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Abstract

In a recent paper, Andrews and Newman introduced certain families of partition
functions using the minimal excludant or “mex” function. In this article, we study
two of the families of functions Andrews and Newman introduced, namely pt,t(n) and
p2t,t(n). We establish identities connecting the ordinary partition function p(n) to
pt,t(n) and p2t,t(n) for all t ≥ 1. Using these identities, we prove that Ramanujan’s
famous congruences for p(n) are also satisfied by pt,t(n) and p2t,t(n) for infinitely many
values of t.

Very recently, da Silva and Sellers provided complete parity characterizations of
p1,1(n) and p3,3(n). We prove that pt,t(n) ≡ C4t,t(n) (mod 2) for all n ≥ 0 and t ≥ 1,
where C4t,t(n) is Andrews’ singular overpartition function. Using this congruence, the
parity characterization of p1,1(n) given by da Silva and Sellers follows from that of
C4,1(n).

We also give elementary proofs of certain congruences already proved by da Silva
and Sellers.

1 Introduction

For each set S of positive integers the minimal excludant function (mex-function) is defined
as follows:

mex(S) = min(Z>0 \ S).
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Andrews and Newman [3] recently generalized this function to integer partitions. Given a
partition λ of n, they defined the mex-function mexA,a(λ) to be the smallest positive integer
congruent to a modulo A that is not part of λ. They then defined pA,a(n) to be the number
of partitions λ of n satisfying

mexA,a(λ) ≡ a (mod 2A).

For example, consider n = 5, A = 2, and a = 2. In the table below, we list the seven
partitions λ of 5 and the corresponding values of mex2,2(λ) for each λ:

Partition λ mex2,2(λ)
5 2

4 + 1 2
3 + 2 4

3 + 1 + 1 2
2 + 2 + 1 4

2 + 1 + 1 + 1 4
1 + 1 + 1 + 1 + 1 2

We see that four of the partitions of 5 satisfy mex2,2(λ) ≡ 2 (mod 4). Therefore, p2,2(5) = 4.
Andrews and Newman [3, Lemma 9] proved that the generating function for pt,t(n) is given
by

∞
∑

n=0

pt,t(n)q
n =

1

(q; q)∞

∞
∑

n=0

(−1)nqtn(n+1)/2 (1)

and the generating function for p2t,t(n) is given by

∞
∑

n=0

p2t,t(n)q
n =

1

(q; q)∞

∞
∑

n=0

(−1)nqtn
2

, (2)

where (a; q)∞ :=
∞
∏

j=0

(1− aqj).

The rank of a partition is the largest part minus the number of parts. The crank of a
partition is the largest part of the partition if there are no ones as parts, and otherwise is the
number of parts larger than the number of ones minus the numbers of ones. Andrews and
Newman [3] proved that p1,1(n) equals the number of partitions of n with non-negative crank
and p3,3(n) equals the number of partitions of n with rank ≥ −1. They also proved that
p2,1(n) is equal to the number of partitions of n into even parts. They further proved that
p4,2(n)− po(n) equals the number of partitions of n into parts congruent to ±4,±6,±8,±10
modulo 32 and p6,3(n)− po(n) equals the number of partitions of n into parts congruent to
±2,±4,±5,±6,±7,±8 modulo 24. Here po(n) denotes the number of partitions of n into
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odd parts. In a very recent paper [4], we have proved that p2α,2α(n) and p3·2α,3·2α(n) are
almost always even for all α ≥ 1. Using a result of Ono and Taguchi on nilpotency of Hecke
operators, we have also found infinite families of congruences modulo 2 satisfied by p2α,2α(n)
and p3·2α,3·2α(n) for all α ≥ 1. In this article, we express pt,t(n) and p2t,t(n) in terms of the
ordinary partition function p(n) for all t ≥ 1. Using our identities, we find that the partition
functions pt,t(n) and p2t,t(n) satisfy Ramanujan’s famous congruences for p(n) for infinitely
many values of t.

