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Abstract

The nth small Schröder number is s(n) =
∑

k≥0 s(n, k), where s(n, k) denotes the
number of plane rooted trees with n leaves and k internal nodes, each having at least
two children. In this manuscript, we focus on the weighted small Schröder numbers
sd(n) =

∑

k≥0 s(n, k)d
k, where d is an arbitrary fixed real number. We provide recur-

sive and asymptotic formulas for sd(n), as well as some identities and combinatorial
interpretations for these numbers. We also establish connections between sd(n) and
several families of Dyck paths.

1 Introduction

1.1 Small Schröder numbers

The small Schröder numbers, denoted s(n) for every n ≥ 1, gives the sequence

n 1 2 3 4 5 6 7 8 · · ·
s(n) 1 1 3 11 45 197 903 4279 · · ·

(A001003 in the On-line Encyclopedia of Integer Sequences (OEIS) [13]). This sequence
has been studied extensively and has many combinatorial interpretations (see, for instance,
Stanley [16, Exercise 6.39]). We list two below:
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• Let Tn denote the set of Schröder trees with n leaves, which are plane rooted trees
where each internal node has at least 2 children. Then s(n) = |Tn| for every n ≥ 1.
Figure 1 shows the s(4) = 11 Schröder trees with 4 leaves.

Figure 1: The s(4) = 11 Schröder trees with 4 leaves

• Let Pn be the set of small Schröder paths from (0, 0) to (2n − 2, 0), which are lattice
paths that

(P1) use only up steps U = (1, 1), down steps D = (1,−1), and flat steps F = (2, 0);

(P2) remain on or above the x-axis;

(P3) do not contain an F step on the x-axis.

Then s(n) = |Pn| for every n ≥ 1. Figure 2 lists the s(4) = 11 small Schröder paths
from (0, 0) to (6, 0). In this paper, we will use the word consisting of letters U, F,D
interchangeably with the path it represents.

To see that |Tn| = |Pn| for every n ≥ 1, we describe the well-known “walk around the
tree” procedure that gives a bijection between Tn and Pn.

Definition 1. Given a Schröder tree T ∈ Tn, construct the path Ψ(T ) ∈ Pn as follows:

1. Suppose T has q nodes. We perform a preorder traversal of T (i.e., we recursively
traverse the tree in the order of root, then its subtrees ordered from left to right), and
label the nodes a1, a2, . . . , aq in that order.
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Figure 2: The s(4) = 11 small Schröder paths from (0, 0) to (6, 0)

2. Notice that a1 must be the root of T . For every i ≥ 2, define the function

ψ(ai) =











U, if ai is the leftmost child of its parent;

D, if ai is the rightmost child of its parent;

F, otherwise.

3. Define
Ψ(T ) = ψ(a2)ψ(a3) · · ·ψ(aq).

Figure 3 illustrates the mapping Ψ for a particular tree. It is not hard to check that
Ψ : Tn → Pn is indeed a bijection.

a1

a2U

a3U a4F

a5U a6D

a7D

a8D

−→

T ∈ T5 Ψ(T ) ∈ P5

Figure 3: Illustrating the tree-to-path mapping Ψ (Definition 1)
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For more historical context, properties, and combinatorial interpretations of the small
Schröder numbers, the reader may refer to work by Stanley [15, 16], Shapiro and Sulanke [12],
and Gessel [7].

1.2 Weighted small Schröder numbers

Before we describe the weighted small Schröder numbers, let us take a closer look at the
Schröder trees Tn. Given integers n ≥ 1 and 0 ≤ k < n, let Tn,k ⊆ Tn be the set of Schröder
trees with n leaves and exactly k internal nodes. Furthermore, let s(n, k) = |Tn,k|. For
instance, Figure 1 shows that s(4, 0) = 0, s(4, 1) = 1, and s(4, 2) = s(4, 3) = 5. Then
s(n) =

∑n−1
k=0 s(n, k), and the numbers s(n, k) produce the following triangle (A086810 in

the OEIS).

s(n, k) k = 0 1 2 3 4 5 · · ·
n = 1 1

2 0 1
3 0 1 2
4 0 1 5 5
5 0 1 9 21 14
6 0 1 14 56 84 42
...

...
...

...
...

...
...

. . .

In general,

s(n, k) =

{

1, if n = 1 and k = 0;
1

n−1

(

n−1
k

)(

n+k−1
n

)

, if n ≥ 2.

