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Abstract

We show that the Catalan-Schroeder convolution recurrences and their higher order
generalizations can be solved using Riordan arrays and the Catalan numbers. We
investigate the Hankel transforms of many of the recurrence solutions, and indicate
that Somos-4 sequences often arise. We exhibit relations between recurrences, Riordan
arrays, elliptic curves and Somos-4 sequences. We furthermore indicate how one can
associate a family of orthogonal polynomials to a point on an elliptic curve, whose
moments are related to recurrence solutions.

This paper, which concerns generalized Catalan recurrences, their solutions using Riordan
arrays, and applications to elliptic curve sequences, is arranged in the following sections.

1. A motivating example

2. Preliminaries

3. Generalized Catalan recurrences

4. A third-order recurrence

5. A further recurrence

6. Conversion of parameters
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7. From elliptic curve to recurrences and Somos sequences

8. The family Et : y
2 + 4xy + y = x3 + (t− 1)x+ tx

9. The case of E : y2 + axy + y = x3 + bx2 + cx

10. Conclusions

11. Appendix: Orthogonal polynomials, Riordan arrays and the Hankel transform.

1 A motivating example

The elliptic curve
E : y2 − xy + y = x3 − 2x+ x

passes through the point P (0, 0). The division polynomials of this curve, ψn, evaluated at
the multiples nP of the point P (0, 0), are given by

ψn(0, 0) = (−1)(
n

2)Fn,

where Fn is the n-th Fibonacci number A000045. A consequence of this is that the coordi-
nates of nP are

xn = x(nP ) =
FnFn+2

F 2
n+1

,

and

yn = y(nP ) =
(−1)nFn

F 3
n+1

.

The ratio yn/xn is then given by
yn
xn

=
(−1)n

Fn+1Fn+2

.

We now form a generating function expressed as a continued fraction

ã(x) = gE,P (t) =
1

1 + t+
x1t

2

1 + y1
x1
t+

x2t
2

1 + y2
x2
t+

x3t
2

1 + y3
x3
t+ · · ·

.

In this case, the generating function gE,P (t) expands to give the sequence ãn that begins

1,−1,−1, 2, 2,−5,−5, 14, 14,−42,−42, . . . .
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The general term of this sequence is

ãn = (−1)(
n+1
2 )C⌊n+1

2
⌋.

Here, we have Cn = 1
n+1

(

2n
n

)

is the n-th Catalan number.
The Hankel transform hn = |ai+j|0≤i,j≤n of ãn begins

1,−2,−3, 5, 8,−13,−21, 34, 55,−89,−144, . . . ,

with general term

hn = (−1)(
n+1
2 )Fn+2.

Thus we have
hn = (−1)n+1ψn+2(0, 0).

On the other hand, we can solve the equation y2 − xy + y = x3 − 2x2 + x for y. We find
that

y =
(1− x)(

√
1 + 4x− 1

2
= (1− x)xC(−x), or y = −(1− x)(1 +

√
1 + 4x)

2
.

Here,

C(x) =
1−

√
1− 4x

2x

is the generating function of the Catalan numbers. The first solution expands to give the
sequence that begins

0, 1,−2, 3,−7, 19,−56, 174,−561, 1859,−6292,

while the second solution begins

−1, 0, 2,−3, 7,−19, 56,−174, 561,−1859, 6292, . . . .

We are interested in the common part of these sequences, namely the sequence that begins

2,−3, 7,−19, 56,−174, 561,−1859, 6292, . . . .

This has its generating function given by

f(x) =

(

−(1− x)(1 +
√
1 + 4x)

2
+ 1

)

/x2 =
1 + x− (1− x)

√
1 + 4x

2x2
.

We wish to work with a sequence with initial term 1, which has essentially the same Hankel
transform as this sequence. Thus we take the generating function

f1(x) =
1

1− x− x2f(x)
=

2

1− 3x+ (1− x)
√

(1 + 4x)
=

−(x− 1)
√
1 + 4x− 3x+ 1

2x(x2 − 4x+ 2)
.
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Using the fundamental theorem of Riordan arrays [2, 17], we can express this as

f1(x) =
1

1− 3x
C

(−x(x2 − 4x+ 2)

(1− 3x2)2

)

=

(

1

1− 3x
,
−x(x2 − 4x+ 2)

(1− 3x2)2

)

· C(x).

We now revert xf1(x), and divide the result by x, to obtain the generating function a(x)
given by

a(x) =
1 + 3x+ 4x2 − (1 + x)

√
1 + 4x+ 8x2

2x3
.

This expands to give a sequence an that begins

1,−1,−1, 8,−22, 33, 7,−212, 702,−1202,−58, . . . .

This sequence satisfies the convolution recurrence (generalized Catalan recurrence)

an = −3an−1 − 4an−2 + 2an−3 +
n−4
∑

k=1

akan−k−3,

with a0 = 1, a1 = −1, a2 = −1, a3 = 8. The Hankel transform of this sequence begins

1,−2,−3, 5, 8,−13,−21, 34, 55,−89,−144, . . . .

Thus we now have a sequence an, constructed from the elliptic curve equation, that has the
same Hankel transform as ãn. Moreover, we know the generating function of an. We can
express a(x) as

a(x) =

(

1 + 2x

1 + 3x+ 4x2
,

x3(1 + 2x)

(1 + 3x+ 4x2)2

)

· C(x).

It remains to relate ã(x) = gE,P (x) to a(x).
In this special case, the solution is quite easy to state. We have

ãn =
n
∑

k=0

(

n

k

)

(−2)n−k(−1)kak.

In other words, the generating function gE(x) of ãn = (−1)(
n+1
2 )C⌊n+1

2
⌋ is given by taking the

second inverse binomial transform of the generating function of the sequence (−1)nan. We
can verify this algebraically as follows. We take the generating function

a(x) =
1 + 3x+ 4x2 − (1 + x)

√
1 + 4x+ 8x2

2x3
.

We now form the generating function of (−1)nan which is

a(−x) = −1− 3x+ 4x2 − (1− x)
√
1− 4x+ 8x2

2x3
.
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Taking the second inverse binomial transform now gives us

1

1 + 2x
a

( −x
1 + 2x

)

=
(1 + x)

√
1 + 4x2 − 1− x− 2x2

2x3
.

We can verify independently that this last generating function is indeed the generating

function of ãn = (−1)(
n+1
2 )C⌊n+1

2
⌋.

We have

(1 + x)
√
1 + 4x2 − 1− x− 2x2

2x3
=

1

1 + x+

F1F3

F 2
2
x2

1−
1

F2F3

x+

F2F4

F 2
3
x2

1 +
1

F3F4

x+

F3F5

F 2
4
x2

1− · · ·

.

The sequence ãn is the moment sequence (see the Appendix) of the family of orthogonal
polynomials Pn(t) defined by the three-term recurrence

Pn(t) = (t+
xn−1

yn−1

)Pn−1(t) + xn−1Pn−2(t)

=

(

t− (−1)n

FnFn+1

)

Pn−1(t) +
Fn−1Fn+1

F 2
n

Pn−2(t),

with P0(t) = 1, P1(t) = t+ 1.
The coefficient array of the family Pn(t) then begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
3/2 1/2 1 0 0 0 0
1 7/3 2/3 1 0 0 0
8/5 7/5 17/5 3/5 1 0 0
1 31/8 17/8 35/8 5/8 1 0

21/13 31/13 95/13 35/13 70/13 8/13 1





















.

The inverse of this matrix, which is the moment matrix, begins





















1 0 0 0 0 0 0
−1 1 0 0 0 0 0
−1 −1/2 1 0 0 0 0
2 −2 −2/3 1 0 0 0
2 3/2 −3 −3/5 1 0 0
−5 5 8/3 −4 −5/8 1 0
−5 −9/2 9 3 −5 −8/13 1





















.
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This exhibits the sequence ãn as a moment sequence.
We note that the denominators in the coefficient matrix of the orthogonal polynomials

are the Fibonacci numbers. Scaling up by these, we get the integer matrix that begins as
follows.





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
3 1 2 0 0 0 0
3 7 2 3 0 0 0
8 7 17 3 5 0 0
8 31 17 35 5 8 0
21 31 95 35 70 8 13





















.

The row sums of this matrix are given by Fn+1Fn+2.
The generating function of ãn can be described using Riordan arrays as follows.

ã(x) =

(

1

1 + x+ 2x2
,

−x3
(1 + x+ 2x2)2

)

· C(x).

A consequence of this is that the sequence ãn satisfies the convolution recurrence

ãn = −ãn−1 − 2ãn−2 − 2ãn−3 −
n−4
∑

k=1

ãkãn−k−3,

with a0 = 1, a1 = −1, a2 = −1, a3 = 2.

2 Preliminaries

The product of two power series

a(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · =
∞
∑

n=0

anx
n

and

b(x) = b0 + b1x+ b2x
2 + b3x

3 + · · · =
∞
∑

n=0

bnx
n

is given by

a(x)b(x) = a0b0 + (a0b1 + a1b0)x+ (a0b1 + a1b1 + a1b0)x
2 + · · · .

That is,

a(x)b(x) =
∞
∑

n=0

(

n
∑

k=0

akbn−k

)

xn.
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The term
∑n

k=0 akbn−k is called the convolution of a0, a1, · · · , an with b0, b1, . . . , bn. Note
that if we multiply the shifted sequences a1 + a2x + a3x

2 + · · · and b1 + b2x + b3x
2 + · · · ,

then the product will begin

a1b1 + (a1b2 + a2b1)x+ (a1b3 + a2b2 + a3b1)x
2 + · · · ,

or
∞
∑

n=0

(

n+1
∑

k=1

akbn+2−k

)

xn.

This can be also be written as

∞
∑

n=0

(

n
∑

k=0

ak+1bn+1−k

)

xn.

Expressions such as
∑n

k=0 akbn−k are known as convolutions, and equations involving terms
of a sequence and such convolutions are known as convolution recurrences. For instance,

Cn =
n−1
∑

k=0

CkCn−1−k,

where we stipulate C0 = 1, is a well known convolution recurrence. Note that we have
C1 = C0C0, C2 = C0C1 + C1C0, C3 = C0C2 + C1C1 + C2C0, and so on.