Beginning with the paper [6], Corteel and Lovejoy introduced and developed the theory
of overpartitions. An overpartition of n is a non-increasing sequence of natural numbers
whose sum is n in which the first occurrence of a number may be overlined. In order to
give overpartition analogues of Rogers-Ramanujan type theorems for the ordinary partition
function with restricted successive ranks, Andrews [2] defined the so-called singular overpar-
titions. Andrews’ singular overpartition function Ck,i(n) counts the number of overpartitions
of n in which no part is divisible by k and only parts ≡ ±i (mod k) may be overlined. For
example, C3,1(4) = 10 with the relevant partitions being 4, 4, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 +
1, 2+ 1+ 1, 2+ 1+ 1, 1+ 1+ 1+ 1, 1+ 1+ 1+ 1. For k ≥ 3 and 1 ≤ i ≤

⌊

k
2

⌋

, the generating

function for Ck,i(n) is given by

∞
∑

n=0

Ck,i(n)q
n =

(qk; qk)∞(−qi; qk)∞(−qk−i; qk)∞
(q; q)∞

. (3)

In this article, we prove that pt,t(n) and C4t,t(n) have the same parity for all t ≥ 1. Using
this, we find new congruences satisfied by pt,t(n). We also give elementary proofs of certain
congruences proved by da Silva and Sellers [7].

2 Mex-related partitions and relations to ordinary par-

tition

Let p(n) denote the ordinary partition function. We adopt the convention that p(n) = 0
when n is a negative integer. In the following theorem, we express pt,t(n) and p2t,t(n) in
terms of p(n).

Theorem 1. Let t be a positive integer. Then, for all non-negative integers n, we have

pt,t(n) = p(n) +
∞
∑

r=1

p(n− tr(2r + 1))−
∞
∑

s=1

p(n− ts(2s− 1)) (4)

and

p2t,t(n) = p(n) +
∞
∑

r=1

p(n− 4tr2)−
∞
∑

s=1

p(n− t(2s− 1)2). (5)
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Proof. We know that the generating function for the partition function p(n) is given by

∞
∑

n=0

p(n)qn =
1

(q; q)∞
.

From (1), we find that

∞
∑

n=0

pt,t(n)q
n =

1

(q; q)∞

∞
∑

n=0

(−1)nqtn(n+1)/2

=

(

∞
∑

n=0

p(n)qn

)(

1 +
∞
∑

r=1

qtr(2r+1) −
∞
∑

s=1

qts(2s−1)

)

=
∞
∑

n=0

(

p(n) +
∞
∑

r=1

p(n− tr(2r + 1))−
∞
∑

s=1

p(n− ts(2s− 1))

)

qn.

Thus, for all non-negative integers n, we have

pt,t(n) = p(n) +
∞
∑

r=1

p(n− tr(2r + 1))−
∞
∑

s=1

p(n− ts(2s− 1)). (6)

Again, from (2), we find that

∞
∑

n=0

p2t,t(n)q
n =

1

(q; q)∞

∞
∑

n=0

(−1)nqtn
2

=

(

∞
∑

n=0

p(n)qn

)(

1 +
∞
∑

r=1

q4tr
2

−
∞
∑

s=1

qt(2s−1)2

)

=
∞
∑

n=0

(

p(n) +
∞
∑

r=1

p(n− 4tr2)−
∞
∑

s=1

p(n− t(2s− 1)2)

)

qn.

Thus, for all non-negative integers n, we have

p2t,t(n) = p(n) +
∞
∑

r=1

p(n− 4tr2)−
∞
∑

s=1

p(n− t(2s− 1)2).

This completes the proof of the theorem.

In the following theorem, we prove that pt,t(n) and p2t,t(n) satisfy Ramanujan-type con-
gruences, and these congruences follow from those satisfied by the ordinary partition function
p(n).
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Theorem 2. Let m, a ≥ 1 and b be integers. Suppose that p(an + b) ≡ 0 (mod m) for all

non-negative integers n. Then, for all t ≥ 1, we have

pat,at(an+ b) ≡ 0 (mod m)

and

p2at,at(an+ b) ≡ 0 (mod m)

for all non-negative integers n.

Proof. Let n ≥ 0. From (4), we obtain

pat,at(an+ b)

= p(an+ b) +
∞
∑

r=1

p(a(n− tr(2r + 1)) + b)−
∞
∑

s=1

p(a(n− ts(2s− 1)) + b). (7)

We note that the terms remaining in the sums in (6) satisfy that n−tr(2r+1) and n−ts(2s−1)
are non-negative. Hence, the same is true in (7). Now, if p(ℓa + b) ≡ 0 (mod m) for every
non-negative integer ℓ, then (7) yields that pat,at(an+ b) ≡ 0 (mod m). This completes the
proof of the first congruence of the theorem.