(See, for instance, Geffner and Noy [6, Lemma 1] for a proof.) Next, recall the tree-to-path
procedure Ψ from Definition 1. Given T ∈ Tn,k, there must be exactly k nodes in T that is
each the leftmost child of its parent, and so Ψ(T ) would have exactly k up steps. Thus, if
we define Pn,k ⊆ Pn to be the set of small Schröder paths in Pn with exactly k up steps,
then Ψ is in fact a bijection between Tn,k and Pn,k for every n and k, and it follows that
s(n, k) = |Pn,k|. Moreover, observe that s(n, n − 1) counts the number of Schröder paths
from (0, 0) to (2n − 2, 0) with n − 1 up steps (and hence n − 1 down steps). These paths
must then have no flat steps, and therefore are in fact Dyck paths. Hence, s(n, n− 1) gives
the nth Catalan number (A000108 in the OEIS).

We are now ready to define the sequences that are of our main focus in this manuscript.
Given a real number d, we define

sd(n) =
n−1
∑

k=0

s(n, k)dk (1)

for every integer n ≥ 1. Intuitively, one can interpret assigning a weight of dk to each tree
in Tn,k, and let sd(n) be the total weight of all trees in Tn.
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Clearly, s1(n) = s(n), so the above is indeed a generalization of the small Schröder
numbers. The following table gives the sequence sd(n) for a few integers d ≥ 2:

n 1 2 3 4 5 6 7 8 · · ·
s2(n) 1 2 10 62 430 3194 24850 199910 · · ·
s3(n) 1 3 21 183 1785 18651 204141 2310447 · · ·
s4(n) 1 4 36 404 5076 68324 963396 14046964 · · ·

(See A107841, A131763, and A131765 for the cases d = 2, 3, and 4, respectively.) While we
could not find any literature in which these sequences were the main focus of study, they (es-
pecially s2(n)) have made appearances in many areas, such as queuing theory [1], embedded
Riordan arrays [2], operads from posets [8], and vorticity equations in fluid dynamics [10].
Chen and Pan [3] also came across these sequences when enumerating a certain family of
valley-type weighted Dyck paths, and related these quantities to a variant of generalized
large Schröder numbers that is somewhat similar to sd(n). We will make this connection
more explicit in Section 4. For other generalizations of small Schröder numbers, see work by
Sulanke [18], Schröder [11], Huh and Park [9], and others.

1.3 A roadmap of this paper

In Section 2, we will discuss some basic properties of sd(n) by studying its generating func-
tion. We will see that the tools for establishing known formulas for s(n) readily extend to
proving analogous results for sd(n). After that, we prove a few identities for sd(n) (Section 3),
and describe several families of Dyck paths that are counted by sd(n) (Section 4). Our analy-
sis of the weighted Schröder numbers sd(n) leads to several results regarding Schröder paths
and Dyck paths, such as:

• For every n ≥ 1, the number of small Schröder paths in Pn with an odd number of up
steps and that with an even number of up steps differ by exactly one (Proposition 6);

• For every n ≥ 1, skℓ−1(n) gives the number of Dyck paths from (0, 0) to (2n − 2, 0)
with k possible colors for each up step (U1, . . . , Uk), ℓ possible colors for each down
step (D1, . . . , Dℓ), and avoid peaks of type U1D1 (Proposition 13).

We conclude in Section 5 by mentioning some possible future research directions.

2 Basic properties and formulas

Let d be a fixed real number, and consider the generating function y =
∑

n≥1 sd(n)x
n. We

first establish a functional equation for y.

Proposition 2. The generating function y =
∑

n≥1 sd(n)x
n satisfies the functional equation

(d+ 1)y2 − (x+ 1)y + x = 0. (2)
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Proof. Let T =
⋃

n≥1 Tn be the set of all Schröder trees, and for each tree T ∈ T we let
k(T ), n(T ) be the number of internal nodes and leaves of T , respectively. Notice that given
a tree T ∈ T where n(T ) ≥ 2, the root of T must be an internal node with ℓ ≥ 2 subtrees
T1, . . . , Tℓ, so each such tree T uniquely corresponds to some ℓ-tuple of Schröder trees, and
there is a natural bijection between the sets T \ T1 and

