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Laboratoire de Mathématiques Nicolas Oresme
14000 Caen

France
christian.ballot@unicaen.fr

Abstract

To determine the p-adic valuation of a Lucasnomial
(

m
n

)

U
, i.e., of a generalized

binomial coefficient with respect to a fundamental Lucas sequence U = U(P,Q), there
is an adequate Kummer rule if p is a regular prime. No such rule exists if p is a special
prime, i.e., if p divides gcd(P,Q). We provide a complete description of the p-adic
valuation of Lucasnomials when p is special, with some numerical examples. Applica-
tions to the integrality of generalized Lucasnomial Fuss-Catalan numbers, Lucasnomial
ballot and Lucasnomial Lobb numbers are also given.

1 Introduction

A fundamental Lucas sequence U = U(P,Q) = (Un)n≥0, where P and Q are nonzero integral
parameters, is a second-order linear recurring sequence with initial conditions U0 = 0 and
U1 = 1, which satisfies

Un+2 = PUn+1 −QUn,

for all n ≥ 0. The fundamental Lucas sequence together with its companion sequence,
V (P,Q), which won’t intervene in this paper, form a pair of sequences which derive their
name from the famous memoir of Lucas of 1878 [13], and have a long history of studies and
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applications. Later, Lucas also dedicated a chapter of his number theory book [14] to these
sequences. Readers may consult [18, Chap. 4] for a good introduction to their properties.
The Lucas sequence U is a divisible sequence. That is, if m | n, then Um | Un. If no term Ut,
t ≥ 1, is zero, then U is said to be nondegenerate.

For U nondegenerate and m and n two positive integers, one defines the Lucasnomial, or
Lucasnomial coefficient,

(

m+n

n

)

U
as

Um+nUm+n−1 · · ·U1

(UmUm−1 · · ·U1)(UnUn−1 · · ·U1)
=

Um+n · · ·Um+1

Un · · ·U1

.

Lucasnomials have been proved to be integers in various ways, algebraic, arithmetic and
combinatorial. One of the quickest ways to show their integrality is by the Lucasnomial
identity

(

r

s

)

U

= Us+1

(

r − 1

s

)

U

−QUr−s−1

(

r − 1

s− 1

)

U

,

followed by an induction, which is the way many papers have used (e.g., [3, eq. (11)], [10,
Lemma 1, eq. (6)]). If U = U(2, 1), then Un = n for all n ≥ 0, so that

(

m+n

n

)

U
is the binomial

coefficient
(

m+n

n

)

.
Given a prime p, the p-adic valuation of an integer x is the largest exponent t ≥ 0 such

that pt divides x. It is denoted by νp(x). For a binomial coefficient or a Lucasnomial, we
write νp

(

∗
∗

)

U
instead of

νp

((

∗

∗

)

U

)

,

to alleviate notation.
By the well-known Kummer rule [12], the p-adic valuation of the binomial coefficient

(

m+n

n

)

is equal to the number of carries that come up when you add m and n in base p. For
instance, in base 3, 16 = (121)3 and 5 = (012)3. Exactly two carries occur when adding 16
and 5 in base 3. Thus ν3

(

21
5

)

= 2.
The p-adic valuation of a rational number x/y is νp(x) − νp(y). A prime p is said to be

special in relation to the Lucas sequence U(P,Q) whenever p | gcd(P,Q). A prime is said to
be regular if it does not divide Q. Primes that divide Q, but not P , do not divide any Un,
n ≥ 1.

For regular primes p with respect to a Lucas sequence U , there is a Kummer rule to help
determine the p-adic valuation of Lucasnomials

(

m+n

n

)

U
([1, Section 4], [11]). The rank, ρ,

of p is the least positive integer t such that p | Ut. If p is regular, then the rank of p exists
and is either p, or a divisor of p± 1. The valuation of

(

m+n

n

)

U
is the number of carries that

occur to the left of the radix point when adding m/ρ and n/ρ in base p, plus νp(Uρ) if a
carry occurs across the radix point. However, if p = 2, a carry occurring inbetween the first
two places left of the radix point, everything else being equal, bears a weight of ν2(P

