Hk

= (−1)n
(

s+ n− 1

n

)

Hn +
n−1
∑

k=0

(−1)k+1

(

s+ n− 1

k

)

1

k + 1
.

Letting k+1 = k′ and then deleting the prime, we get by the second identity
in (10)

n
∑

k=0

(−1)k
(

n+ s

k

)

Hk

= (−1)n
(

s+ n− 1

n

)

Hn +
1

s+ n

n
∑

k=1

(−1)k
(

s+ n

k

)

. (15)

In [3, Eq. 33] it was proved that

n
∑

k=0

(−1)k
(

s+ n

k

)

= (−1)n
(

s+ n− 1

n

)

. (16)

Upon using this identity in (15), one easily obtains the desired conclusion.
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Letting x = 1 in (12) we obtain

Corollary 4. Let n ∈ N and s ∈ C\Z−. Then we have

n
∑

k=1

(

n+ s

k

)

Ak

= 2n
n
∑

k=1

(

s+ k − 1

k

)

Ak

2k
+ 2n

n
∑

k=1

1

2k

k−1
∑

j=0

(

s+ k − 1

j

)

aj+1. (17)

Differentiating both sides of the equation given in Corollary 3 with respect
to s, and then setting ak =

1
k
we get, by (10), the following corollary.

Corollary 5. For s ∈ C\Z− and n ∈ N the following identity holds.

n
∑

k=1

(−1)k
(

n+ s

k

)

(ψ(s+ n+ 1)− ψ(s+ n− k + 1))Hk

= (−1)nHn

(

s+ n− 1

n

)

(ψ(s+ n)− ψ(s))−
(−1)n

(s+ n)2

(

s+ n− 1

n

)

+
(−1)n

s+ n

(

s+ n− 1

n

)

(ψ(s+ n)− ψ(s)) +
1

(s+ n)2
. (18)

Proposition 6. For s ∈ C\Z− and n ∈ N the following identity is valid.

n
∑

k=1

(−1)k
(

s+ n

k

)

H
(2)
k

= (−1)n
(

s+ n− 1

n

)

H(2)
n −

1

s+ n

(

Hn − s

n
∑

k=1

(−1)k
(

s+k−1
k−1

)

k2
(

n

k

)

)

. (19)

Proof. Putting ak =
1
k2

in (14), we get

n
∑

k=1

(−1)k
(

s+ n

k

)

H
(2)
k

= (−1)n
(

s+ n− 1

n

)

H(2)
n +

n−1
∑

k=0

(−1)k+1

(k + 1)2

(

s+ n− 1

k

)

. (20)
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Using (10), we arrive at
n−1
∑

k=0

(−1)k+1

(k + 1)2

(

s+ n− 1

k

)

=
1

s+ n

n−1
∑

k=0

(−1)k+1

k + 1

(

s+ n

k + 1

)

.

If we let k + 1 = k′ (and then k′ = k) we get
n−1
∑

k=0

(−1)k+1

(k + 1)2

(

s+ n− 1

k

)

=
1

s+ n

n
∑

k=1

(−1)k
(

s+ n

k

)

1

k
. (21)

The following identity comes from [3, Theorem 4].
n
∑

k=1

(−1)k
(

s+ n

k

)

1

k
= s

n
∑

k=1

(−1)k
(

s+k−1
k−1

)

k2
(

n

k

) −Hn. (22)

Combining (20), (21) and (22), we see that (19) is valid.

Theorem 7. For all s ∈ C, which is not a negative integer, and n ∈ N we
have

n
∑

k=1

(−1)k
(

s+ n

k

)

H2
k = (−1)n

(

s+ n− 1

n

)(

H2
n +

2Hn

s+ n
+

2

(s+ n)2

)

+
Hn

s+ n
−

2

(s+ n)2
−

s

s+ n

n
∑

k=1

(−1)k
(

s+k−1
k−1

)

k2
(

n

k

) . (23)

Proof. Letting ak = H2
k −H2

k−1 in Corollary 2, we get
n
∑

k=1

(−1)k
(

s+ n

k

)

H2
k

= (−1)n
(

s+ n− 1

n

)

H2
n +

n−1
∑

k=0

(−1)k+1

(

s+ n− 1

k

)

(

H2
k+1 −H2

k

)

. (24)

Using (10) and H2
k+1 −H2

k = 2Hk+1

k+1 − 1
(k+1)2 , (24) can be easily simplified to

n
∑

k=1

(−1)k
(

s+ n

k

)

H2
k = (−1)n

(

s+ n− 1

n

)

H2
n

+
2

s+ n

n
∑

k=1

(−1)k
(

s+ n

k

)

Hk −
1

s+ n

n
∑

k=1

(−1)k
(

s+ n

k

)

1

k
.
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If we apply Corollary 3 and (22) to this identity, we complete the proof.