⋃

ℓ≥2 T ℓ. Also, in this case we have
∑ℓ

j=1 k(Tj) + 1 = k(T ) and
∑ℓ

j=1 n(Tj) = n(T ). Therefore,

y =
∑

n≥1

sd(n)x
n

=
∑

T∈T

dk(T )xn(T )

=
∑

T∈T1

dk(T )xn(T ) +
∑

T∈T \T1

dk(T )xn(T )

= x+
∑

ℓ≥2

∑

T1,...,Tℓ∈T

d1+
∑ℓ

j=1
k(Tj)x

∑ℓ
j=1

n(Tj)

= x+ d
∑

ℓ≥2

yℓ

= x+
dy2

1− y
,

which easily rearranges to give (2).

When d 6= −1, solving for y in (2) (and noting [x0]y = 0) yields

y =
1

2(d+ 1)

(

1 + x−
√

1− (4d+ 2)x+ x2
)

. (3)

We next use (2) and (3) to prove a recurrence relation for sd(n) that would allow for very
efficient computation of these numbers. For the case d = 1, Stanley [15] proved the recurrence

ns(n) = 3(2n− 3)s(n− 1)− (n− 3)s(n− 2), n ≥ 3 (4)

using generating functions. Subsequently, a combinatorial proof using weighted binary trees
was given by Foata and Zeilberger [5]. Shortly after, Sulanke [17] also showed that the above
recurrence applies for the closely-related large Schröder numbers using Schröder paths. Here,
we adapt Stanley’s [15] argument to obtain a similar recurrence relation for sd(n) for all d.

Proposition 3. For every real number d, sd(1) = 1, sd(2) = d, and

nsd(n) = (2d+ 1)(2n− 3)sd(n− 1)− (n− 3)sd(n− 2) (5)

for all n ≥ 3.
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Proof. First, sd(1) = 1 and sd(2) = d follows readily from the definition of sd(n). For the
recurrence, we start with (2) and differentiate both sides with respect to x to obtain

2(d+ 1)yy′ − y − (x+ 1)y′ + 1 = 0.

Rearranging gives

y′ =
y − 1

2(d+ 1)y − x− 1
.

We also have
2(d+ 1)y − x− 1 = −

√

x2 − (4d+ 2)x+ 1.

This obviously holds when d = −1, and can be derived from (3) for all other values of d.
Thus,

y′ =
y − 1

2(d+ 1)y − x− 1
=

y − 1

−
√

x2 − (4d+ 2)x+ 1
=

(y − 1)(2(d+ 1)y − x− 1)

x2 − (4d+ 2)x+ 1

=
2(d+ 1)y2 − (2d+ x+ 3)y + x+ 1

x2 − (4d+ 2)x+ 1
=

(x− 2d− 1)y − x+ 1

x2 − (4d+ 2)x+ 1
,

where the last equality made use of the fact that (d + 1)y2 = (x + 1)y − x from (2). From
the above, we obtain the equation

(x2 − (4d+ 2)x+ 1)y′ − (x− 2d− 1)y + x− 1 = 0. (6)

Since y =
∑

n≥0 sd(n)x
n and y′ =

∑

n≥0(n + 1)sd(n + 1)xn, taking the coefficient of xn−1 of
(6) (for any n ≥ 3) yields

(n− 2)sd(n− 2)− (4d+ 2)(n− 1)sd(n− 1) + nsd(n)− sd(n− 2) + (2d+ 1)sd(n− 1) = 0,

which can be rearranged to give the desired recurrence (5).

We remark that one can also obtain a combinatorial proof for (5) by extending Foata and
Zeilberger’s [5] combinatorial proof of the recurrence for the special case d = 1. Therein,
they interpreted the small Schröder number s(n) as counting binary trees with n leaves where
each internal node either has label 1 or 2, and nodes with label 2 must have a right subtree
that is not a leaf. Now if we assign each such tree T to have weight dk1(T )(d+1)k2(T ) (where
k1(T ), k2(T ) denote the number of internal nodes of T with label 1 and 2, respectively),
then one can prove (5) by equating the total weight of the trees on both sides of the Foata–
Zeilberger bijection.

Next, we look into the asymptotic behavior of sd(n). The asymptotic formula for s1(n)
is well known — see, for instance, Flajolet and Sedgewick [4, p. 474]. Here, we extend that
formula to one that applies for all positive d.