2− 3Q)
instead of 1.
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There are a few additional results for the p-adic valuation of Lucasnomials of the form
(

pb

pa

)

U
[1, Thm. 7.1] as well as for various Fibonomial coefficients [15]. Fibonomials are the

Lucasnomials that correspond to the Fibonacci sequence F = U(1,−1).
There is no Kummer rule for special primes. Our main theorem, Theorem 1, provides

formulas to express in a concise and useful manner this valuation. Theorem 1 is based on
the complete description [4] of the p-adic valuation of the terms of a Lucas sequence when p
is a special prime. If p is special, then we write P = paP ′ and Q = pbQ′, where a and b are
positive integers and p ∤ P ′Q′. Note that the prime p is a regular prime with respect to the
Lucas sequence U ′ = U(P ′, Q′), with a rank ρ′ ≥ 3 since U ′

2 = P ′. Define the condition P0

as
P0 : 2 ≤ p ≤ 3 and 2a = b+ 1. (1)

If p is special, we will often refer to the following four equalities, which, gathered together,
form the content of [4, Thm 1.2].

If b ≥ 2a, then νp(Uk) =

{

(k − 1)a, if b > 2a;

(k − 1)a+ νp(U
′
k), if b = 2a,

(2)

while, if b < 2a, then

νp(U2k+1) = bk,

νp(U2k) = bk + (a− b) + νp(k) + νp(P
′2 −Q′) · [P0] · [p | k],

(3)

where P0 is defined in (1) and [−] denotes the Iverson symbol.
We recall that, given a condition P , the Iverson function evaluated at P is defined as

[P ] =

{

1, if P is true;

0, if P is false.

We are now ready to state our theorem.

Theorem 1. Let U = U(P,Q) be a nondegenerate fundamental Lucas sequence, p be a

special prime where we set P = paP ′, Q = pbQ′, a and b positive integers with p ∤ P ′Q′.

Suppose m and n are two positive integers. Let rm = (m mod 2p) and rn = (n mod 2p), i.e.,
rm and rn are the respective remainders of the euclidean division of m and n by 2p. Let P1

and P2 be the following conditions:

• P1: m and n are odd;

• P2: 2 ≤ p ≤ 3 and 2a = b+ 1 and rm + rn ≥ 2p.

Then

νp

(

m+ n

n

)

U

=















amn, if b > 2a;

amn+ νp
(

m+n

n

)

U ′
, if b = 2a;

b⌊mn
2
⌋+ νp

(⌊m+n

2
⌋

⌊n

2
⌋

)

+
(

a+ νp(
m+1
2

)
)

· [P1] + c · [P2], if b < 2a,
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where U ′ is the Lucas sequence U(P ′, Q′), c = νp(P
′2 − Q′) and [−] denotes the Iverson

symbol.

Remark 2. The expression of the valuation of
(

m+n

n

)

U
when b < 2a reduces much if at least

one of m or n is even and p ≥ 5 or 2a > b+ 1. In those cases, this valuation is

b
mn

2
+ νp

(

⌊m+n
2

⌋

⌊n
2
⌋

)

. (4)

Section 2 contains a proof of Theorem 1. In Section 3 we present three examples of
calculations of a Lucasnomial valuation using the main theorem. In doing so we use the
classical rule of Kummer to evaluate the p-adic valuation of some binomial coefficients, and
its generalizations to Lucasnomials [1, 11], which we recalled earlier. We are pleased to apply
Theorem 1 to complete the arithmetic proof of the integrality of generalized Lucasnomial
Fuss-Catalan numbers given in [3]. This is done in Theorem 6 of Section 4, together with
an introduction to these numbers. Immediate corollaries are proved which complete earlier
proofs of the integrality of the generalized Lucasnomial Lobb numbers and of the Lucasnomial
ballot numbers.

2 Proof of Theorem 1

There are three cases to examine.

Case 1: b > 2a. In this case, (2) says that, for all k ≥ 1, νp(Uk) = (k − 1)a. Thus

νp(UℓUℓ−1 · · ·U1) =
∑ℓ−1

i=1 ia = a (ℓ−1)ℓ
2

. Hence,

νp

(

m+ n

n

)

U

=
a

2
((m+ n− 1)(m+ n)− (n− 1)n− (m− 1)m) = amn. (5)

Case 2: b = 2a. By (2), and more precisely by [4, Proof of Thm 2.2], we have Uk = p(k−1)aU ′
k,

where U ′ = U(P ′, Q′). Thus, using (5), we find that
(

m+ n

n

)

U

= pamn

(

m+ n

n

)

U ′

, (6)

and the result we seeked follows.