Starting from C0 = 1, we obtain C0 = 1, 1, 2, 5, 14, 42, . . .. These are the Catalan numbers
A000108. If we let C(x) =

∑∞
n=0Cnx

n, then we see that

C1 + C2x+ C3x
2 + · · · = C0C0 + (C0C1 + C1C0)x+ . . . = C(x)× C(x) = C(x)2.

Thus,

C(x) = C0 + C1x+ C2x
2 + · · · = C0 + x(C1 + C2x+ C3x

2 + . . .) = 1 + xC(x)2.

This means that C(x), the generating function of the Catalan numbers, is a solution of the
quadratic equation

u = 1 + xu2, or xu2 − u+ 1 = 0.

We obtain two solutions,

u(x) =
1−

√
1− 4x

2x
and

1 +
√
1− 4x

2x
.

When x = 0, the second solution leads to a division by zero, so we choose the first solution.
Thus

C(x) =
1−

√
1− 4x

2x
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is the generating function of the Catalan numbers. In this note, shall seek to solve more
generalized convolution recurrences. The Catalan numbers Cn and their generating function
C(x) will play an important role in this discussion. This will arise because we will often be
solving quadratic equations, as above. Thus if we consider a quadratic equation such as

au2 + bu+ c = 0

then the solution

u =
−b+

√
b2 − 4ac

2a

can be expressed as follows. We have

−c
b
C
(ac

b2

)

=
c

b

(

1−
√

1− 4ac
b2

2ac
b2

)

=
−b
2a

(

1−
√

1− 4
ac

b2

)

=
1

2a

(

−b+ b

√

1− 4
ac

b2

)

=
1

2a

(

−b+
√
b2 − 4ac

)

.

The squared terms that give rise to the quadratic expressions to be solved will in turn be
explained in part by the presence of the convolution elements. For instance, if we multiply a
shifted power sequence a1+a2x+a3x

2+ · · · by itself, thus getting a power series that begins

a1a1 + (a1a2 + a2a1)x+ (a1a3 + a2a2 + a3a1)x
2 + · · · ,

then the generating function of this expression will be

a(x)− 1

x
· a(x)− 1

x
=

(a(x)− 1)2

x2
=
a(x)2 − 2a(x) + 1

x2
,

where

a(x) =
∞
∑

n=0

anx
n

is the generating function of the sequence a0, a1, a2, . . .. (We have taken a0 = 1 for simplicity
here).

The expression −c
b
C
(

ac
b2

)

is reminiscent of the fundamental theorem of Riordan arrays
[2, 17], and in the cases that we shall consider, it will indeed be an instance of this result.
We shall therefore use Riordan arrays [2, 16, 17] extensively. A Riordan array can be defined
by a pair (g, f) of power series

g(x) = g0 + g1x+ g2x
2 + · · · , g0 6= 0,
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and
f(x) = f1x+ f2x

2 + f3x
3 + · · · ,

with indeterminate x and coefficients drawn from a suitable ring. To this pair we can
associate the lower-triangular matrix with general (n, k)-th term Tn,k given by

Tn,k = [xn]g(x)f(x)k.

Here, [xn] is the functional on power series that extracts the coefficient of xn [14]. Thus this
matrix is the “Riordan array” associated with the pair (g, f). In practice, we refer to either
as a Riordan array. The fundamental theorem of Riordan arrays asserts that the action of
the pair (g, f) acting on the generating function h(x) as defined by

(g(x), f(x)) · h(x) = g(x)f(h(x))

is mirrored by multiplying the (infinite) vector whose elements are given by the expansion
of h(x) by the matrix (Tn,k).

When f1 6= 0 the matrices have a non-zero diagonal and hence they are invertible. If
f1 = 0 we have arrays that are often described as “stretched”, which are not invertible in
the usual sense. The fundamental theorem still holds.

Somos-4 sequences are defined using the Weierstrass σ function for appropriate elliptic
curves. The link between this σ function and the Hankel transform [11, 12, 13] explains the
importance of the Hankel transform in this note. The motivating example shows how the
x− and y− coordinates of the multiples of special points on an elliptic curve can give rise to
integer sequences whose Hankel transform is then the Somos-4 sequence for that point. The
link to the title of this note is that these sequences satisfy a recurrence of the desired type.

Where we encounter sequences that appear in the On-Line Encyclopedia of Integer Se-
quences [18, 19], we refer to them by their Annnnnn number.

The r-th binomial transform bn of the sequence an has general term bn =
∑n

k=0

(

n

k

)

rn−kak.
If the sequence an has a generating sequence g(x), then the sequence bn has generating
function 1

1−rx
g
(

x
1−rx

)

.
The Invert(a) transform of the sequence an whose generating function is g(x) will have

a generating function given by g(x)
1−axg(x)

= (g(x), xg(x)) · 1
1−ax

.

If the generating function g(x) of a sequence an can be expressed as a Stieltjes continued
fraction

g(x) =
1

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x− · · ·

,

then the r-th binomial transform of an will have a generating function given by

1

1− (r + α0)x−
β1x

2

1− (r + α1)x−
β2x

2

1− (r + α2)x− · · ·

.
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The Invert(a) transform of an will have a generating function given by

1

1− (a+ α0)x−
β1x

2

1− α1x−
β2x

2

1− α2x− · · ·

.

The generating function g(x) above will be designated by J (α0, α1, . . . ; β1, β2, . . .).
If a sequence a0, a1, . . . with generating function g(x) has a Hankel transform that begins

h0, h1, . . . then the sequence with generating function 1
1−x−x2g(x)

will have a Hankel transform
that begins 1, h0, h1, . . .. In addition, this new sequence will have its initial term equal to 1.

More information on orthogonal polynomials, Riordan arrays and Hankel transforms may
be found in the Appendix.

3 Generalized Catalan recurrences

We let Cn = 1
n+1

(

2n
n

)

denote the n-th Catalan numbers A000108. The sequence of Catalan

numbers has generating function C(x) = 1−
√
1−4x
2x

. The Catalan numbers begin

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . . .

The large Schroeder numbers Sn A006318 can then be defined by

Sn =
n
∑

k=0

(

n+ k

2k

)

Ck.

These numbers begin

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, . . . .

Using the theory of Riordan arrays, we see that the generating function S(x) of the large
Schroeder numbers is given by an application of the fundamental theorem of Riordan arrays
[2, 17], which in this case says that

S(x) =

(

1

1− x
,

x

(1− x)2

)

· C(x) = 1

1− x
C

(

x

(1− x)2

)

.

This follows since the matrix representation of the Riordan array
(

1
1−x

, x
(1−x)2

)

has general

term

[xn]
1

1− x

xk

(1− x)2k
=

(

n+ k

2k

)

.
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Simplifying, we find that

S(x) =
1− x−

√
1− 6x+ x2

2x
.

We now consider the generating function C(x)+C(−x)
2

=
√
1+4x+

√
1−4x

2x
, which expands to give

the sequence
1, 0, 2, 0, 14, 0, 132, 0, 1430, 0, 16796, . . . ,

which is the aerated sequence of Catalan numbers of even index A048990. We once again

apply the Riordan array
(

1
1−x

, x
(1−x)2

)

to this sequence, resulting in the sequence that begins

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, . . . .

The generating function of this sequence, which is called the sequence of little Schroeder
numbers sn A001003, is then given by

(

1

1− x
,

x

(1− x)2

)

·
√
1 + 4x+

√
1− 4x

2x
=

1 + x−
√
1− 6x+ x2

4x
.

We deduce that

sn =
n
∑

k=0

(

n+ k

2k

)

Ck

1 + (−1)k

2
=

n
∑

k=0

(

n+ 2k

4k

)

C2k.

We can further use Riordan arrays to characterize these two sequences. The theory of
Riordan arrays and orthogonal polynomials [2, 3, 4] allows us to derive the following result.

Proposition 1. The large Schroeder numbers Sn are the moments of the family of orthogonal
polynomials whose coefficient array is given by the Riordan array

(

1

1 + 2x
,

x

1 + 3x+ 2x2

)

and the little Schroeder numbers sn are the moments of the family of orthogonal polynomials
whose coefficient array is given by the Riordan array

(

1

1 + x
,

x

1 + 3x+ 2x2

)

.

One consequence of this result is the following.

Corollary 2. The Hankel transform Hn = |Si+j|0≤i,j≤n of the large Schroeder numbers, and
the Hankel transform hn = |si+j|0≤i,j≤n of the little Schroeder numbers satisfy

Hn = hn = 2(
n+1
2 ).
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Another corollary, which we can prove independently, is that the generating function
S(x) of the large Schroeder numbers has the following Jacobi continued fraction [5, 23] form:

S(x) =
1

1− 2x−
2x2

1− 3x−
2x2

1− 3x−
2x2

1− 3x− · · ·

,

which we express as
S(x) = J (2, 3, 3, 3, . . . ; 2, 2, 2, . . .).

We solve for v in the equation

v =
1

1− 3x− 2x2v
,

then we verify that

S(x) =
1

1− 2x− 2x2v
.

We similarly have
s(x) = J (1, 3, 3, 3, . . . ; 2, 2, 2, . . .).

The Schroeder number sequences Sn and sn each satisfy a simple convolution recurrence.
For Sn, we have [15]

Sn = 3Sn−1 +
n−3
∑

k=0

Sk+1Sn−k−2,

with initial conditions S0 = 1, S1 = 2. Note that we can write this as

Sn = 3Sn−1 +
n−2
∑

k=1

SkSn−k−1.

The summation in the recurrence is then equal to

S1Sn−2 + S2Sn−3 + · · ·+ Sn−2S1.

For sn, we have

sn = 3sn−1 + 2
n−3
∑

k=0

sk+1sn−k−2,

with initial conditions s0 = 1, s1 = 1. These recurrences, and their generalizations, will be
the subject of this note.
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Proposition 3. We consider the generalized Catalan-Schroeder recurrence

an = san−1 + t

n−3
∑

k=0

ak+1an−k−2,

with initial conditions a0 = 1, a1 = p. Then the generating function of the sequence an is
given by

(

1 + (p− s+ t)x

1− (s− 2t)x
,
tx(1 + (p− s+ t)

(1− (s− 2t)x)2

)

· C(x).