Proposition 4. For every real number d > 0, as n→ ∞,

sd(n) ∼
(

(
√
d+ 1−

√
d) · d1/4

2(d+ 1)3/4π1/2

)

· n−3/2 ·
(

2d+ 1 + 2
√
d2 + d

)n

.
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Proof. We follow the template given by Flajolet and Sedgewick [4, Theorem VI.6, p. 404]
to prove our claim. First, recall that y =

∑

n≥1 sd(n)x
n satisfies the functional equation

y = xφ(y) where φ(y) = 1−y
1−(d+1)y

. We need to verify the following analytic conditions for φ:

H1: φ is a nonlinear function that is analytic at 0 with φ(0) 6= 0 and [zn]φ(z) ≥ 0 for all
n ≥ 0.

H2: Within the open disc of convergence of φ at 0, |z| < R, there exists a (then necessarily
unique) positive solution s to the characteristic equation φ(s) = sφ′(s).

Notice that, expanding φ(z), we obtain

φ(z) =
1− z

1− (d+ 1)z
= 1 +

∑

n≥1

(

(d+ 1)n − (d+ 1)n−1
)

zn = 1 + d
∑

n≥1

(d+ 1)n−1zn,

and so H1 holds for all d > 0. For H2, the radius of convergence of φ(z) (which is a geometric
series) is obviously R = 1

d+1
. Now since φ′(z) = d

(1−(d+1)z)2
, solving φ(s) = sφ′(s) yields one

solution s = 1−
√

d
d+1

, which lies in (0, R) given d > 0. Thus, H2 holds as well.

Hence, it follows that

sd(n) ∼
√

φ(s)

2φ′′(s)
· ρn√

πn3
, (7)

where ρ = φ(s)
s
. It is not hard to check that

φ(s) =
1√

d+ 1(
√
d+ 1−

√
d)
,

φ′′(s) =
2(d+ 1)

√
d
(√

d+ 1−
√
d
)3 ,

ρ = 2d+ 1 + 2
√
d2 + d.

Substituting these expressions into (7) and simplifying gives the desired result.

In particular, from Proposition 4 we obtain that the sequence sd(n) has growth rate

lim
n→∞

sd(n+ 1)

sd(n)
= ρ = 2d+ 1 + 2

√
d2 + d ∈ (4d+ 1, 4d+ 2)

for all d > 0.

3 Some identities and implications

In this section, we prove several identities related to sd(n) and describe their combinatorial
implications. We will first focus on two special sequences s−1/2(n) and s−1(n), then prove
an identity that seems to have a natural connection with large Schröder numbers.
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3.1 The case d = −1/2

Notice that in the recurrence (5), the coefficient of sd(n− 1) vanishes when d = −1
2
. In this

case, we obtain the following sequence:

n 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
s−1/2(n) 1 −1

2
0 1

8
0 − 2

32
0 5

128
0 − 14

512
0 42

2048
· · ·

For every n ≥ 1, let c(n) = 1
n

(

2n−2
n−1

)

denote the nth Catalan number. It is easy to check
that c(1) = 1, and that

c(n) =
2(2n− 3)

n
c(n− 1) (8)

for all n ≥ 2. Using this recurrence of c(n) and Proposition 3, we prove the following:

Proposition 5. For every integer m ≥ 1, s−1/2(2m+ 1) = 0 and s−1/2(2m) = (−1)m

22m−1 c(m).

Proof. We prove our claim by induction on m. First, in the case of d = −1
2
, (5) reduces to

s−1/2(n) =
−(n− 3)

n
s−1/2(n− 2). (9)

Thus, s−1/2(3) = 0s−1/2(1) = 0. From there on, since s−1/2(2m+1) is a multiple of s−1/2(2m−
1) for all m ≥ 1, we obtain that s−1/2(2m+ 1) = 0 for all m ≥ 1.

Next, we establish the claim for s−1/2(2m). When m = 1,

s−1/2(2) = −1

2
=

(−1)1

22−1
c(1),

so the base case holds. For the inductive step, notice that

s−1/2(2m) =
−(2m− 3)

2m
s−1/2(2m− 2)

=
−(2m− 3)

2m

(

(−1)m−1

22m−3
c(m− 1)

)

=
(−1)m

22m−1

(

2(2m− 3)

m
c(m− 1)

)

=
(−1)m

22m−1
c(m),

where the last equality follows from (8). This finishes our proof.