Case 3: b < 2a. By (3) and writing c = νp(P
′2 −Q′), we find that

νp(Uℓ · · ·U1) =

⌊ ℓ−1

2
⌋

∑

i=1

νp(U2i+1) +

⌊ ℓ

2
⌋

∑

i=1

νp(U2i)

= b

⌊ ℓ−1

2
⌋

∑

i=1

i+ b

⌊ ℓ

2
⌋

∑

i=1

i+ (a− b)
⌊ ℓ

2

⌋

+ νp(
⌊ ℓ

2

⌋

!) +

⌊

⌊ ℓ
2
⌋

p

⌋

· c · [P0],
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which by combining the two sums on the RHS of the previous equation and using the fact

[9, pp. 71–72] that
⌊ ⌊ ℓ

2
⌋

p

⌋

=
⌊

ℓ
2p

⌋

, yields

νp(Uℓ · · ·U1) = b

⌊

ℓ− 1

2

⌋⌊

ℓ+ 1

2

⌋

+
bℓ

2
· [2 | ℓ] + (a− b)

⌊

ℓ

2

⌋

+ νp(
⌊ ℓ

2

⌋

!) +

⌊

ℓ

2p

⌋

· c · [P0]. (7)

Note that νp
(

m+n

n

)

U
= νp(Um+n · · ·U1) − νp(Um · · ·U1) − νp(Un · · ·U1). Guided by equation

(7), we first take care of the first two terms of the RHS of (7). An elementary calculation
gives

⌊

m+ n− 1

2

⌋⌊

m+ n+ 1

2

⌋

−

⌊

m− 1

2

⌋⌊

m+ 1

2

⌋

−

⌊

n− 1

2

⌋⌊

n+ 1

2

⌋

+

(

m+ n

2
· [2 | m+ n]−

m

2
· [2 | m]−

n

2
· [2 | n]

)

=

{

mn+1
2

, if m and n are both odd;
mn
2
, otherwise.

Since
⌊

m+ n

2

⌋

−
⌊m

2

⌋

−
⌊n

2

⌋

=

{

1, if m and n are both odd;

0, otherwise,
(8)

the contribution of the third terms of the RHS of (7) to νp
(

m+n

n

)

U
is nil unless m and n are

both odd when it is a− b. Hence, so far, the contribution of the first three terms of the RHS
of (7) is

a · [P1] + b

{

mn−1
2

, if m and n are odd;
mn
2
, otherwise;

= a · [P1] + b ·
⌊mn

2

⌋

.

The contribution of the fourth terms νp(
⌊

ℓ
2

⌋

!) to νp
(

m+n

n

)

U
is

C4 := νp(
⌊m+ n

2

⌋

!)− νp(
⌊m

2

⌋

!)− νp(
⌊n

2

⌋

!). (9)

By (8), if m and n are not each odd, then the contribution C4 is exactly equal to

νp

(

⌊

m+n
2

⌋

⌊

n
2

⌋

)

.

If m and n are odd, then, by (8),

⌊

m+ n

2

⌋

−
⌊n

2

⌋

=
⌊m

2

⌋

+ 1 =
m+ 1

2
.
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In particular, m+1
2

! =
⌊

m
2

⌋

! · m+1
2

. Hence, in this case, the contribution, C4, of the fourth
terms in (9) is

νp(
⌊m+ n

2

⌋

!)− νp(
⌊n

2

⌋

!)− νp(
m+ 1

2
!) + νp(

m+ 1

2
)

= νp

(

⌊

m+n
2

⌋

⌊

n
2

⌋

)

+ νp

(

m+ 1

2

)

.

It remains to evaluate the contribution of the fifth terms in (7). It is

(⌊

m+ n

2p

⌋

−

⌊

m

2p

⌋

−

⌊

n

2p

⌋)

· c · [P0].