Using (5) and proceeding along similar lines, we prove the second congruence. This
completes the proof of the theorem.

As an application of Theorem 2, we find that pt,t(n) and p2t,t(n) satisfy Ramanujan’s
famous congruences for certain infinite families of t. Much to Ramanujan’s credit, the
“Ramanujan congruences” for p(n) are given below. If k ≥ 1, then for every non-negative
integer n, we have

p
(

5kn+ δ5,k
)

≡ 0 (mod 5k);

p
(

7kn+ δ7,k
)

≡ 0 (mod 7⌊k/2⌋+1);

p
(

11kn+ δ11,k
)

≡ 0 (mod 11k),

where δp,k := 1/24 mod pk for p = 5, 7, 11. In the following, we prove that pat,at(n) and
p2at,at(n) satisfy the Ramanujan congruences when a = 5k, 7k, 11k.

Corollary 3. For all k, t ≥ 1 and for every non-negative integer n, we have

p5kt,5kt
(

5kn+ δ5,k
)

≡ 0 (mod 5k);

p7kt,7kt
(

7kn+ δ7,k
)

≡ 0 (mod 7⌊k/2⌋+1);

p11kt,11kt
(

11kn+ δ11,k
)

≡ 0 (mod 11k);

p2·5kt,5kt
(

5kn+ δ5,k
)

≡ 0 (mod 5k);

p2·7kt,7kt
(

7kn+ δ7,k
)

≡ 0 (mod 7⌊k/2⌋+1);

p2·11kt,11kt
(

11kn+ δ11,k
)

≡ 0 (mod 11k).
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Proof. Combining Ramanujan congruences for p(n) and Theorem 2 we readily obtain that
pat,at(n) and p2at,at(n) satisfy the Ramanujan congruences when a = 5k, 7k, 11k. This com-
pletes the proof.

Remark 4. Da Silva and Sellers [7] proposed to undertake a more extensive investigation of
the properties of p2t,t(n). Based on extensive computations, they remarked that p2t,t(n) need
not satisfy Ramanujan-like congruences. But Corollary 3 disproves their observation. We
have also verified Corollary 3 numerically for large values of the parameters.

3 Mex-related partitions and relations to singular over-

partitions

In this section we relate the mex-related partition functions to Andrews’ singular overpartion
functions. This helps us to find new congruences satisfied by the mex-related partition
functions. In the following theorem, we prove that both pt,t(n) and C4t,t(n) have the same
parity.

Theorem 5. Let t be a positive integer. Then, for all n ≥ 0, we have

pt,t(n) ≡ C4t,t(n) (mod 2).

Proof. From (1), we have

∞
∑

n=0

pt,t(n)q
n =

1

(q; q)∞

∞
∑

n=0

(−1)nqtn(n+1)/2. (8)

Employing Ramanujan’s theta function

ψ(q) :=
∞
∑

n=0

qn(n+1)/2 =
(q2; q2)

2
∞

(q; q)∞

into (8), we find that

∞
∑

n=0

pt,t(n)q
n ≡

1

(q; q)∞

∞
∑

n=0

qtn(n+1)/2 (mod 2)

=
1

(q; q)∞

(q2t; q2t)
2
∞

(qt; qt)∞

≡
1

(q; q)∞

(qt; qt)
4
∞

(qt; qt)∞
(mod 2)

≡
(qt; qt)

3
∞

(q; q)∞
(mod 2). (9)
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From (3), we find that

∞
∑

n=0

C4t,t(n)q
n =

(q4t; q4t)∞ (−qt; q4t)∞ (−q3t; q4t)∞
(q; q)∞

=
(q4t; q4t)∞ (−qt; q4t)∞ (−q3t; q4t)∞ (−q2t; q4t)∞ (−q4t; q4t)∞

(q; q)∞ (−q2t; q4t)∞ (−q4t; q4t)∞

=
(q4t; q4t)∞ (−qt; qt)∞
(q; q)∞ (−q2t; q2t)∞

=
(q4t; q4t)∞ (q2t; q2t)

2
∞

(q; q)∞ (qt; qt)∞ (q4t; q4t)∞

≡
(qt; qt)

3
∞

(q; q)∞
(mod 2). (10)

Thus, combining (9) and (10), we have

∞
∑

n=0

pt,t(n) ≡
∞
∑

n=0

C4t,t(n) (mod 2).