Differentiating both sides of (23) with respect to s, we arrive at the fol-
lowing corollary.

Corollary 8. Let s ∈ C\Z− and n ∈ N. Then we have

n
∑

k=1

(−1)k
(

s+ n

k

)

(ψ(s+ n+ 1)− ψ(s+ n− k + 1))H2
k

= (−1)n
(

s+ n− 1

n

)(

H2
n +

2Hn

s+ n
+

2

(s+ n)2

)

(ψ(s+ n)− ψ(s))

− (−1)n
(

s+ n− 1

n

)(

2Hn

(s+ n)2
+

4

(s+ n)3

)

−
Hn

(s+ n)2
+

4

(s+ n)3
−

n

(s+ n)2

n
∑

k=1

(−1)k
(

s+k−1
k−1

)

k2
(

n

k

)

+
s

s+ n

n
∑

k=1

(−1)k
(

s+k−1
k−1

)

k2
(

n

k

) (ψ(s+ k)− ψ(s+ 1)) . (25)

Theorem 9. Let s ∈ C\Z− and n ∈ N. Then we have

n
∑

k=1

(

n+ s

k

)

H−
k = 2n

n
∑

k=1

(

s+ k − 1

k

)

H−
k

2k
+ 2n

n
∑

k=1

2−k

s+ k

+ 2n
n
∑

k=1

(−1)k+1

s+ k

(

s+ k − 1

k

)

1

2k
. (26)

Proof. Setting ak =
(−1)k+1

k
in (14), we obtain

n
∑

k=0

(

n+ s

k

)

H−
k = 2n

n−1
∑

k=0

(

s+ k

1 + k

)

H−
k+1

2k+1

+ 2n
n−1
∑

k=0

( k
∑

j=0

(

s+ k

j

)

(−1)j

j + 1

)

1

2k+1
. (27)
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According to (10) and using (16), we deduce

k
∑

j=0

(

s+ k

j

)

(−1)j

j + 1
=

1

s+ k + 1

k+1
∑

j=1

(−1)j+1

(

s+ k + 1

j

)

=
(−1)k

s+ k + 1

(

s+ k

k + 1

)

+
1

s+ k + 1
.

Substituting this in (27), and letting k+1 = k′ (and then k′ = k), we complete
the proof.

Theorem 10. Let n ∈ N and s ∈ C\Z−. Then we have

n
∑

k=1

(−1)k
(

s+ n

k

)

(

H−
k

)2
= (−1)n

(

s+ n− 1

n

)

(

H−
n

)2

−
2n+1

s+ n

( n
∑

k=1

(

s+ k − 1

k

)

H−
k

2k
−

n
∑

k=1

(−1)k

2k(s+ k)

(

s+ k − 1

k

)

+
n
∑

k=1

1

2k(s+ k)

)

−
1

s+ n

n
∑

k=1

(−1)k
(

s+ n

k

)

1

k
.

Proof. Putting ak =
(

H−
k

)2
−
(

H−
k−1

)2
in (14), we obtain

n
∑

k=1

(−1)k
(

s+ n

k

)

(

H−
k

)2
=

n
∑

k=1

(−1)k
(

s+ n

k

) k
∑

j=1

(

(

H−
j

)2
−
(

H−
j−1

)2
)

= (−1)n
(

s+ n− 1

n

)

(

H−
n

)2

−
n−1
∑

k=0

(−1)k
(

s+ n− 1

k

)

(

(

H−
k+1

)2
−
(

H−
k

)2
)

.

(28)

But since
(

H−
k+1

)2
−
(

H−
k

)2
=

(−1)k

k + 1

(

2H−
k+1 −

(−1)k

k + 1

)

11



we deduce from (28)

n
∑

k=1

(−1)k
(

s+ n

k

)

(

H−
k

)2
= (−1)n

(

s+ n− 1

n

)

(

H−
n

)2

−

n−1
∑

k=0

(−1)k
(

s+ n− 1

k

)

(−1)k

k + 1

(

2H−
k+1 −

(−1)k

k + 1

)

.