Since for two real numbers x and y, we have

⌊x+ y⌋ − ⌊x⌋ − ⌊y⌋ =

{

0, if {x}+ {y} < 1;

1, otherwise,

where {−} denotes the fractional part, we see that this contribution is nonzero provided the
sum of the fractional parts of m

2p
and of n

2p
is at least 1, i.e., if rm + rn ≥ 2p. We conclude by

observing that [P2] = [P0] · [rm + rn ≥ 2p], where P2 was defined in Theorem 1.

3 Examples

We compute the p-adic valuation of a few Lucasnomials via Theorem 1.

Example 3. Suppose U = U(33, 30) and p = 3. Then a = 1, b = 1, P ′ = 11, Q′ = 10 and
P ′2 − Q′ = 111. Note that b < 2a. We want to compute, say, ν3

(

36
13

)

U
. Thus m = 23 and

n = 13. Hence, following Theorem 1, we obtain

ν3

(

36

13

)

U

= 1 ·

⌊

23× 13

2

⌋

+ ν3

( 36
2

⌊13
2
⌋

)

+

(

1 + ν3
(23 + 1

2

)

)

· 1 + ν3(111) · [P2].

Since m = 3 · 6 + 5 and n = 2 · 6 + 1, the sum rm + rn = 5 + 1 = 2p. Also, 2 ≤ p ≤ 3 and
2a = 2 = b+ 1. Hence, [P2] = 1. It follows that

ν3

(

36

13

)

U

= 149 + ν3

(

12 + 6

6

)

+ (1 + 1) + 1.

But 12 = 9 + 3 = (110)3 and 6 = 2 · 3 = (020)3 so there is a unique carry in the base-3
addition of 12 and 6. Thus, by Kummer’s rule [12], we find that ν3

(

18
6

)

= 1. Hence,

ν3

(

36

13

)

U

= 153.
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Example 4. Consider the Lucas sequence U = U(4,−2) and compute the 2-adic valuation
of

(

22
7

)

U
. We find that a = 2 and b = 1 so that b < 2a. Here m = 15 and n = 7. Also

P ′2 −Q′ = 2. Thus, by Theorem 1,

ν2

(

22

7

)

U

=

⌊

7× 15

2

⌋

+ ν2

(

11

3

)

+

(

2 + ν2
(15 + 1

2

)

)

· 1 + ν2(2) · [P2].

By Kummer’s rule [12], we have ν2
(

11
3

)

= 0 because there are no carries in the base-2 addition
of 8 = (1000)2 and 3 = (11)2. Also, [P2] = 0 because, of the three sub-conditions that make
up P2, one is false, namely 2a = 4 6= b+ 1 = 2. Hence,

ν2

(

22

7

)

U

= 52 + 0 + (2 + 3) + 0 = 57.

Example 5. Let U = U(20, 25) and let us evaluate the 5-adic valuation of the Lucasnomial
(

25
11

)

U
. Here m = 14, n = 11, p = 5, a = 1, b = 2 and U ′ = U(4, 1). Since b = 2a, we must

have

ν5

(

25

11

)

U

= amn+ ν5

(

25

11

)

U ′

= 14× 11 + ν5

(

25

11

)

U ′

.

The initial values of U ′ are 0, 1, 4 and 15. Thus, ρ′, the rank of 5 in U ′, is 3. To compute
ν5
(

25
11

)

U ′
, as explained in the introduction, we tally carries in the base-5 addition of m/ρ′ and

n/ρ′ [1, Thm. 4.2]. Now

14

ρ′
= 4 +

2

3
= (4)5 +

2

3
,

11

ρ′
= 3 +

2

3
= (3)5 +

2

3
,

so there are two carries, one across the radix point which accounts for ν5(Uρ′) = ν5(15) = 1
in the valuation of ν5

(

25
11

)

U ′
and another since 1 + 4 + 3 > 5, which accounts for 1. Hence,

ν5

(

25

11

)

U

= 154 + 2 = 156.