We will return to the quantity s−1/2(n) subsequently in Section 4.
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3.2 The case d = −1

Next, we turn to the case when d = −1. In this case, (2) gives

y =
x

1 + x
=
∑

n≥1

(−1)n−1xi,

and so s−1(n) = (−1)n−1 for every n ≥ 1. Since s−1(n) =
∑

k≥0 s(n, k)(−1)k by definition,
we have shown the following:

Proposition 6. For every integer n ≥ 1,

∑

k odd

s(n, k) =
∑

k even

s(n, k) + (−1)n.

Proposition 6 implies that, for every n, the number of trees in Tn with an odd number
of internal nodes and that with an even number of internal nodes differ by exactly one.
Likewise, in terms of small Schröder paths, we now know that the number of paths in Pn

with an odd number of up steps is exactly one away from that with an even number of up
steps. This leads to the following consequence, which might be folklore but we could not
find a mention of it in the literature:

Corollary 7. The small Schröder number s(n) is odd for all n ≥ 1.

Corollary 7 further implies that, for all odd, positive integers d and for all n ≥ 1, sd(n)
is odd (since then dk is odd for all k ≥ 0, and so sd(n) would be a sum of an odd number
of odd quantities). Likewise, we obtain that for all n ≥ 2, the nth large Schröder number
(which is twice the nth small Schröder number) is congruent to 2 (mod 4).

While we have already described a very short algebraic proof to Proposition 6, we will
also provide a simple combinatorial proof.

l l l l l

Figure 4: Illustrating our combinatorial proof of Proposition 6. Paths on the first (resp.,
second) row have an odd (resp., even) number of up steps.
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Consider the set of paths Pn for a fixed n, and observe that Q = Un−1Dn−1 (i.e., the
path consisting of n− 1 up steps followed by n− 1 down steps) is the only path in Pn that
contains neither a flat step F nor a valley DU . Then, for every path P ∈ Pn \{Q}, we define
the path α(P ) as follows:

(1) If the first valley in P occurs before the first flat step, we write P = P1DUP2 where
P1 does not contain a flat step, and define α(P ) = P1FP2.

(2) Otherwise, the first flat step occurs before the first valley. In this case, we write P as
P1FP2 where P1 does not contain an instance of DU , and define α(P ) = P1DUP2.

Figure 4 illustrates the mapping α on paths in P4. It is easy to see that α is an involution
on Pn \ {Q}. Since the number of up steps in P and in α(P ) always differ by exactly one,
Proposition 6 follows (again).

3.3 Connection to large Schröder numbers

Here, we prove another identity for sd(n), and briefly discuss a version of weighted large
Schröder numbers that is analogous to sd(n). We first have the following:

Proposition 8. For every real number d 6= −1 and every integer n ≥ 2,

sd(n) =
(−1)n−1d

d+ 1
s−d−1(n).

Proof. Recall the generating function y =
∑

n≥1 sd(n)x
n. We can rewrite (2) as the functional

equation y = x
(

1−y
1−(d+1)y

)

, apply Lagrange inversion, and obtain that

sd(n) = [xn]y =
1

n
[yn−1]

(

1− y

1− (d+ 1)y

)n

=
1

n
[yn−1]

(

∑

i≥0

(

n

i

)

(−1)iyi

)(

∑

j≥0

(

n+ j − 1

n− 1

)

(d+ 1)jyj

)

=
1

n

(

∑

i≥0

(−1)i
(

n

i

)(

2n− i− 2

n− 1

)

(d+ 1)n−i−1

)

.

Since
(

2n−i−2
n−1

)

= 0 when i > n − 1, the sum could simply run from i = 0 to i = n − 1.
Moreover, by re-indexing the sum using j = n− i− 1, we have

sd(n) =
1

n

(

n−1
∑

j=0

(−1)n−j−1

(

n

n− j − 1

)(

2n− (n− j − 1)− 2

n− 1

)

(d+ 1)j

)

= (−1)n−1

(

n−1
∑

j=0

1

n

(

n

j + 1

)(

n+ j − 1

n− 1

)

(−d− 1)j

)

.
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Now notice that

1

n

(

n

j + 1

)(

n+ j − 1

n− 1

)

=
1

n− 1

((

n− 1

j

)(

n+ j − 1

n

)

+

(

n− 1

j + 1

)(

n+ j

n

))

= s(n, j) + s(n, j + 1).