Making use of the second identity in (10), and simplifying the result, It follows
from this identity that

n
∑

k=1

(−1)k
(

s+ n

k

)

(

H−
k

)2
= (−1)n

(

s+ n− 1

n

)

(

H−
n

)2

−
2

s+ n

n−1
∑

k=0

(

s+ n

k + 1

)

H−
k+1 −

1

s+ n

n−1
∑

k=0

(−1)k+1

(

s+ n

k + 1

)

1

k + 1
.

Letting k + 1 = k′ (and then k′ = k), this can be simplified to

n
∑

k=1

(−1)k
(

s+ n

k

)

(

H−
k

)2
= (−1)n

(

s+ n− 1

n

)

(

H−
n

)2

−
2

s+ n

n
∑

k=1

(

s+ n

k

)

H−
k −

1

s+ n

n
∑

k=1

(−1)k
(

s+ n

k

)

1

k
. (29)

We therefore conclude from Theorem 9

n
∑

k=1

(−1)k
(

s+ n

k

)

(

H−
k

)2
= (−1)n

(

s+ n− 1

n

)

(

H−
n

)2

−
2n+1

s+ n

( n
∑

k=1

(

s+ k − 1

k

)

H−
k

2k
−

n
∑

k=1

(−1)k

2k(s+ k)

(

s+ k − 1

k

)

+
n
∑

k=1

1

2k(s+ k)

)

−
1

s+ n

n
∑

k=1

(−1)k
(

s+ n

k

)

1

k
,

which is the desired conclusion.
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3 Applications

In this section we present some applications of our results. Our first identity
is well-known and due to Euler [13].

Identity 11. Let n ∈ N. If we set s = 0 in Corollary 4, we get the well-known
identity

n
∑

k=1

(−1)k
(

n

k

)

Hk = −
1

n
.

Identity 12. Let n ∈ N. Then setting ak =
1
k
, x = 1 and s = 0 in Theorem 1,

we obtain
n
∑

k=1

(

n

k

)

Hk = 2n

(

Hn −
n
∑

k=1

1

k2k

)

.

Remark 13. This identity is also well-known; see [1, 3, 5, 17, 29].

Identity 14. For n ∈ N the following identity holds.
n
∑

k=1

(−1)k+1

(

n

k

)

HkHn−k =
(1 + (−1)n) (nHn + 1)

n2
.

Proof. Setting s = 0 in Corollary 5, we get
n
∑

k=0

(−1)k
(

n

k

)

{ψ(n+ 1)− ψ(n− k + 1)}Hk

= (−1)nHn

(

n− 1

n

)

ψ(n)− (−1)nHn

(

s+ n− 1

n

)

ψ(s)

∣

∣

∣

∣

s=0

+
1

n2

−
(−1)n

n2

(

n− 1

n

)

+
(−1)n

n

(

n− 1

n

)

ψ(n)

−
(−1)n

n

(

s+ n− 1

n

)

ψ(s)

∣

∣

∣

∣

s=0

. (30)

Since
(

n−1
n

)

= 0, ψ(n+ 1)− ψ(n− k + 1) = Hn −Hn−k by (6), and
(

s+ n− 1

n

)

ψ(s)

∣

∣

∣

∣

s=0

=
Γ(s+ n)

n!

ψ(s)

Γ(s)

∣

∣

∣

∣

s=0

=
1

n
lim
s→0

sψ(s+ 1)− 1

Γ(s+ 1)
= −

1

n
, (31)

13



we conclude from (30) and (31)

n
∑

k=1

(−1)k
(

n

k

)

(Hn −Hn−k)Hk =
1 + (−1)n(nHn + 1)

n2
.

Now the proof follows from Identity 11.

Identity 15. Let n be a positive integer. Then we have

n
∑

k=1

HkCk

4k
= 2 +

(Hn − 2)(2n+ 1)Cn

4n
.

Proof. Setting s = −1
2 − n in Corollary 3 we find

n
∑

k=1

(−1)k
(

−1
2

k

)

Hk = (−1)n
(

−3
2

n

)

Hn − 2(−1)n
(

−3
2

n

)

+ 2.

The proof immediately follows from (5).

Remark 16. Identity 15 is not new and it has been proved by Chen et al. [7] by
a method combining the Abel’s summation formula and Gosper’s algorithm
elegantly.

Identity 17. Let n be a positive integer. Then we have

n
∑

k=1

H2kCk

4k
= 1 +

(2n+ 1)(H2n+1 − 2)Cn

4n
.