4 Applications

Given two natural numbers r ≥ 2 and s ≥ 1, one defines for all integers t ≥ 1 the generalized
Fuss-Catalan numbers as

Cr,s(t) =
s

(r − 1)t+ s

(

rt+ s− 1

t

)

. (10)

When s = 1, we find the Fuss-Catalan numbers, and when in addition r = 2, we end up
with the well-known Catalan numbers

C(t) =
1

t+ 1

(

2t

t

)

,

7



with their many occurrences and combinatorial interpretations [17]. The generalized Fuss-
Catalan numbers possess at least one combinatorial interpretation counting Raney sequences
[9, pp. 359–363]. So, in particular, they are integers.

Given a nondegenerate Lucas sequence U = U(P,Q), the generalized Lucasnomial Fuss-
Catalan numbers, CU,r,s(t), are defined in an analogous manner [3], i.e.,

CU,r,s(t) =
Us

U(r−1)t+s

(

rt+ s− 1

t

)

U

. (11)

In fact, this is more than a definition by analogy, since for the Lucas sequence U = U(2, 1)
we fall back on the generalized Fuss-Catalan numbers defined in (10). Lucasnomial Fuss-
Catalan numbers [3] correspond to the case s = 1, while if s = 1 and r = 2, then we find
numbers considered much earlier, the Lucasnomial Catalan numbers [2, 7, 8, 16]. Only very
recently has a combinatorial interpretation of the Lucasnomial Fuss-Catalan numbers

CU,r,1(t) =
1

U(r−1)t+1

(

rt

t

)

U

,

been discovered [5, 6] for all r ≥ 2. The Lucasnomial Fuss-Catalan numbers were shown to
be always integers by an algebraic argument [3, Thm. 6]. This proof did not seem to extend
to generalized Lucasnomial Fuss-Catalan numbers. But, we were nearly able to prove their
integrality via an arithmetic argument. That is, for all regular primes p, i.e., primes p not
dividing gcd(P,Q), the p-adic valuation of CU,r,s(t) is nonnegative [3, Thm. 9 and Rmk.
10, p. 11]. Consequently, if U(P,Q) is regular, i.e., if gcd(P,Q) = 1, then the generalized
Lucasnomial Fuss-Catalan numbers CU,r,s(t) are already known to be integral. With the
help of Theorem 1, we are able to prove their integrality in all cases, by showing that if
p | gcd(P,Q), then νp(CU,r,s(t)) ≥ 0.

Theorem 6. The generalized Lucasnomial Fuss-Catalan numbers

CU,r,s(t) =
Us

U(r−1)t+s

(

rt+ s− 1

t

)

U

are integral for all nondegenerate fundamental Lucas sequences U = U(P,Q), all integers
r ≥ 2, s ≥ 1 and t ≥ 1.

Proof. If s = 1, then CU,r,s(t) is a Lucasnomial Fuss-Catalan number which, as mentioned
prior to stating the theorem, is known to be an integer [3, Thm. 6]. Thus, our proof assumes
s ≥ 2. Furthermore, we readily see that

CU,r,s(t) =
Us

Ut

(

rt+ s− 1

t− 1

)

U

. (12)

Since Ut = 1 for t = 1, we also assume t ≥ 2.

8



As mentioned earlier, by [3, Thm. 9], it suffices to show the p-adic valuation of CU,r,s(t) is
nonnegative if p | gcd(P,Q). We continue using the notation of Theorem 1 and, in particular,
the exponents of p in P and Q are respectively denoted by a and b. The letter c denotes the
constant νp(P

′2 −Q′). Using (12), we see that

νp(CU,r,s(t)) = νp(Us)− νp(Ut) + νp

(

rt+ s− 1

t− 1

)

U

. (13)

We will use Theorem 1 to evaluate the p-adic valuation of the above Lucasnomial
(

rt+s−1
t−1

)

U
.

Thus, in the notation of Theorem 1,

m = (r − 1)t+ s and n = t− 1. (14)

Case I: b > 2a. Then, by equation (2) and Theorem 1

νp(CU,r,s(t)) = (s− 1)a− (t− 1)a+ a((r − 1)t+ s)(t− 1) := aN(s, t).

This valuation is clearly positive since (r − 1)t+ s ≥ 2 + 2 = 4. Hence, Case 1 is proved.