Note that when p = 2, s = 3 and t = 1, we obtain

(

1 + (2− 3 + 1)x

1− (3− 2)x
,
x(1 + (2− 3 + 1)x)

(1− (3− 2)x)2

)

· C(x) =
(

1

1− x
,

x

(1− x)2

)

· C(x) = S(x),

while when p = 1, s = 3 and t = 2, we obtain

(

1 + (1− 3 + 2)x

1 + (2 · 2− 3)x
,
2x(1 + (1− 3 + 2)x)

(1 + (2 · 2− 3)x)2

)

· C(x) =
(

1

1 + x
,

2x

(1 + x)2

)

· C(x) = s(x).

Note that this last result gives us that

sn =
n
∑

k=0

(

n+ k

2k

)

(−1)n−k2kCk.

Proof. The terms a1an−2 + · · ·+ an−2a1, for n ≥ 3, successively contribute the terms

a1a1,

a1a2 + a2a1,

a1a3 + a2a2 + a3a1, . . . .

These correspond to the coefficients in the product

(a1 + a2x+ a3x
2 + · · · )(a1 + a2x+ a3x

2 + · · · ).

This product has generating function

(

f(x)− 1

x

)2

=
f(x)2 − 2f(x) + 1

x2
.

Thus we can convert the recurrence

an = san−1 + t

n−3
∑

k=0

ak+1an−k−2, n ≥ 2

13



into the following statement about the generating function u(x) =
∑∞

n=0 anx
n = 1 + px +

∑∞
n=2 anx

n:
u = 1 + px+ sx(u− 1) + tx(u2 − 2u+ 1).

Solving this, we get

u(x) =
1− (s− 2t)x−

√

1− 2sx+ (s2 − 4pt)x2

2tx
.

This is equal to
(

1 + (p− s+ t)x

1− (s− 2t)x
,
tx(1 + (p− s+ t)x)

1− (s− 2t)x

)

· C(x).

Corollary 4. The generating function
(

1 + ax

1 + bx
,
mx(1 + ax)

(1 + bx)2

)

· C(x)

expands to give the sequence solution of the convolution recurrence

an = (−b+ 2m)an−1 +m
n−3
∑

k=0

ak+1an−k−3,

with a0 = 1, a1 = a− b+m.

Example 5. We calculate the general term Tn,k of the Riordan array
(

1+ax
1+bx

, mx(1+ax)
(1+bx)2

)

. We

have

Tn,k = [xn]
1 + ax

1 + bx

(

mx(1 + ax)

1 + bx

)k

= mk[xn−k]
(1 + ax)k+1

(1 + bx)2k+1

= mk[xn−k]
k+1
∑

j=0

(

k + 1

j

)

ajxj
∞
∑

i=0

(−(2k + 1)

i

)

bixi

= mk[xn−k]
k+1
∑

j=0

(

k + 1

j

)

ajxj
∞
∑

i=0

(

2k + 1 + i− 1

i

)

(−1)ibixi

= mk

k+1
∑

j=0

(

k + 1

j

)

aj
(

2k + n− k − j

n− k − j

)

(−b)n−k−j

= mk

k+1
∑

j=0

(

k + 1

j

)(

n+ k − j

2k

)

aj(−b)n−k−j.

14



Thus the expansion of 1+ax
1+bx

C
(

mx(1+ax)
1+bx

)

has general term given by

an =
n
∑

k=0

(
k+1
∑

j=0

(

k + 1

j

)(

n+ k − j

2k

)

aj(−b)n−k−j)mkCk.

Note that in practice care has to be taken with the terms T0,k using the above formula so
we have the following correction (for a 6= 0).

an =
n
∑

k=0

(

k+1
∑

j=0

(

k + 1

j

)(

n+ k − j

2k

)

aj(−b)n−k−j

)

mkCk +
b

a
0k.

We denote the general solution of the recurrence

an = san−1 + t
n−3
∑

k=0

ak+1an−k−2,

with initial conditions a0 = 1, a1 = p by an(p, s, t).

Example 6. When (p, s, t) = (1, 1, 1), we get the sequence an(1, 1, 1) that begins

1, 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, . . . .

These are the Motzkin numbers, with a 1 prepended. The Hankel transform of this sequence
has generating function 1−x

1−x+x2 , beginning

1, 0,−1,−1, 0, 1, 1, 0,−1, . . . .

The Hankel transform of the shifted sequence (the Motzkin numbers) is known to be the
given by the all 1’s sequence 1, 1, 1, 1, . . .. The generating function of the Motzkin numbers
is J (1, 1, 1, . . . ; 1, 1, 1, . . .).

Example 7. When (p, s, t) = (1, 1, 2), we get the sequence an(1, 1, 2) that begins

1, 1, 1, 3, 7, 21, 61, 191, 603, 1961, 6457, 21595, . . . .

This is the sequence A025235 with a prepended 1. The sequence A025235 counts Motzkin
paths with the up step in two colors. The Hankel transform of an(1, 1, 2) begins

1, 0,−4,−16, 128, 6144, 65536,−20971520,−3758096384, . . .

while that of the shifted sequence un+1(1, 1, 2) or A025235 is 2(
n+1
2 ). This follows from the

fact that the generating function of this latter sequence is J (1, 1, 1, . . . ; 2, 2, 2, . . .).
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Example 8. When (p, s, t) = (1, 2, 1), the sequence an(1, 2, 1) that we get is the sequence
of Catalan numbers Cn. This corresponds to a bijection between 2-colored Motzkin paths
(where the level step can have one of two colors) of length n − 1 and Dyck paths. It is a
classical result that the Hankel transforms of this sequence and its shift Cn+1 are the all 1’s
sequence.

With regard to the shifted sequence an+1(p, s, t), we have the following result.

Proposition 9. The sequence 1
p
an+1(p, s, t) has generating function J (s, s, s, . . . ; pt, pt, pt, . . .),

and Hankel transform (pt)(
n+1
2 ) (for p 6= 0).

Proof. The sequence with generating function J (s, s, s, . . . ; pt, pt, pt, . . .) has a generating
function g(x) that satisfies

g(x) =
1

1− sx− ptx2g(x)
.

Solving this equation gives us

g(x) =
1− sx−

√

1− 2sx+ (s2 − 4pt)x2

2ptx2
.

We see that this is the generating function of 1
p
an+1(p, s, t).

Corollary 10. The sequence 1
p
an+1(p, s, t) is the moment sequence for the family of orthog-

onal polynomials whose coefficient array is given by the Riordan array

(

1

1 + sx+ ptx2
,

x

1 + sx+ ptx2

)

.

Corollary 11. We have the moment representation

1

p
an+1(p, s, t) =

1

2π

∫ s+2
√
pt

s−2
√
pt

xn
√

−x2 + 2sx+ 4pt− s2

pt
dt.

Proof. We apply the Stieltjes-Perron transform [9] to the generating function of an+1.

Corollary 12. If s = 0 and t 6= 0, we have

an(p, 0, t) =
1

2π

∫ 2
√
pt

−2
√
pt

xn
√

4pt− x2

tx
dx+ 0n.

Corollary 13. If s 6= 0 and t 6= 0, we have

an(p, s, t) =
1

2π

∫ s+2
√
pt

s−2
√
pt

xn
√

−x2 + 2sx+ 4pt− s2

tx
dx+0n

(

1− s

2t
− sgn(4pt− s2)

√

s2 − 4pt

2t

)

.
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We can formulate the following conjecture concerning the Hankel transform of the se-
quence an(p, s, t).

Conjecture 14. The Hankel transform hn(p, s, t) of the sequence an(p, s, t) is given by

hn(p, s, t) = t(
n

2)p(
n+1
2 )[xn]

1− px

1− sx+ ptx2

= t(
n

2)p(
n+1
2 )

(

n
∑

i=0

(

i

n− i

)

(−pt)n−is2i−n − p

n−1
∑

i=0

(

i

n− i− 1

)

(−pt)n−i−1s2i−n+1

)

.

We note that we have
(

1− x

1 + ptx2
,

x

1 + ptx2

)

· 1

1− sx
=

1− px

1− sx+ ptx2
.

Thus the Hankel transform hn(p, s, t) is given by the evaluation of a sequence of scaled

orthogonal polynomials, since the Riordan array
(

1−x
1+ptx2 ,

x
1+ptx2

)

is the coefficient matrix of

a family of orthogonal polynomials [4].
We have the following conjecture concerning the Hankel transforms hn(p, s, t) and Somos-

4 sequences. Recall that a (α, β) Somos-4 sequence is a sequence en that satisfies

en =
αen−1en−3 + βe2n−2

en−4

for given e0, e1, e2, e3. Somos-4 sequences are closely related to elliptic curves [10, 25].

Conjecture 15. The Hankel transform hn(p, s, t) of the generalized Schroeder numbers
an(p, s, t) is a ((pst)2, (pt)3(pt− s2)) Somos-4 sequence.

Example 16. We consider the sequence an(1,−1,−1) which begins

1, 1,−1, 0, 2,−3,−1, 11,−15,−13, 77, . . . .

Its Hankel transform is the signed Fibonacci sequence

1,−2,−3, 5, 8,−13, . . .

with general term (−1)(
n

2)Fn+1. This is a (trivial) (1, 2) Somos-4 sequence.

Example 17. The sequence an(2, 1, 1) begins

1, 2, 2, 6, 14, 42, 122, 382, 1206, 3922, 12914, . . . .

This is A014431. Its Hankel transform begins

1,−2,−24,−64, 5120, 229376, . . . .

This is a (4, 8) Somos-4 sequence.
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4 A third-order recurrence

We begin this section by looking at the generalized Catalan recurrence

an = ran−1 + san−2 + t
n−3
∑

k=1

akan−k−2,

with a0 = 1, a1 = p and a2 = q. This may equivalently be written as

an = ran−1 + san−2 + t

n−4
∑

i=0

ai+1an−i−3,

with a0 = 1, a1 = p and a2 = q. Thus in the summation part, the sum is

a1an−3 + · · ·+ an−3a1.