Proof. In [25, Identity 3] it was proved that

n
∑

k=1

(2H2k −Hk)Ck

4k
=

(2n+ 1)(2H2n+1 −Hn − 2)Cn

4n
. (32)

Now we complete the proof by combining Identity 15 and (32).

Setting s = 0 in (23), we get the following known result; see [1, 3, 20, 32].

Identity 18. Let n be a positive integer. Then we have

n
∑

k=1

(−1)k
(

n

k

)

H2
k =

Hn

n
−

2

n2
.

14



Identity 19. Let n be a positive integer. Then we have

n
∑

k=1

H2
kCk

4k
= −2Hn − 8

+
(2n+ 1)Cn

4n

(

H2
n − 4Hn + 8 + 2

n−1
∑

k=0

4k

(n− k)(2k + 1)Ck

)

.

Proof. Setting s = 1
2 − n in (23) we get

n
∑

k=1

(−1)k
(

−1
2

k

)

H2
k = (−1)n

(

−3
2

n

)

(

H2
n − 4Hn + 8

)

− 2Hn − 8

−
2n+ 1

2

n
∑

k=1

(−1)k

k2
(

n

k

)

(

−3
2 − n+ k

k − 1

)

. (33)

Using (9) we get, after simplifying
(

−3
2 − n+ k

k − 1

)

=
Γ
(

−1
2 − n+ k

)

(k − 1)!Γ
(

1
2 − n

) =
−2

2n− 2k + 1

Γ
(

1
2 − n+ k

)

(k − 1)!Γ
(

1
2 − n

)

=
2(−1)k+1

2n− 2k + 1

(n− k)!

(k − 1)!(2n− 2k)!

(2n)!

n!4k
.

Thus,

(−1)k

k2
(

n

k

)

(

−3
2 − n+ k

k − 1

)

= −
2

2n− 2k + 1
·

(n− k)!

(k − 1)!(2n− 2k)!
·
(2n)!

n!4k
·
k!(n− k)!

k2n!

Upon simplifying this becomes

(−1)k

k2
(

n

k

)

(

−3
2 − n+ k

k − 1

)

= −
2

k(2n− 2k + 1)

(

2n
n

)

(

2n−2k
n−k

)

4k
.

Substituting this in (33), and changing the index, we arrive at the conclusion
by taking into account (10).
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Identity 20. For n ∈ N the following identity holds.

n
∑

k=1

(−1)k
(

n

k

)

Hn−kH
2
k

=
(1− (−1)n)H2

n

n
−

2 (1 + (−1)n)Hn

n2
−

4 + (−1)n

n3
−

1

n

n
∑

k=1

(−1)k

k2
(

n

k

) .

Proof. The proof is done by the same way with the proof of Identity 18 if we
take s = 0 in (25).

Identity 21. For n ∈ N we have

n
∑

k=1

CkH
(2)
k

4k
= 2Hn +

(2n+ 1)Cn

4n

(

H(2)
n − 2

n−1
∑

k=0

4k

(n− k)(2k + 1)Ck

)

.

Proof. The proof can be done by the same method with the proof of Iden-
tity 18 by setting s = −1

2 − n in (19).

Identity 22. Let n ∈ N. Then

n
∑

k=1

(

H2
k +H

(2)
k

)

Ck

4k
=

(2n+ 1)Cn

4n

(

H2
n +H(2)

n − 4Hn + 8
)

− 8.

Proof. If we sum the equations given in Identity 19 and Identity 21 side by
side, the proof isimmediately follows.

Putting s = −1
2 − n in (18), we get

Identity 23. For n ∈ N we have

n
∑

k=1

(Hk − 2H2k)HkCk

4k

=
(2n+ 1)Cn

4n

(

Hn − 2H2n +
4n

2n+ 1

)

(Hn − 2)−
(2n+ 1)Cn

4n−1
+ 4.

Combining Identity 19 and Identity 23, we get the following conclusion.
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Identity 24. For n ∈ N we have

n
∑

k=1

HkH2kCk

4k
=

(2n+ 1)Cn

4n

(

HnH2n −Hn − 2H2n + 6

+
2n(2−Hn)

2n+ 1
+

n−1
∑

k=0

4k

(n− k)(2k + 1)Ck

)

−Hn − 6.