Case II: b = 2a. Since Uk = pa(k−1)U ′
k, we readily see, by (13), that

νp(CU,r,s(t)) = aN(s, t) + νp(U
′
s)− νp(U

′
t) + νp

(

rt+ s− 1

t− 1

)

U ′

= aN(s, t) + νp(CU ′,r,s(t)),

where N(s, t) was shown to be positive in Case 1. Since p is a regular prime with respect to
U ′, we know that νp(CU ′,r,s(t)) ≥ 0 by [3, Rmk. 10].
Case III: b < 2a. By equations (3), Theorem 1 and (13), we see that the quantity

M(s, t) :=

⌊

s

2

⌋

−

⌊

t

2

⌋

+

⌊

((r − 1)t+ s)(t− 1)

2

⌋

(15)

will appear in the calculation. So we begin with inequalities true in all parity cases for s and
t.

M(s, t) ≥
s− 1

2
−

t

2
+

((r − 1)t+ s)(t− 1)− 1

2

≥
s− t− 1

2
+

t(t− 1)

2
+

s(t− 1)

2
−

1

2

≥
s− t− 1

2
+

t

2
+ (t− 1)−

1

2

=
s− 1

2
+ t−

3

2
≥ 1,

9



since s ≥ 2 and t ≥ 2. In fact, we also have

M(s, t) ≥
s− 1

2
+ t−

3

2
≥

t

2
+

t

2
− 1 ≥

t

2
. (16)

We break up the argument into four subcases depending on the parity of s and t.

Subcase 1: s and t are odd. Then we see by (3) and Theorem 1 that

νp(CU,r,s(t)) ≥ b ·M(s, t) ≥ b > 0.

Subcase 2: s is even and t is odd. Again with the use of (3) and Theorem 1, we find that
νp(CU,r,s(t)) satisfies the lower bound

νp(CU,r,s(t)) ≥ b ·M(s, t) + (a− b) ≥ a > 0.

Subcase 3: s is odd and t even. By (3), Theorem 1, and noting that m = (r − 1)t+ s and
n = t− 1 are both odd, we obtain, using (13) again,

νp(CU,r,s(t)) ≥ bM(s, t)− (a− b)− νp(t/2)− c · [P0] · [p | t/2]

+ νp

(

(m+ n)/2

(n− 1)/2

)

+ (a+ νp((m+ 1)/2)) + c · [P0] · [rm + rn ≥ 2p]

= bM(s, t) + b+ νp

(

(m+ n)/2

(n− 1)/2

)

+ νp((m+ 1)/2)− νp((n+ 1)/2)

+ c · [P0] ·
(

[rm + rn ≥ 2p]− [p | t/2]
)

≥ 2b,

because M(s, t) ≥ 1 and

νp

(

(m+ n)/2

(n− 1)/2

)

+ νp((m+ 1)/2)− νp((n+ 1)/2) ≥ 0,

since this is the valuation of the binomial coefficient

(m+ 1)/2

(n+ 1)/2

(

(m+ n)/2

(n− 1)/2

)

=

(

(m+ n)/2

(n+ 1)/2

)

.

Also the quantity H(s, t) := [P0] ·
(

[rm + rn ≥ 2p] − [p | t/2]
)

is nonnegative. Indeed, if
H(s, t) < 0, then 2 ≤ p ≤ 3 and p | t/2. We are about to check these two conditions imply
rm + rn ≥ 2p so that H(s, t) ≥ 0, a contradiction. Assume first p = 2. Then p | t/2 implies
4 | t. But n = t− 1 implies rn = 3 since 2p = 4. Since m = (r− 1)t+ s and s is odd, rm = 1
or 3. Hence, rm + rn ≥ 4 = 2p.
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Now suppose that p = 3. Then 3 | t/2 implies 6 | t. Since n = t − 1, the remainder, rn,
of the division of n by 2p, is 5. But m = (r − 1)t + s so m ≡ s (mod 6). Now s is odd so
rm 6= 0. Hence, rm + rn ≥ 6 = 2p.