We shall denote the solution of this recurrence by an(p, q, r, s, t). This sequence begins

1, p, q, ps+ qr, p2t+ prs+ q(r2 + s), p2rt+ p(2qt+ r2s+ s2) + qr(r2 + 2s), . . . .

We let u(x) = u(x; p, q, r, s, t) be the generating function of this solution sequence. We have
the following proposition.

Proposition 18. The generating function u(x) is given by

(

1− (r − p)x− (−q + pr + s− t)x2

1− rx− (s− 2t)x2
,
tx2(1− (r − p)x− (−q + pr + s− t)x2)

(1− rx− (s− 2t)x2)2

)

· C(x).

Proof. We translate the recurrence (for n ≥ 3) and the initial conditions into the following
equation for the generating function u(x) =

∑∞
n=0 an(p, q, r, s, t)x

n.

u(x) = 1 + px+ qx2 + rx(u− 1− xp) + sx2(u− 1) + tx2(u2 − 2u+ 1).

Then the solution is given by

u(x) =
1− rx− (s− 2t)x2 −

√

1− 2rx+ (r2 − 2s)x2 + 2(rs− 2pt)x3 + (s2 − 4qt+ 4prt)x4

2tx2
.

This is equal to

(

1− (r − p)x− (−q + pr + s− t)x2

1− rx− (s− 2t)x2
,
tx2(1− (r − p)x− (−q + pr + s− t)x2

(1− rx− (s− 2t)x2)2

)

· C(x).
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Example 19. The sequence an(1, 2, 2, 1, 1) begins

1, 1, 2, 5, 13, 35, 97, 275, 794, 2327, 6905, . . . .

This is A086581, which counts the number of Dyck paths of semi-length n that avoid DDUU.
In this case we have

an =

⌊n
2
⌋

∑

k=0

(

n+ k

3k

)

Ck.

The generating function is
1

1− x
C

(

x2

(1− x)3

)

.

Example 20. The sequence an(1, 2, 1, 2, 1) coincides with the Motzkin numbers Mn. The
generating function is

1

1− x
C

(

x2

(1− x)2

)

,

so that

Mn =

⌊n
2
⌋

∑

k=0

(

n

2k

)

Ck.

Example 21. The sequence an(1, 2, 2, 2, 1) begins

1, 1, 2, 6, 17, 50, 150, 458, 1420, 4460, 14165, . . . .

This is A025272(n+ 1). It has as generating function the power series given by

1− x− x2

1− 2x
C

(

x2(1− x− x2)

(1− 2x)2

)

.

The Hankel transform of the shifted sequence an+1 in this case begins

1, 2, 3,−5,−28,−67,−411,−506, 10855, 74231, 664776, . . . .

This is the (1,−2) Somos-4 sequence A178376(n+ 1), which is defined by the elliptic curve
y2 + y = x3 + 3x2 + x.

Example 22. The sequence −an+1(−1, 2,−2,−1,−1) begins

1,−2, 3,−3,−1, 15,−47, 98,−133, 17, 579, . . . ,

It has its generating function given by

1 + x

1 + 2x− x2
C

( −x2(1 + x)

(1 + 2x− x2)2

)

.
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Its Hankel transform begins
1,−1, 1, 2,−1,−3, . . .

which is a (1, 1) Somos-4 sequence. This is a variant of A006769, which is the elliptic
divisibility sequence associated with elliptic curve E : y2 + y = x3 − x and multiples of the
point (0, 0). In this case, the sequence an(−1, 2,−2,−1,−1) begins

1,−1, 2,−3, 3, 1,−15, 47,−98, 133,−17,−579, . . .

and its Hankel transform is the (1, 1)-Somos sequence beginning

1, 1,−2,−1, 3,−5, . . . ,

which is (−1)n+1A006769(n+ 3).

Example 23. The sequence an(−1,−2, 2,−1,−1) begins

1,−1,−2,−3,−5,−11,−27,−65,−154,−371,−917,−2303, . . . .

Its generating function is given by

1− 3x

1− 2x− x2
C

(

x2(1− 3x)

(1− 2x− x2)2

)

.

Its Hankel transform begins
1,−3, 2, 11,−29,−21, . . .

which is a (1, 1) Somos-4 sequence. It is a variant of A178384, which is associated to the
elliptic curve y2+y = x3+x. The shifted sequence −an+1 in this case has a Hankel transform
that begins

1,−1,−3,−2, 11, 29, . . . .

We have the following two conjectures regarding these sequences, their Hankel trans-
forms, and Somos-4 sequences. The first conjecture claims that in all cases, the sequence
1
p
an+1(p, q, r, s, t) has a Somos-4 Hankel transform.

Conjecture 24. The Hankel transform of the sequence 1
p
an+1(p, q, r, s, t) is a ((pt)

2,−t2(p2s+
pqr − q2)) Somos-4 sequence.

Conjecture 25. If r = 1, t = 1 and s = q − p + 1, then the sequence an(p, q, r, s, t) =
an(p, q, 1, q− p+1, 1) has a Hankel transform that is a (p2, p3 − pq+ q2 − p2(1+ q)) Somos-4
sequence.

We note that in this last case, the generating function of the sequence an will be given
by

(

1− (1− p)x

1− x+ (p+ q − 1)x2
,

x2(1− (1− p)x)

(1− x+ (p+ q − 1)x2)2

)

· C(x).
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In another direction, it is interesting to consider sequences with generating functions of the
form

1− x− αx2

1− x− x2
C

(

x2(1− x− αx2)

(1− x− x2)2

)

.

For these, we have the following conjecture.

Conjecture 26. The Hankel transform hn of the sequence with generating function

1− x− αx2

1− x− x2
C

(

x2(1− x− αx2)

(1− x− x2)2

)

is given by

hn = (2− α)⌊
(n+1)2

4
⌋[xn]

(1 + x)(1 + (α− 2)x2)

1− 3x2 − (α− 2)x4
.

Note that
(1 + x)(1 + (α− 2)x2)

1− 3x2 − (α− 2)x4
= (1 + x)f(x2;α),

where

f(x;α) =
1 + (α− 2)x

1− 3x− (α− 2)x2
.

For instance, when α = 1, we get the generating function 1−x
1−3x+x2 of the bisected Fibonacci

numbers F2n+1 1, 2, 5, 13, 34, 89, . . . A001519(n+ 1). In general, if we set

dn =
n
∑

k=0

(

k

n− k

)

(α− 2)n−k32k−n + (α− 2)
n
∑

k=0

(

k

n− k − 1

)

(α− 2)n−k−132k−n+1

=
n
∑

k=0

((

k

n− k

)

+ 3

(

k

n− k − 1

))

(α− 2)n−k32k−n,

then we have

hn = (2− α)⌊
(n+1)2

4
⌋d⌊n

2
⌋.

Note that here
(

k

n−k

)

+ 3
(

k

n−k−1

)

is the general term of the Riordan array (1 + 3x, x(1 + x)).
In fact, we have

f(x;α) =

(

1 + (α− 2)x, x

(

1 +
α− 2

3
x)

))

· 1

1− 3x
.

Example 27. We take α = 1, to get the equation

(

1− x, x
(

1− x

3

))

· 1

1− 3x
=

1− x

1− 3x+ x2
=

∞
∑

n=0

F2n+1x
n,
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which is the generating function of the Fibonacci bisection F2n+1 that begins 1, 2, 5, 13, 34, . . ..
We have 2− α = 1. In this case the sequence we get begins

1, 0, 1, 1, 4, 7, 20, 43, 112, 263, 669, 1640, 4166, . . .

with generating function

C

(

x2

1− x− x2

)

.

The Hankel transform is then given by F2⌊n
2
⌋+1, or

1, 1, 2, 2, 5, 5, 13, 13, 34, 34, . . . .

Example 28. We take α = −1. Then 2− α = 3. The sequence in question has generating
function

(

1− x+ x2

1− x− x2
,
x2(1− x+ x2

(1− x− x2)2

)

· C(x).

We obtain the sequence that begins

1, 0, 3, 3, 12, 21, 66, 147, 426, 1065, 3009, 7986, 22476, . . . .

The Hankel transform begins

1, 3, 0, 0,−2187,−59049,−4782969, . . . .

Dividing this by 3⌊
(n+1)2

4
⌋, we obtain

1, 1, 0, 0,−3,−3,−9, . . .

which is the expansion of (1 + x)(1 − 3x2)/(1 − 3x2 + 3x4). This is the doubling of the
sequence

1, 0,−3,−9,−18,−27,−27, 0, 81, 243, 486, . . .

which has generating function 1−3x
1−3x+3x2 .

Example 29. The case of α = 2 is of special interest. We have 2 − α = 0, so that the
Hankel transform is just the sequence 1, 0, 0, 0, . . .. This is explained by the fact that

(

1− x− 2x2

1− x− x2
,
x2(1− x− 2x2)

(1− x− x2)2

)

· C(x) = 1− x− 2x2

1− x− x2
C

(

x2(1− x− 2x2)

(1− x− x2)2

)

= 1.

A choice of parameters (p, q, r, s, t) that satisfies this context is given by (p, q, r, s, t) =
(0, 2− α, 1, 3, 1). Thus the recurrence

an = an−1 + 3an−2 +
n−3
∑

k=1

akan−k−2,

with a0 = 1, a1 = 0, a2 = α − 2 will have a solution with generating function given by
1−x−αx2

1−x−x2 C
(

x2(1−x−αx2)
(1−x−x2)2

)

. We can reformulate our conjecture in the following manner.
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Conjecture 30. The solution an(β) of the recurrence

an = an−1 + 3an−2 +
n−3
∑

k=1

akan−k−2,

with a0 = 1, a1 = 0, a2 = β has a Hankel transform hn(β) given by

hn(β) = β⌊ (n+1)2

4
⌋[xn]

(1 + x)(1− βx2)

1− 3x2 + βx4
.

We can convert from the recurrence to the Riordan array and vice versa. Thus given
(p, q, r, s, t), we obtain (a, b, c, d,m) as follows:

a = p− r

b = q − pr − s+ t

c = −r
d = −s+ 2t

m = t

Given (a, b, c, d,m), we obtain (p, q, r, s, t) as follows.

p = a− c

q = −ac+ b+ c2 − d+m

r = −c
s = −d+ 2m

t = m.