Hence, we have

sd(n) = (−1)n−1

n−1
∑

j=0

(s(n, j) + s(n, j + 1))(−d− 1)j

= (−1)n−1

(

n−1
∑

j=0

s(n, j)(−d− 1)j − 1

d+ 1

n−1
∑

j=0

s(n, j + 1)(−d− 1)j+1

)

= (−1)n−1 d

d+ 1
s−d−1(n),

finishing the proof of our claim. Note that in the second equality above we used the fact
that s(n, 0) = s(n, n) = 0 for all n ≥ 2, as well as the assumption that d 6= −1.

Notice that Proposition 8 rearranges to (−1)n−1s−d−1(n) =
d+1
d
sd(n) (for d 6= 0,−1), and

that we encountered the expression s(n, j) + s(n, j + 1) in its proof. We note that these
quantities have a natural connection with the large Schröder numbers. For every integer
n ≥ 1, we define the set of large Schröder paths Pn to be the set of lattice paths from (0, 0)
to (2n−2, 0) that satisfy properties (P1) and (P2) (but not necessarily (P3)) in the definition
of small Schröder paths. Thus, Pn is a subset of Pn for every n. Figure 5 illustrates the
large Schröder paths in P4 that do not belong to P4.

Figure 5: The 11 large Schröder paths in P4 \ P4
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Let s(n) = |Pn|. Then s(n) gives the large Schröder numbers (A006318 in the OEIS):

n 1 2 3 4 5 6 7 8 · · ·
s(n) 1 2 6 22 90 394 1806 8558 · · ·

It is well known that s(n) = 2s(n) for every n ≥ 2. To see this, consider a path P ∈ Pn \Pn,
and write P = P1FP2 where P1 is chosen maximally so that it does not contain a flat
step on the x-axis. Then it is easy to show that the mapping β : Pn \ Pn → Pn where
β(P ) = P1UP2D is a bijection, thus showing that |Pn| = 2|Pn|. Moreover, notice that β(P )
has exactly one more up step than P . Thus, if we let Pn,k denote the set of paths in Pn

with exactly k up steps, then we have

Pn,k = Pn,k ∪ {P : β(P ) ∈ Pn,k+1} .

The sets Pn,k and {P : β(P ) ∈ Pn,k+1} are obviously disjoint. Thus, if we let s(n, k) = |Pn,k|,
we have

s(n, k) = s(n, k) + s(n, k + 1)

for every n ≥ 2 and every k ∈ {0, . . . , n− 1}. Furthermore, given a real number d, if we
define the weighted large Schröder number sd(n) =

∑n−1
k=0 s(n, k)d

k, then we see that

sd(n) =
n−1
∑

k=0

s(n, k)dk =
n−1
∑

k=0

(s(n, k) + s(n, k + 1))dk =
d+ 1

d
sd(n).

Thus, Proposition 8 can be written as simply

sd(n) = (−1)n−1s−d−1(n)

for all d 6= 0,−1 and n ≥ 2. We will revisit Proposition 8 from the perspective of Dyck paths
in the next section.

4 Describing sd(n) in terms of Dyck paths

We next discuss several families of Dyck paths that are counted by sd(n). Recall that a
Dyck path is a small Schröder path with only up and down steps (i.e., no flat steps). Let
Dn be the set of Dyck paths that starts at (0, 0) and ends at (2n − 2, 0). (Equivalently,
Dn = Pn,n−1.) Also, it will be convenient to have the following notation for our subsequent
discussion: Given a path P ∈ Pn, let

• U(P ), F (P ), and D(P ) respectively denote the number of up, flat, and down steps in
P ;

• V (P ) denote the number of valleys (i.e., occurrences of DU) in P ;

• K(P ) denote the number of peaks (i.e., occurrences of UD) in P ;
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• UV (P ) (resp., DV (P )) denote the number of up (resp., down) steps in P that is not
contained in a valley;

• UK(P ) (resp., DK(P )) denote the number of up (resp., down) steps in P that is not
contained in a peak.

Recently, Chen and Pan [3] studied the following notion of weighted Catalan numbers:
Given real numbers a and b, define

cVa,b(n) =
∑

P∈Dn

aUV (P )bV (P ). (10)

Then cV1,1(n) gives the ordinary Catalan numbers c(n). Interestingly, cVa,b(n) also coincides
with sd(n) for certain choices of a and b.