Subcase 4: s and t are both even. Thus m is even and n = t − 1 is odd. Using equations
(3) and Theorem 1, we see that

νp(CU,r,s(t)) ≥ bM(s, t) + νp(s/2)− νp(t/2) + νp

(

(m+ n− 1)/2

(n− 1)/2

)

+ c · [P0] ·
(

[ p | (s/2) ]− [ p | (t/2) ] + [rm + rn ≥ 2p]
)

≥ bM(s, t) + νp(s/2)− νp(t/2) ≥ M(s, t)− νp(t/2).

The second inequality above holds because the quantity

G(s, t) := [P0] ·
(

[p | s/2]− [p | t/2] + [rm + rn ≥ 2p]
)

,

is nonnegative. If not, p = 2 or 3, p | t/2 and p ∤ s/2. But these conditions imply rm+rn ≥ 2p
so that G(s, t) ≥ 0. Indeed, if p = 2, then 4 | t. Since n = t − 1, rn = 3. Moreover, 2 ∤ s/2
implies s ≡ 2 (mod 4). Now m = (r− 1)t+ s so rm = 2. So rm+ rn is 5 and exceeds 2p = 4.
If p = 3, then 6 | t and rn = 5. Moreover, 3 ∤ s implies rm 6= 0. Again, rm + rn ≥ 2p = 6 as
claimed.

Now, from (16), we know M(s, t) ≥ t/2. Say νp(t/2) = u. If u = 0, then νp(CU,r,s(t)) ≥
M(s, t) > 0. If u ≥ 1, then

t/2 ≥ pu ≥ 2u ≥ (1 + 1)u =
u

∑

k=0

(

u

k

)

≥ 1 +

(

u

1

)

= 1 + u.

Hence, νp(CU,r,s(t)) ≥ t/2− u ≥ 1.

Remark 7. Actually, if p is special, then all generalized Lucasnomial Fuss-Catalan numbers
CU,r,s(t) have a positive p-adic valuation if st > 1. Indeed, the proof of Theorem 1 shows
that for s ≥ 2 and t ≥ 2, νp(CU,r,s(t)) > 0. If t = 1 and s ≥ 2, then, from (12), we see that
νp(CU,r,s(t)) ≥ νp(Us), and νp(Us) ≥ ⌊s/2⌋ > 0 by (2) or (3). If s = 1 and t ≥ 2, then, by [3,
eq. (14)],

CU,r,s(t) =

(

rt− 1

t− 1

)

U

−Q
U(r−1)t

Ut

(

rt− 1

t− 2

)

U

. (17)

Noting that Theorem 1 implies that, for m and n positive,
(

m+n

n

)

U
has positive valuation,

the first Lucasnomial on the RHS of (17) has positive p-valuation. Moreover, U being a
divisible sequence U(r−1)t/Ut is an integer and νp(Q) > 0. Hence, the second term on the
RHS of (17) also has positive valuation.

Generalized Lucasnomial Lobb numbers and generalized Lucasnomial ballot numbers
were shown to be integers under the hypothesis that U(P,Q) be regular [3]. The restriction
that U be regular can now be removed. Thus, we have the two corollaries.
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Corollary 8. The generalized Lucasnomial Lobb numbers

LU,a
m,s =

Uas+1

U(a−1)m+s+1

(

rm

(r − 1)m+ s

)

U

are integral for all nondegenerate fundamental Lucas sequences U = U(P,Q), all integers
a ≥ 1 and m > s ≥ 0.

Proof. As shown in the proof of [3, Thm. 12], each Lobb number is a generalized Lucasnomial
Fuss-Catalan number.

Corollary 9. The generalized Lucasnomial ballot numbers

BU(s, t) =
Us−t

Us+t

(

s+ t

t

)

U

are integral for all nondegenerate fundamental Lucas sequences U = U(P,Q) and all integers

s > t ≥ 0.

Proof. Setting v = s− t we see that

BU(s, t) =
Us−t

Us+t

(

s+ t

t

)

U

=
Us−t

Ut

(

s+ t− 1

t− 1

)

U

=
Uv

Ut

(

2t+ v − 1

t− 1

)

U

,

which, by (12), is the generalized Lucasnomial Fuss-Catalan number CU,2,v(t). Thus the
result follows from Theorem 1.
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[13] É. Lucas, Théorie des fonctions simplement périodiques, Amer. J. Math. 1 (1878), 184–
240, 289–321.
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