A related result is the following.

Proposition 31. Assume that an satisfies the following convolution recursion relation:

an =











1, if n = 0;

r, if n = 1;

ran−1 + san−2 + t
∑n−2

i=0 aian−2−i, if n > 1.

Then the sequence an has generating function

(

1

1− rx− sx2
,

tx2

(1− rx− sx2)2

)

· C(x),

and the Hankel transform of an is a ((pt)2, t2(t+ s)2 − r2t3) Somos-4 sequence.

Note that
∑n−2

i=0 aian−2−i expands to give (a0an−2 + · · ·+ an−2a0).
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Proof. For a proof of the Hankel transform assertion, see [6]. We translate the recurrence to
the equality

u(x) = 1 + rxu(x) + sx2u(x) + tx2u(x)2.

Solving for u(x) now gives the result.

Examples of such sequences are given in the following table.

(r, s, t) Annnnnn Description
(1, 1, 1) A128720 Skew Dyck paths avoiding UUU
(2, 1, 1) A085139(n+ 1) G.f. is J (2, 1, 2, 2, 1, 2, 2, 1, 2, . . . ; 2, 2, 1, 2, 2, 1, . . .)
(1, 2, 1) A174171 Chebyshev transform of Motzkin numbers
(2, 2, 1) A174403 Hankel transform is A174404

(3, 1, 1) A084782(n+ 1) A084782(n) =
∑n

j=0

∑j

i=0 aiaj−iFn−j

(1, 2,−1) A187256 Peakless Motzkin paths, with level steps in two colors

The sequence an begins

1, r, r2 + s+ t, r(r2 + 2s+ 3t), r4 + r2(3s+ 6t) + s2 + 3st+ 2t2, . . . .

The sequence with prepended 1 that begins 1, 1, r, r2+s+ t, . . . then has generating function

(

1− (r − t− 1)x− sx2

1− (r − 2t)x− sx2
,
x(1− (r − t− 1)x− sx2

(1− (r − 2t)x− sx2)2

)

· C(x).

When t = 1, we get
(

1,
x

1− (r − 2)x− sx2

)

· C(x).

In fact, we can modify the above proposition as follows.

Proposition 32. Assume that an satisfies the following convolution recursion relation:

an =











1, if n = 0;

p, if n = 1;

ran−1 + san−2 + t
∑n−2

i=0 aian−2−i, if n > 1.

Then the sequence an has generating function

(

1 + (p− r)x

1− rx− sx2
,
tx2(1 + (p− r)x

(1− rx− sx2)2

)

· C(x),

and the Hankel transform of an is a ((pt)2, t2((t + s)2 − p2s + prs + prt − 2p2t) Somos-4
sequence.
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5 A further recurrence

We now consider the recurrence

an = uan−1 + van−2 + wan−3 + t

n−4
∑

k=1

akan−k−3,

with a0 = 1, a1 = p, a2 = q, and a3 = s. We note that the term
∑n−4

k=1 akan−k−3 here
expands to give (a1an−4 + · · · + an−4a1). We denote the solution of this recurrence by
an(p, q, s, u, v, w, t). We then have the following result.

Proposition 33. The generating function of the sequence an(p, q, s, u, v, w, t) is given by

(
1 + (p− u)x− (v + pu− q)x2 − (w − s− t+ qu+ pv)x3

1− ux− vx2 − (w − 2t)x3
,

tx3(1 + (p− u)x− (v + pu− q)x2 − (w − s− t+ qu+ pv)x3)

(1− ux− vx2 − (w − 2t)x3)2
) · C(x).

Example 34. The sequence an(1, 1, 2, 1, 1, 1, 1) begins

1, 1, 1, 2, 4, 8, 16, 33, 69, 146, 312, 673, 1463, . . . .

This is A004149(n+1), which gives the number of Motzkin paths of length n with no peaks
or valleys. The generating function of this sequence is given by

1

1− x
C

(

x3

(1− x2)(1− x)2

)

.

Example 35. The sequence an(1, 2, 3, 1, 1, 1, 1) which begins

1, 1, 2, 3, 6, 12, 25, 53, 114, 249, 550, 1227, 276, . . .

is A162985. It counts the number of Dyck paths of semi-length n avoiding UUU, DDD and
UUDUDD (Deutsch). Its generating function is given by

1

1− x− x2 + x3
C

(

x3

(1− x− x2 + x3)2

)

.

Note that this generating function can be expressed as the continued fraction

1

1− x− x2 + x3 −
x3

1− x− x2 + x3 −
x3

1− x− x2 + x3 · · ·

.
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Example 36. The sequence an(1, 1, 2, 1, 0, 2, 1) which begins

1, 1, 1, 2, 4, 7, 13, 26, 52, 104, 212, 438, 910, 1903, 4009, 8494, . . .

is A023431. It counts the number of Motzkin paths of length n with no peaks and no double
rises. Its generating function is given by

g(x) =

(

1

1− x
,

x3

(1− x)2

)

· C(x).

We then have

an(1, 1, 2, 1, 0, 2, 1) =
n
∑

k=0

(

n− k

2k

)

Ck.

It is interesting to note that the Riordan array (g(x), xg(x)) is a pseudo-involution in the
Riordan group [1]. More generally, if

g(x;α) =

(

1

1− αx
,

x3

(1− αx)2

)

· C(x)

then the Riordan array (g(x;α), xg(x;α)) is a pseudo-involution. For example, g(x; 2) is the
generating function of an(2, 4, 9, 2, 0, 2, 1). We will then have

an(2, 4, 9, 2, 0, 2, 1) =

⌊n
3
⌋

∑

k=0

(

n− k

2k

)

2n−3kCk.

This sequence is A091561 [1]. Its Hankel transform is the sequence

1, 0,−1,−1, 0, 1, 1, 0,−1,−1, 0, . . .

with generating function 1−x
1−x+x2 .

Example 37. The sequence an(1, 2, 4, 1, 1, 2, 1) is the RNA sequence that begins

1, 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, 2283, 5373, . . . .

This is A004148, with generating function

1

1− x− x2
C

(

x3

(1− x− x2)2

)

.

The related sequence with generating function

1− x

1− x− x2
C

(

x3(1− x)

(1− x− x2)2

)
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begins
1, 0, 1, 2, 3, 7, 14, 28, 60, 126, 268, 579, 1253, . . . .

Its Hankel transform begins

1, 1,−2,−3,−7, 5, 32, 83, 87,−821,−2366, . . . .

This is a (1,−1) Somos-4 sequence.

Example 38. The sequence an(1, 3, 6, 1, 2, 2, 1) begins

1, 1, 3, 6, 14, 33, 79, 194, 482, 1214, 3090, 7936, . . . .

This sequence has its generating function given by

1

1− x− 2x2
C

(

x3

(1− x− 2x2)2

)

.

Its Hankel transform begins

1, 2, 1,−7,−16,−57,−113, 670, 3983, 23647, . . . .

This is a (1,−2) Somos-4 sequence.

In general, we can conjecture that the sequences with generating function

1

1− x− αx2
C

(

x3

(1− x− αx2)2

)

have Hankel transforms that are (1,−α) Somos-4 sequences. Such Hankel transforms begin

1, α,−1 + α,−1 + α− α3,−2α + 3α2 − α3 − α4, 1− 3α + 3α2 − 2α3 + α4 − α6,

1− 3α + 3α2 + 3α3 − 9α4 + 6α5 + α6 − 2α7,

3α− 12α2 + 19α3 − 11α4 − 3α5 + 5α6 + 2α7 − 3α8 + α10, . . . .

For instance, the Hankel transform of the sequence with generating function

1

1− x+ x2
C

(

x3

(1− x+ x2)2

)

is the (1, 1) Somos-4 sequence A178627(n + 1). The sequence A178627 is defined by the
elliptic curve

E : y2 + xy − y = x3 − x2 + x.

These examples show that such sequences merit more study. Further evidence of this is given
by the following conjecture concerning their Hankel transforms.
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Conjecture 39. The Hankel transform of the sequence with generating function

1− x− x2 − αx3

1− x− x2 − x3
C

(

x3(1− x− x2 − αx3)

(1− x− x2 − x3)2

)

is given by
hn = An(α)(2− α)Bn

where

An(α) = [xn]
1 + (α− 2)x2 − (α− 2)x3 + (4α− 5)x5 − (α− 1)(α− 2)x8

1 + 3x3 − (α− 2)x6
,

and

Bn = [xn]
x(1− x+ 2x2 − 2x3 + 3x4 − 3x5 + x6)

(1− x)2(1− x3)
.

The sequence Bn begins

0, 1, 1, 3, 4, 7, 9, 11, 15, 18, 21, 26, 30, . . . .

The quasi-polynomial sequence A236337 is related to this.

Example 40. For α = 2, we find that

1− x− x2 − 2x3

1− x− x2 − x3
C

(

x3(1− x− x2 − 2x3)

(1− x− x2 − x3)2

)

= 1.

Thus the Hankel transform is the sequence 1, 0, 0, 0, . . ..

Example 41. When α = −1, we obtain the sequence that begins

1, 0, 0, 3, 3, 6, 18, 33, 69, 165, 351, 768, 1758, 3921, 8811, 20130, . . . .

The Hankel transform of this begins

1, 0,−9, 0, 0, 0,−59049, 0, 43046721, 3486784401, 0, . . . .

This is given by

hn = 3Bn [xn]
1− 3x2 + 3x3 − 9x5 − 6x8

1 + 3x3 + 3x6
.
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6 Conversion of parameters

Given a generating function of the form

g(x) =

(

1 + ax+ bx2 + cx3

1 + dx+ ex2 + fx3
,
mx3(1 + ax+ bx2 + cx3)

(1 + dx+ ex2 + fx3)2

)

· C(x),

what are the corresponding parameters p, q, s, u, v, w, t? We find the following.

p = a− d

q = −ad+ b+ d2 − e

s = a(d2 − e) + c− bd− d3 + 2de− f +m

u = −d
v = −e
w = −f + 2m

t = m.