This completes the proof of the theorem.

Chen, Hirschhorn, and Sellers [5] proved that, for all n ≥ 1,

C4,1(n) ≡

{

1 (mod 2), if n = k(3k − 1) for some k;

0 (mod 2), otherwise.

Due to Theorem 5, we have the same parity characterization for p1,1(n). Recently, da Silva
and Sellers [7, Theorem 4] also found the same parity characterization for p1,1(n). To the
best of our knowledge, the parity characterization for C12,3(n) is not known till date. da
Silva and Sellers [7, Theorem 7] found the parity characterization for p3,3(n). Combining [7,
Theorem 7] and Theorem 5, we have the following parity characterization for C12,3(n):

Corollary 6. For all n ≥ 1, we have

C12,3(n) ≡

{

1 (mod 2), if 3n+ 1 is a square;

0 (mod 2), otherwise.

We next use known congruences for Andrews’ singular overpartition functions C4t,t(n)
and combine them with Theorem 5 to deduce new congruences for pt,t(n) for different values
of t. Our list of congruences obtained this way need not be exhaustive.

Theorem 7. Let p ≥ 5 be a prime and p 6≡ 1 (mod 12). Then, for all k, n ≥ 0 with p ∤ n,
we have

p1,1

(

p2k+1n+
p2k+2 − 1

12

)

≡ 0 (mod 2).
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Proof. Taking t = 1 in Theorem 5, we have

p1,1(n) ≡ C4,1(n) (mod 2). (11)

Thanks to Chen, Hirschhorn and Sellers ([5, Corollary 3.6]) we know that, for all n ≥ 0, we
have

C4,1

(

p2k+1n+
p2k+2 − 1

12

)

≡ 0 (mod 4). (12)

Combining (11) and (12), we deduce the required congruence.

Theorem 8. If p is a prime such that p ≡ 3 (mod 4) and 1 ≤ j ≤ p − 1, then for all

non-negative integers α and n, we have

p2,2

(

p2α+1(pn+ j) +
5
(

p2(α+1) − 1
)

24

)

≡ 0 (mod 2).

Proof. Ahmed and Baruah [1, Theorem 1.7] proved that, if p is a prime such that p ≡ 3
(mod 4) and 1 ≤ j ≤ p− 1, then for all non-negative integers α and n,

C8,2

(

p2α+1(pn+ j) +
5
(

p2(α+1) − 1
)

24

)

≡ 0 (mod 2).

Now, Theorem 5 yields that the same congruence is also satisfied by p2,2(n).

In the following theorem, we find congruences satisfied by p3,3(n).

Theorem 9. We have:

1. For all n ≥ 0,

p3,3(16n+ 11) ≡ p3,3(16n+ 15) ≡ 0 (mod 2). (13)

2. If n cannot be represented as the sum of a pentagonal number and four times a pen-

tagonal number, then

p3,3(16n+ 3) ≡ 0 (mod 2). (14)

3. If n cannot be represented as the sum of two times a pentagonal number and three times

a triangular number, then

p3,3(16n+ 7) ≡ 0 (mod 2). (15)
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Proof. Taking t = 3 in Theorem 5, for all n ≥ 0, we have

p3,3(n) ≡ C12,3(n) (mod 2). (16)

By Theorems 4.1, 4.2 and 4.3 of Li and Yao [8] we know that, for all n ≥ 0,

C12,3(16n+ 11) ≡ C12,3(16n+ 15) ≡ 0 (mod 8); (17)

C12,3(16n+ 3) ≡ 0 (mod 8); (18)

and

C12,3(16n+ 7) ≡ 0 (mod 8). (19)

Combining (16), (17), (18) and (19) we complete the proof of the theorem.

Corollary 10. We have:

1. Let p ≥ 5 be a prime with p ≡ 3 (mod 4). For α, n ≥ 0, if p ∤ n then

p3,3

(

16p2α+1n+
10p2α+2 − 1

3

)

≡ 0 (mod 2).

2. Let p ≥ 5 be a prime with
(

−2
p

)

= −1. For α, n ≥ 0, if p ∤ n then

p3,3

(

16p2α+1n+
22p2α+2 − 1

3

)

≡ 0 (mod 2).