Identity 25. Let n ∈ N. Then

n
∑

k=1

(−1)kH−
k Ck

4k
=

(−1)n(2n+ 1)Cn

4n

n−1
∑

k=0

(−8)k
(

n

k

)

H−
n−k

(2k + 1)Ck

+
2(2n+ 1)Cn

4n

n−1
∑

k=0

(

n

k

)

8k

(2k + 1)2Ck

− 2
n−1
∑

k=0

2k

2k + 1
.

Proof. The proof follows from (26) by putting s = −1
2 − n. We omit the

details.

Identity 26. Let n ∈ N. If we set s = 0 in (26), we find

n
∑

k=1

(

n

k

)

H−
k = 2n

n
∑

k=1

1

k2k
.

Remark 27. This identity is not new and an inductive proof of it can be found
in [6, Eq. (14)] and [4, Eq. (9.20)]. See also [1, Remark 21].

Identity 28. For n ∈ N we have

n
∑

k=1

(

n

k

)

Hn−kH
−
k = 2n

n
∑

k=1

Hn −H−
k

2kk
+ 2n

n
∑

k=1

1 + (−1)k

2kk2
.

Proof. Differentiating both sides of (26) with respect to s and then setting
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s = 0, we get by (6)

n
∑

k=0

(

n

k

)

(ψ(n+ 1)− ψ(n− k + 1))H−
k

Hn

n
∑

k=0

(

n

k

)

H−
k −

n
∑

k=0

(

n

k

)

Hn−kH
−
k

= −2n
n
∑

k=1

(

s+ k − 1

k

)

ψ(s)

∣

∣

∣

∣

s=0

H−
k

2k
− 2n

n
∑

k=1

1

2kk2

+ 2n
n
∑

k=1

(−1)k

k

(

s+ k − 1

k

)

ψ(s)

∣

∣

∣

∣

s=0

1

2k
,

where we have used
(

k−1
k

)

= 0. Using (31) with n = k it follows that

Hn

n
∑

k=1

(

n

k

)

H−
k −

n
∑

k=0

(

n

k

)

Hn−kH
−
k = 2n

n
∑

k=1

H−
k

k2k
− 2n

n
∑

k=1

1

2kk2

− 2n
n
∑

k=1

(−1)k

k22k
.

Employing Identity 26 the conclusion follows.

Identity 29. Let n ∈ N. If we set s = 0 in (28) we deduce by Identity 11

n
∑

k=1

(−1)k
(

n

k

)

(

H−
k

)2
=
Hn

n
−

2n+1

n

n
∑

k=1

1

k2k
.

Remark 30. Identity 29 can be found in [1, Identity 25].

Setting s = 1
2 in Corollary 3 and using the formula (5), after a short

computation, we get

Identity 31. Let n ∈ N. Then

n
∑

k=0

(−1)k4k
(

n

k

)

Hn−k

(2k + 1)Ck

=
Hn

2n+ 1
+

2

(2n+ 1)2
−

2(−1)n4n

(2n+ 1)2Cn

.
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If we set s = 1
2 − n in Corollary 3, and using the first identity in (10) we

obtain

Identity 32. For n ∈ N we have

n−1
∑

k=0

CkHk+1

(k + 1)4k
= 4−

2(Hn + 2)Cn

4n
.

Identity 33. Setting s = −1
2 in Corollary 3, we get for n ∈ N

n
∑

k=0

(−1)k+14k
(

n

k

)

Hn−k

Ck

=
Hn

2n− 1
+

2

(2n− 1)2
+

2 · 4n(−1)n

(2n− 1)Cn

.

Identity 34. Setting s = −1
2 in Proposition 6, we get

n
∑

k=0

(−1)k4k
(

n

k

)

H
(2)
n−k

Ck

=
2(−1)n+14n

(2n− 1)Cn

(

Hn +
n
∑

k=1

(−1)kCk

k(2k − 1)4k
(

n

k

)

)

−
H

(2)
n

2n− 1
.

Identity 35. Let n be a non-negative integer. Then

n
∑

k=1

(

n

k

)

HkHn−k = 2n
(

H2
n +H(2)

n − 2Hn

n
∑

k=1

1

k2k
− 2

n
∑

k=1

1

k22k

)

.

Proof. If we differentiate both sides of (17) with respect to s, and put s = 0
and ak = 1

k
, we can easily obtain the desired result after some easy calcula-

tions.

Remark 36. Applying our results given in this paper, we may obtain many
other finite binomial and central binomial sum identities involving harmonic
numbers, but for briefness we are satisfied with these examples.
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