Example 42. The doubly aerated large Schroeder numbers, with generating function

(

1

1− x3
,

x2

(1− x3)2

)

· C(x),

correspond to the recurrence with parameters (0, 0, 2, 0, 0, 3, 1). This is the recurrence

an = 3an−3 +
n−4
∑

k=1

akan−k−3,

with a0 = 1, a1 = 0, a2 = 0 and a3 = 2. The resulting sequence

1, 0, 0, 2, 0, 0, 6, 0, 0, 22, 0, 0, 90, 0, 0, 394, 0, 0, . . .

has a Hankel transform which begins

1, 0,−4,−8, 0, 128, 512, 0,−32768,−262144, 0, . . . .

Dividing this by 2n gives us the sequence that begins

1, 0,−1,−1, 0, 4, 8, 0,−128,−512, 0, . . . .

This suggests that the generating function of this Hankel transform may satisfy the functional
equation

1− x2 − x3f(x)− f(x/2) = 0.
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7 From elliptic curve to recurrences and Somos se-

quences

We consider a particular example which illustrates a process that starts with an elliptic
curve. Thus we consider the elliptic curve

E : y2 − 3xy − y = x3 − x.

We start by solving this for y. We get two solutions,

y− =
1 + 3x−

√
1 + 2x+ 9x2 + 4x3

2
,

and

y+ =
1 + 3x+

√
1 + 2x+ 9x2 + 4x3

2
.

Expanding the right hand side of the first solution y−, we get

0, 1,−2, 1, 3,−7,−4, 38,−27,−175, 384, . . . .

Expanding the right hand side of the second solution y+, we get

1, 2, 2,−1,−3, 7, 4,−38, 27, 175,−384, . . . .

The solution y− has a generating function that can be expressed as

x(1− x2)

1 + 3x
C

(

x(1− x)2

(1 + 3x)2

)

.

Thus the sequence that begins

1,−2, 1, 3,−7,−4, 38,−27,−175, 384, . . .

has n-th term given by

n
∑

k=0

(

k+1
∑

j=0

(

k + 1

j

)(

n+ k − 2j

n− k − 2j

)

(−1)j(−3)n−k−2j

)

Ck.

We are interested in the terms (apart from sign) that are common to these two solutions. We
thus truncate the sequence to start with 2,−1,−3, 7, 4,−38, 27, 175,−384, . . .. This leads to
the new generating function

g(x) =

(

1 + 3x+
√
1 + 2x+ 9x2 + 4x3

2
− 1− 2x

)

/x2 =

√
1 + 2x+ 9x2 + 4x3 − x− 1

2x2
.
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This sequence has general term

n
∑

k=0

k+1
∑

j=0

(

k + 1

j

)(

n− j

n− 2k − j

)

(−1)n−k−j2k+1−jCk,

or equivalently,

n+1
∑

k=0

(

k+1
∑

j=0

(

k + 1

j

)(

n+ 1 + k − 2j

n+ 1− k − 2j

)

(−1)j+1(−3)n+1−k−2j

)

Ck.

Now we find that

g(x) =
2 + x

1 + x
C

(−x2(2 + x)

(1 + x)2

)

=

√
1 + 2x+ 9x2 + 4x3 − x− 1

2x2
.

Re-writing this as

2
1 + x

2

1 + x
C

(−2x2(1 + x
2
)

(1 + x)2

)

,

we see that the sequence 2,−1,−3, 7, 4,−38, 27, 175,−384, . . . defined by the elliptic curve
is 2dn, where dn is the solution of the recurrence

dn = −dn−1 − 4dn−2 − 2
n−3
∑

k=1

dkdn−k−2,

with

d0 = 1, d1 = −1

2
, d2 = −3

2
.

The Hankel transform of this sequence 2dn begins

2,−7,−57, 670, 23647,−833503,−147165662, . . .

which is a (1, 16) Somos-4 sequence.
We now form the generating function

1

1− x+ x2g(x)
=

2

1− 3x+
√
1 + 2x+ 9x2 + 4x3

.

This gives us a sequence whose initial term is 1 and whose Hankel transform prepends a 1
to the previous transform. Multiplying this by x and reverting, and then dividing by x, we
obtain the generating function

1 + 3x−
√
1 + 6x+ 9x2 − 4x3 − 8x4

2x3
=

1 + 2x

1 + 3x
C

(

x2(1 + 2x)

(1 + 3x)2

)

.
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This expands to give the sequence an that begins

1,−1, 3,−8, 22,−59, 155,−396, 978,−2310, 5122, . . . ,

which is thus the solution to the recurrence

an = −3an−1 + 2an−3 +
n−4
∑

k=1

akan−k−3,

with a0 = 1, a1 = −1, a2 = 3, a3 = −8. The Hankel transform of this sequence begins

1, 2, 1,−7,−16,−57,−113, 670, 3983, 23647, 140576, . . . .

This is a (1,−2) Somos-4 sequence. It is A178622(n + 2). We note that the previous
Hankel transform 2,−7,−57, 670, 23647,−833503,−147165662, . . . is a bisection of this latter
sequence.

Taking the second binomial transform
∑n

k=0

(

n

k

)

2n−kak of the sequence an, we obtain the
sequence that begins

1, 1, 3, 6, 14, 33, 79, 194, 482, 1214, 3090, 7936, . . . .

We have met this already. It is an(1, 3, 6, 1, 2, 2, 1) with generating function

1

1− x− 2x2
C

(

x3

1− x− 2x2

)

.

It is interesting to note that the sequence bn that begins

0, 2, 1, 1, 3, 6, 14, 33, 79, 194, 482, 1214, 3090, 7936, . . .

satisfies the recurrence

bn = bn−1 +
n−3
∑

i=0

bibn−i−1,

with b0 = 0, b1 = 2, b2 = 1. See also A025243.
We have the following coordinates for the points nP (0, 0) on the elliptic curve

E : y2 − 3xy − y = x3 − x.

x(nP ) 0 −2 −1
4

14 16
49

−399
256

−1808
3249

y(nP ) 0 −3 5
8

78 55
343

−11921
4096

68464
185193

y

x
1 3

2
−5

2
39
7

55
122

703
912

−4279
6441
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We form the continued fraction

1

1 + x−
2x2

1 + 3x
2
−

x2

4

1− 5x
2
+

14x2

1 + 39x
7

+
16x2

49

1 + 55x
112

−
399x2

256

1− . . .

.

This expands to give the sequence ãn

1,−1, 3,−8, 22,−59, 155,−396, 978,−2310, 5122, . . .

with g.f
(

1 + 2x

1 + 3x
,
x3(1 + 2x)

(1 + 3x)2

)

· C(x).

We have

ãn =
n
∑

k=0

k+1
∑

j=0

(

k + 1

j

)(

n− k − j

n− 3k − j

)

2j(−3)n−3k−jCk.

In this case, we have ãn = an, where an is the sequence obtained starting from solving
the elliptic curve equation.

We briefly look at the shifted sequence

−1,−3, 7, 4,−38, 27, 175,−384, . . .

of the sequence first encountered in this section. This has a generating function given by

−
(

1 + 4x

1 + x+ 4x2
,

x3(1 + 4x)

(1 + x+ 4x2)2

)

· C(x).

It has a Hankel transform that begins

−1,−16, 113, 3983,−140576,−14871471, . . . .

Again, this is a (1, 16) Somos-4 sequence.
The elliptic curve

E : y2 − 3xy − y = x3 − x

thus gives rise to the following Riordan arrays

•
(

1−x2

1+3x
, x(1−x2)
(1+3x)2

)
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•
(

2+x
1+x

,−x2(2+x)
(1+x)2

)

•
(

1+4x
1+x+4x2 ,

x3(1+4x)
(1+x+4x2)2

)

•
(

1
1−3x

, x(2+x2)
(1−3x)2

)

•
(

1+2x
1+3x

, x
3(1+2x)
(1+3x)2

)

•
(

1
1−x−2x2 ,

x3

(1−x−2x2)2

)

with their corresponding recurrences.

8 The family Et : y
2 + 4xy + y = x3 + (t− 1)x2 + tx

The family of elliptic curves

Et : y
2 + 4xy + y = x3 + (t− 1)x2 + tx

has the property that each of its curves passes through the points (0, 0), (−1, 1) and (−1, 2).
Solving the equation

y2 + 4xy + y = x3 + (t− 1)x2 + tx

gives

y = −1 + 4x±
√

1 + 4(t+ 2)x+ 4(t+ 3)x2 + 4x3

2
.

For instance, −1+4x−
√

1+4(t+2)x+4(t+3)x2+4x3

2
expands to give

0, t,−(t2 + 3t+ 1), 2t3 + 10t2 + 14t+ 5, . . . .

The generating function of this sequence can be expressed as

x(t+ x(t− 1) + x2

1 + 4x
C

(−x(t+ x(t− 1) + x2)

(1 + 4x)2

)

.

As before, we are interested in the terms (up to sign) that are common to the two solutions.
Thus we focus on the sequence bn that begins

(t2 + 3t+ 1),−(2t3 + 10t2 + 14t+ 5), . . . .

This has generating function

g(x) =
1 + 3t+ t2 − x

1 + 2(t+ 2)x
C

(

x2(1 + 3t+ t2 − x)

(1 + 2(t+ 2)x)2

)

.

We have the following conjecture.
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Conjecture 43. The Hankel transform of bn is an

((2t3 + 10t2 + 14t+ 5)2,−3t8 − 40t7 − 222t6 − 666t5−

1173t4 − 1230t3 − 740t2 − 29(8t+ 1))

Somos-4 sequence.

The generating function 1
1−x−x2g(x)

will now give us a sequence whose initial term is 1,
which has the same Hankel transform, with a prepended 1. We obtain that

1

1− x− x2g(x)
=

1

1− 2(t+ 3)x
C

(−x(x2 − (t+ 2)(t+ 3)x+ 2t+ 5)

(1− 2(t+ 3)x)2

)

.

We now revert the generating function x
1−x−x2g(x)

, and divide the result by x, to get the
generating function

a(x) =
1 + (2t+ 5)x

1 + 2(t+ 3)x+ (t+ 2)(t+ 3)x2
C

(

x3(1 + (2t+ 5)x)

(1 + 2(t+ 3)x+ (t+ 2)(t+ 3)x2)2

)

.