Proof. By Corollary 4.2 and Corollary 4.3 of Li and Yao [8], for all n, we have

C12,3

(

16p2α+1n+
10p2α+2 − 1

3

)

≡ 0 (mod 8) (20)

and

C12,3

(

16p2α+1n+
22p2α+2 − 1

3

)

≡ 0 (mod 8). (21)

Now, combining (16), (20) and (21) we complete the proof.

Pore and Fathima [9] found congruences for C20,5(n). Combining their results and The-
orem 5 for t = 5, we obtain the following two theorems.
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Theorem 11. For all α, n ≥ 0, we have

p5,5

(

2 · 52α+1n+
31 · 52α − 7

12

)

≡ 0 (mod 2); (22)

p5,5

(

2 · 52α+1n+
79 · 52α − 7

12

)

≡ 0 (mod 2); (23)

p5,5

(

2 · 52α+2n+
83 · 52α+1 − 7

12

)

≡ 0 (mod 2);

p5,5

(

2 · 52α+2n+
107 · 52α+1 − 7

12

)

≡ 0 (mod 2).

Proof. Combining [9, Theorem 1.6] and Theorem 5 for t = 5, we obtain the desired congru-
ences satisfied by p5,5(n).

Theorem 12. Let p ≥ 5 be a prime such that
(

−10
p

)

= −1 and j = 1, 2, . . . , p − 1. Then,

for all α, n ≥ 0,

p5,5

(

2p2α+1(pn+ j) + 7×
p2α+2 − 1

12

)

≡ 0 (mod 2).

Proof. Combining [9, Theorem 1.7] and Theorem 5 for t = 5, we obtain the desired congru-
ences satisfied by p5,5(n).

Theorem 13. For all α ≥ 0, we have

p7,7

(

2 · 72α+1n+
(11 + 12r) · 49α − 5

6

)

≡ 0 (mod 2), r ∈ {3, 4, 6} (24)

and

p7,7

(

2 · 49α+1n+
(12s+ 5) · 72α+1 − 5

6

)

≡ 0 (mod 2), s ∈ {2, 4, 5} (25)

Proof. In the proof of Theorem 5.1, Li and Yao [8] found two congruences satisfied by
C28,7(n), for example see [8, (5.22) & (5.23)]. Combining these two congruences and Theorem
5 for t = 7, we complete the proof of the theorem.

Remark 14. Da Silva and Sellers [7, Theorem 11] found relations between pt,t(n) and the
t-core partition functions. They used certain congruences for t-core partition functions (ob-
tained by Radu and Sellers [10] using modular forms) to find several congruences satisfied by
pt,t(n) when t = 5, 7, 11, 13, 17, 19, 23. They also proposed to find a fully elementary proof
of their congruences listed in Theorem 11. Putting α = 0 in (22) and (23), we obtain the
congruences for p5,5(n) listed in [7, Theorem 11]. Again, putting α = 0 in (24), we obtain
the congruences for p7,7(n) listed in [7, Theorem 11].
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Theorem 15. Let p ≥ 5 be a prime with
(

−21
p

)

= −1. We have:

1. For n, α, β ≥ 0,

p7,7

(

2 · 72α+1p2βn+
(11 + 12r) · 49αp2β − 5

6

)

≡ 0 (mod 2)

and

p7,7

(

2 · 49α+1p2βn+
(5 + 12s) · 72α+1p2β − 5

6

)

≡ 0 (mod 2),

where r ∈ {3, 4, 6} and s ∈ {2, 4, 5}.

2. For n, α, β ≥ 0, if p ∤ n then

p7,7

(

2 · 49αp2β+1n+
11 · 49αp2β+2 − 5

6

)

≡ 0 (mod 2).

Proof. Li and Yao [8, Theorem 5.1 and 5.2 ] proved that, for all n ≥ 0,

C28,7

(

2 · 72α+1p2βn+
(11 + 12r) · 49αp2β − 5

6

)

≡ 0 (mod 4); (26)

C28,7

(

2 · 49α+1p2βn+
(5 + 12s) · 72α+1p2β − 5

6

)

≡ 0 (mod 4) (27)

and

C28,7

(

2 · 49αp2β+1n+
11 · 49αp2β+2 − 5

6

)

≡ 0 (mod 4). (28)

Combining (26), (27), (28), and Theorem 5 with t = 7, we find the desired congruences
satisfied by p7,7(n).
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