This expands to give a sequence an that begins

1,−1,−t(t+ 3), 2t3 + 13t2 + 23t+ 7,−3t4 − 30t3 − 103t2 − 134t− 44, . . . .

The sequence an therefore satisfies the following recurrence.

an = −2(t+ 3)an−1 − (t+ 2)(t+ 3)an−2 + 2an−3 +
n−k−4
∑

k=1

akan−k−3,

with a0 = 1, a1 = −1, a2 = −t(t + 3), a3 = 2t3 + 13t2 + 23t + 7. We have the following
conjecture concerning the Hankel transform of this sequence.

Conjecture 44. The Hankel transform of the sequence whose generating function is given
by

1 + (2t+ 5)x

1 + 2(t+ 3)x+ (t+ 2)(t+ 3)x2
C

(

x3(1 + (2t+ 5)x)

(1 + 2(t+ 3)x+ (t+ 2)(t+ 3)x2)2

)

is a (1, t2 + 3t+ 1) Somos-4 sequence.

Example 45. When t = 0, we get the sequence with generating function

1 + 5x

1 + 6x+ 6x2
C

(

x3(1 + 5x)

(1 + 6x+ 6x2)2

)

,

which begins

1,−1, 0, 7,−44, 223,−1060, 4920,−22626, 103719,−475214, . . . .
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This sequence satisfies then the recurrence

an = −6an−1 − 6an−3 + 2an−3 +
n−4
∑

k=1

akan−k−3

with
a0 = 1, a1 = −1, a2 = 0, a3 = 7.

The Hankel transform of this sequence is then the (1, 1) Somos-4 sequence A157101 which
begins

1,−1,−5,−4, 29, 129,−65,−3689,−16264, . . . .

The associated elliptic curve is

E0 : y
2 + 4xy + y = x3 − x2.

Example 46. When t = −3, we obtain the sequence an with generating function

(1− x)C(x3(1− x)) =
1−

√
1− 4x3 + 4x4

2x3

which begins
1,−1, 0, 1,−2, 1, 2,−6, 6, 3,−20, . . . .

This sequence then satisfies the recurrence

an = 2an−3 +
n−4
∑

k=1

akan−k−3

with
a0 = 1, a1 = −1, a2 = 0, a3 = 1.

Its Hankel transform is the (1, 1) Somos-4 sequence A006769(n+ 2) that begins

1,−1, 1, 2,−1,−3,−5, 7,−4,−23, 29, . . . .

The associated elliptic curve is

E(−3) : y
2 + 4xy + y = x3 − 4x2 − 3x.

We can relate the sequence to the coordinates of the multiples of the point (0, 0) on this
curve in the following way. Taking the second binomial transform of (−1)nan, given by

dn =
n
∑

k=0

2n−k(−1)kak,
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and then taking the Invert(4) transform of dn, we arrive at the sequence ãn that begins

1,−1, 0,−1,−2,−5,−10,−14, 6, 145, 720, 2618, 7850, 19389, 35016, . . . .

Due to the invariance of the Hankel transform under binomial and Invert transforms, this
sequence has the same Somos-4 Hankel transform as an. The sequence ãn has a generating
function that can be expressed as

1− x

1 + 4x− 4x2
C

(

x(4− 4x− x2 − x3)

(1 + 4x− 4x2)2

)

.

We can express this as the continued fraction

1

1 + x+
x2

1− 2x−
x2

1− x+
2x2

1− 7x
2
+

x2

4

1− 9x
2
+

6x2

1− . . .

.

This corresponds to the following x and y coordinates of the multiples of P (0, 0) on E(−3).

x(nP ) 0 1 −1 2 1
4

6 −5
9

y(nP ) 0 −2 1 −7 −9
8

2 38
27

y

x
1 2 −1 −7

2
−9
2

1
3

−38
15

Thus we can write the generating function
∑∞

n=0 ãnt
n as

1

1 + z(0)t+
x(1)t2

1 + z(1)t+
x(2)t2

1 + z(2)t+ · · ·

,

where z(n) = y(nP )
x(nP )

and x(n) = x(nP ). The sequence ãn is the moment sequence for the

family of orthogonal polynomials Qn(x) with a coefficient matrix that begins




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
−1 −1 1 0 0 0 0
0 −1 −2 1 0 0 0
−2 3/2 8 −11/2 1 0 0
9 −9 −35 35 −10 1 0
−9 15 82/3 −57 107/3 −29/3 1





















.
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The inverse M of this matrix (the moment matrix) contains ãn as its first column. The
matrix M begins





















1 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 1 1 0 0 0 0
−1 3 2 1 0 0 0
−2 7 3 11/2 1 0 0
−5 15 −1 22 10 1 0
−10 24 −30 147/2 61 29/3 1





















.

The production matrix of M then begins




















−1 1 0 0 0 0 0
−1 2 1 0 0 0 0
0 1 1 1 0 0 0
0 0 −2 7/2 1 0 0
0 0 0 −1/4 9/2 1 0
0 0 0 0 −6 −1/3 1
0 0 0 0 0 5/9 38/15





















.

The tri-diagonal nature of this production matrix shows that we are in the presence of a
family of orthogonal polynomials. The diagonal and sub-diagonal contain the x coordinates
and the y/x-ratios of the multiples of the point P (0, 0) on E(−3).

The family Qn(t) is defined by the three-term recurrence

Qn(t) =

(

t+
x((n− 1)P )

y((n− 1)P )

)

Qn−1(t) + x((n− 1)P )Qn−2(t),

where P = (0, 0) on E(−3) and we have Q0(t) = 1, Q1(t) = t+ 1.
Using results about the divisibility polynomials ψn of an elliptic curve [20], we can express

the x and y coordinates of multiples of the point P (0, 0) for the curve E(−3) as follows.

x(nP ) =
−ψn−1ψn+1

ψ2
n

,

and

y(nP ) =
1

2

(

ψ2n

ψ4
n

−
(

1− 4
ψn−1ψn+1

ψ2
n

))

,

where we have used the shorthand ψn = ψn(0, 0) in the above expressions. Alternatively, we
have

x((n+ 1)P ) =
−h̃n−1h̃n+1

h̃2n
,

and

y((n+ 1)P ) =
1

2

(

h̃2(n+1)

h̃4n
+ a1

h̃n−1h̃n+1

h̃2n
− a3

)

,
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where a1 = 4 and a3 = 1. Here, h̃n is the Hankel transform of ãn.
We note finally that an application of the Stieltjes-Perron transform suggests that the

absolutely continuous part of the associated measure is given by

1

π

√

−x4 − 4(2x3 + 6x2 + 7x+ 3)

2(4x2 − 1)
.

9 The case of E : y2 + axy + y = x3 + bx2 + cx

We let P = P (0, 0) be the point (0, 0) on the elliptic curve

E : y2 + axy + y = x3 + bx2 + cx,

and let ãn be the sequence with generating function

ã(t) =
1

1 + t+
x1t

2

1 + y1
x1
t+

x2t
2

1 + y2
x2
t+

x3t
2

1 + y3
x3
t+ · · ·

,

where xn = x(nP ) and yn = y(nP ) are the coordinates of the multiples nP of the point P
on the curve. We can conjecture that the generating function of ãn is given by

(g(x), f(x)) · C(x),

where

g(x) =
1

1− (a+ 2γ)x− (b− 2γ(a+ c))x2
,

and

f(x) =
x(x3(a+ c)(γ2(a+ c)− bγ + 1)− x2(2cγ2 + γ(a2 + a(3∆c− 2)− b) + 1) + xγ(2a+ 2c− 1)− γ)

(1− (a+ 2γ)x− (b− 2γ(a+ c))x2)2
.

Here, we have used the notation
γ = c− 1.

We see that there are simplifications when c = 1. In this case, we find that the generating
function of ãn is given by

1− (a+ 1)x

1− ax− bx2
C

(−x3(1− (a+ 1)x)

(1− ax− bx2)2

)

.

This allows us to give a closed form expression for ãn when c = 1.

ãn =

n
∑

k=0

(

k+1
∑

j=0

(

k + 1

j

)

(−a− 1)j
n−3k−j
∑

i=0

(

2k + i

i

)(

i

n− 3k − i− j

)

bn−3k−i−ja2i+3k+j−n)(−1)kCk.
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This sequence begins

1,−1, b− a,−a2 + ab− b− 1,−a3 + a2b− a(2b+ 1) + b2 + 2,

−a4 + a3b− a2(3b+ 1) + a(2b2 + 4)− b2 − 3b− 1, . . . ,

with a Hankel transform that begins

1,−a+ b− 1,−a2 + a(b− 3) + 2b− 3,

a3 + a2(2− 3b) + a(3b2 − 5b)− b3 + 3b2 − b− 2, . . . ,

which we conjecture to be a (1, a− b+ 1) Somos-4 sequence.
The sequence ãn for c = 1 satisfies the convolution recurrence

ãn = aãn−1 + bãn−2 − 2ãn−3 −
n−k−4
∑

k=1

ãkãn−k−3,

with ã0 = 1, ã1 = −1, ã2 = b− a, ã3 = −a2 + ab− b− 1.
For the related sequence an, calculated from the solution of the elliptic curve equation,

we can calculate that its generating function is given by

(g(x), f(x)) · C(x)

where

g(x) =
1 + (1 + a+ 2c)x

1 + (a+ 2c+ 2)x+ (a(c+ 1) + (c+ 1)2 − b)x2
,

f(x) =
x3(1 + (1 + a+ 2c)x)

(1 + (a+ 2c+ 2)x+ (a(c+ 1) + (c+ 1)2 − b)x2)2
.

This means that an satisfies the following convolution recurrence.

an = −(a+ 2(c+ 1))an−1 + (b− a(c+ 1)− (c+ 1)2)an−2 + 2an−3 +
n−4
∑

k=1

akan−k−3,

with a0 = 1, a1 = −1, a2 = 1 + b− ac− c2, a3 = (3 + a+ 2c)(−b+ c(a+ c)).
The relationship between the generating function ã(x) =

∑∞
n=0 ãnx

n and the generating
function a(x) =

∑∞
n=0 anx

n is the following: ã(x) is the Invert(−(c + 1)) of the (c + 1)-st
binomial transform of a(−x).
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10 Conclusions

We have found that the language of Riordan arrays is an appropriate one to investigate
structural aspects of the solutions of generalized Catalan or Schroeder recurrences. The
appearance of the Catalan numbers is explained by the quadratic nature of the convolution
recurrences. This quadratic theme is continued in terms of solving elliptic curve equations
in the quadratic term, which leads to generating functions that are Riordan array solutions
of convolution equations. Often, the Hankel transform of the solution sequences give rise
to Somos-4 sequences. By using the x and y coordinates of multiples of a special point on
the elliptic curves, we can obtain Stieltjes continued fraction expressions for the generating
functions of related integer sequences. In specific instances, this leads to orthogonal polyno-
mials and their three-term recurrences, opening the door to the investigation of associated
measures. Note that we work with points on curves for which the division polynomials never
evaluate to 0.

The association of Somos-4 sequences and the Hankel transform is implicit in previous
work (see the Appendix) [10, 21, 20]. What is apparently new is the use of the y(nP )

x(nP )
ratios

to define integer sequences whose Hankel transforms furnish Somos sequences.
Proofs of results concerning Hankel transforms and Somos sequences can be elusive (but

see [10, 11, 12, 24, 25], hence we couch some proposed results as conjectures. It is hoped
that further insight will remedy this in the future.
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12 Appendix: Orthogonal polynomials, Riordan ar-

rays and the Hankel transform

By an orthogonal polynomial sequence (pn(x))n≥0 we shall understand [7, 8] an infinite se-
quence of polynomials pn(x), n ≥ 0, of degree n, with real coefficients (often integer coeffi-
cients) that are mutually orthogonal on an interval [x0, x1] (where x0 = −∞ is allowed, as
well as x1 = ∞), with respect to a weight function w : [x0, x1] → R:

∫ x1

x0

pn(x)pm(x)w(x)dx = δnm
√

hnhm,

where
∫ x1

x0

p2n(x)w(x)dx = hn.
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We assume that w is strictly positive on the interval (x0, x1). Every such sequence obeys a
so-called “three-term recurrence”:

pn+1(x) = (anx+ bn)pn(x)− cnpn−1(x)

for coefficients an, bn and cn that depend on n but not x. We note that if

pj(x) = kjx
j + k′jx

j−1 + · · · j = 0, 1, . . .

then

an =
kn+1

kn
, bn = an

(

k′n+1

kn+1

− k′n
kn

)

, cn = an

(

kn−1hn
knhn−1

)

,

where

hi =

∫ x1

x0

pi(x)
2w(x) dx.

Since the degree of pn(x) is n, the coefficient array of the polynomials is a lower triangular
(infinite) matrix. In the case of monic orthogonal polynomials the diagonal elements of this
array will all be 1. In this case, we can write the three-term recurrence as

pn+1(x) = (x− αn)pn(x)− βnpn−1(x), p0(x) = 1, p1(x) = x− α0.

The moments associated to the orthogonal polynomial sequence are the numbers

µn =

∫ x1

x0

xnw(x)dx.

We can find pn(x), αn and βn from a knowledge of these moments. To do this, we let ∆n be
the Hankel determinant |µi+j|ni,j≥0 and ∆n,x be the same determinant, but with the last row
equal to 1, x, x2, . . .. Then

pn(x) =
∆n,x

∆n−1

.

More generally, we let H

(

u1 . . . uk
v1 . . . vk

)

be the determinant of Hankel type with (i, j)-th

term µui+vj . Let

∆n = H

(

0 1 . . . n
0 1 . . . n

)

, ∆′ = H

(

0 1 . . . n− 1 n
0 1 . . . n− 1 n+ 1

)

.

Then we have

αn =
∆′

n

∆n

− ∆′
n−1

∆n−1

, βn =
∆n−2∆n

∆2
n−1

.

Of importance to this study are the following results (the first is the well-known “Favard
theorem”), which we essentially reproduce from [12]:
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Theorem 47. [12] (Cf. [22], Théorème 9 on p.I-4, or [23], Theorem 50.1). Let (pn(x))n≥0

be a sequence of monic polynomials, the polynomial pn(x) having degree n = 0, 1, . . . Then
the sequence (pn(x)) is (formally) orthogonal if and only if there exist sequences (αn)n≥0 and
(βn)n≥1 with βn 6= 0 for all n ≥ 1, such that the three-term recurrence

pn+1 = (x− αn)pn(x)− βn(x), for n ≥ 1,

holds, with initial conditions p0(x) = 1 and p1(x) = x− α0.

Theorem 48. [12] (Cf. [22], Proposition 1, (7), on p. V-5, or [23], Theorem 51.1). Let
(pn(x))n≥0 be a sequence of monic polynomials, which is orthogonal with respect to some
functional L. Let

pn+1 = (x− αn)pn(x)− βn(x), for n ≥ 1,

be the corresponding three-term recurrence which is guaranteed by Favard’s theorem. Then
the generating function

g(x) =
∞
∑

k=0

µkx
k

for the moments µk = L(xk) satisfies

g(x) =
µ0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

.

Given a family of monic orthogonal polynomials

pn+1(x) = (x− αn)pn(x)− βnpn−1(x), p0(x) = 1, p1(x) = x− α0,

we can write

pn(x) =
n
∑

k=0

an,kx
k.

Then we have
n+1
∑

k=0

an+1,kx
k = (x− αn)

n
∑

k=0

an,kx
k − βn

n−1
∑

k=0

an−1,kx
k

from which we deduce
an+1,0 = −αnan,0 − βnan−1,0 (1)

and
an+1,k = an,k−1 − αnan,k − βnan−1,k (2)

The question immediately arises as to the conditions under which a Riordan array (g, f) can
be the coefficient array of a family of orthogonal polynomials. A partial answer is given by
the following proposition.
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Proposition 49. Every Riordan array of the form

(

1

1 + rx+ sx2
,

x

1 + rx+ sx2

)

is the coefficient array of a family of monic orthogonal polynomials.

We note that in this case the three-term recurrence coefficients αn and βn are constants.
We can strengthen this result as follows.

Proposition 50. Every Riordan array of the form

(

1− λx− µx2

1 + rx+ sx2
,

x

1 + rx+ sx2

)

is the coefficient array of a family of monic orthogonal polynomials.

Proposition 51. The elements in the left-most column of

L =

(

1− λx− µx2

1 + rx+ sx2
,

x

1 + rx+ sx2

)−1

are the moments corresponding to the family of orthogonal polynomials with coefficient array
L−1.

We have in fact the following proposition, which characterizes those orthogonal polyno-
mials that can be defined by Riordan arrays in terms of the Chebyshev polynomials of the
second kind.

Proposition 52. The Riordan array
(

1
1+rx+sx2 ,

x
1+rx+sx2

)

is the coefficient array of the mod-
ified Chebyshev polynomials of the second kind given by

Pn(x) = (
√
s)nUn

(

x− r

2
√
s

)

, n = 0, 1, 2, . . .

Corollary 53. The Riordan array
(

1−λx−µx2

1+rx+sx2 ,
x

1+rx+sx2

)

is the coefficient array of the gen-

eralized Chebyshev polynomials of the second kind given by

Qn(x) = (
√
s)nUn

(

x− r

2
√
s

)

−λ(
√
s)n−1Un−1

(

x− r

2
√
s

)

−µ(
√
s)n−2Un−2

(

x− r

2
√
s

)

, n = 0, 1, 2, . . .

The Hankel transform [13] of a sequence an is the sequence hn of determinants |ai+j|0≤i,j≤n.
For instance, the Hankel transform of the Catalan numbers is given by the all 1’s sequence

1, 1, 1, 1, 1, . . . .

44



The Hankel transform can have combinatorial significance; for instance, the Hankel transform
of the ternary numbers begins

1, 2, 11, 170, 7429, 920460, 323801820, 323674802088, . . . .

This sequence (A051255) counts the number of cyclically symmetric transpose complement
plane partitions in a (2n+ 2)× (2n+ 2)× (2n+ 2) box.

If the sequence an has a generating function g(x), then the bivariate generating function
of the Hankel matrix |ai+j|i,j≥0 is given by

xg(x)− yg(y)

x− y
.

In the case that a sequence an has g.f. g(x) expressible in the continued fraction form
[23]

g(x) =
a0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·
then we have the Heilermann formula [12]

hn = an+1
0 βn

1 β
n−1
2 · · · β2

n−1βn = an+1
0

n
∏

k=1

βn+1−k
k . (3)

Note that this independent from αn.
We note that αn and βn are in general not integers (even if both an and hn are integer

valued). It is clear also that a Hankel transform has an infinite number of pre-images,
since we are free to assign values to the αn coefficients. For instance, a sequence an and
its binomial transform

∑n

k=0

(

n

k

)

have the same Hankel transform, and the expansion of

the Invert transform of g(x) given by g(x
1−xg(x)

and that of g(x) will have the same Hankel
transform.

Somos-4 sequences are most commonly associated with the x-coordinate of rational points
on an elliptic curve [10, 20, 21]. The link between these sequences and Hankel transforms
is made explicit in Theorem 7.1.1 of [20], for instance. Letting nP denote the n-fold sum
P + · · · + P of points on an elliptic curve E, this result implies the following: if P = (x̄, ȳ)
and Q = (x0, y0) are two distinct non-singular rational points on an elliptic curve E, denote,
for all n ∈ Z such that Q+ nP 6= O (the point at infinity on E), by (xn, yn) the coordinates
of the point Q+ nP . Then under these circumstances the numbers determined by

sn = (−1)(
n+1
2 )(xn−1 − x̄)(xn−2 − x̄)2 · · · (x1 − x̄)n−1(x0 − x̄)ns0

(

s0
s−1

)n
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are elements of a Somos-4 sequence (given appropriate s0, s−1 6= 0). We can re-write this as

sn = s0

(

s0
s−1

)n n−1
∏

k=0

(x̄− xk)
n−k,

and we see that this is in the form of a Hankel transform.
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