Proposition 9. For every real number d and integer n ≥ 1,

sd(n) = cVd,d+1(n).

Proof. Given a path P ∈ Dn, let S ⊆ {1, . . . , V (P )} be an arbitrary subset of the valleys of
P . Define the function fS : Dn → Pn such that fS(P ) is the path obtained from replacing
every valley not in S by a flat step F . Observe that by this construction, the resulting path
fS(P ) is a small Schröder path with UV (P ) + |S| up steps.

Now observe that, for every path P ∈ Dn,

dUV (P )(d+ 1)V (P ) =
∑

S⊆{1,...,V (P )}

dUV (P )+|S| =
∑

S⊆{1,...,V (P )}

dU(fS(P )) (11)

Also, every path Q ∈ Pn can be written as fS(P ) for a unique choice of P ∈ Dn and subset
S (namely, let P be the path with all flat steps in Q replaced by valleys, and let S be the
set of valleys in P that are valleys in Q). Thus, if we sum over all paths in Dn on both sides
of (11), we obtain

cVd,d+1(n) =
∑

P∈Dn

dUV (P )(d+ 1)V (P ) =
∑

Q∈Pn

dU(Q) = sd(n).

We remark that Proposition 9 also follows from a result of Chen and Pan [3, eq. (1.15)]
and our discussion in Section 3.3 showing that sd(n) =

d+1
d
sd(n). Also, notice that when d is

a positive integer, we obtain that sd(n) counts the number of ways to construct a Dyck path
from (0, 0) to (2n− 2, 0) where each valley can be painted one of d + 1 colors, and each up
step that does not belong to a valley can be painted one of d colors. Moreover, it is obvious
that

cV−1,0(n) =
∑

P∈Dn

(−1)UV (P )(0)V (P ) = (−1)n−1

14



for every n ≥ 1, since the only Dyck path in Dn with no valleys is the path Un−1Dn−1. Thus,
in the case of d = −1, Proposition 9 implies Proposition 6.

Next, we show that cVa,b(n) can be related to sd(n) even when b 6= a+ 1.

Corollary 10. For every integer n ≥ 1 and all real numbers a, b where a 6= b,

cVa,b(n) = (b− a)n−1sa/(b−a)(n).

Proof.

cVa,b(n) =
∑

P∈Dn

aUV (P )bV (P )

= (b− a)n−1
∑

P∈Dn

(

a

b− a

)UV (P )(
a

b− a
+ 1

)V (P )

= (b− a)n−1cVa/(b−a),a/(b−a)+1(n)

= (b− a)n−1sa/(b−a)(n).

Note that the second equality follows from the fact that UV (P ) + V (P ) = U(P ) = n− 1 for
all P ∈ Dn.

Corollary 10 readily implies that certain families of small Schröder paths and Dyck paths
have the same size. For instance:

Corollary 11. For all integers m,n ≥ 1, both of the following quantities are equal to
mn−1s1/m(n):

(i) the number of small Schröder paths in Pn where each flat step can be painted one of m
colors;

(ii) the number of Dyck paths in Dn where each valley can be painted one of m+ 1 colors.

Proof. From Corollary 10, we obtain that

mn−1s1/m(n) = cV1,m+1(n),

showing (ii). For (i),

mn−1s1/m(n) = mn−1
∑

P∈Pn

(1/m)U(P )1F (P ) =
∑

P∈Pn

mF (P ),

since U(P ) + F (P ) = n− 1 for every P ∈ Pn. This finishes the proof.

We next study another variant of weighted Catalan numbers that, as we shall see, is
equal to cVa,b(n). Given real numbers a and b, define

cKa,b(n) =
∑

P∈Dn

aK(P )bUK(P ).

Then we have the following:
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Proposition 12. For all real numbers a, b and integer n ≥ 1

cVa,b(n) = cKa,b(n).

Proof. Observe that for every Dyck path P ∈ Dn, V (P ) = K(P ) − 1. Also, since U(P ) =
UK(P ) +K(P ) = UV (P ) + V (P ), it follows that UV (P ) = UK(P ) + 1. Hence,

cKa,b(n) =
∑

P∈Dn

aK(P )bUK(P )

=
∑

P∈Dn

aV (P )+1bUV (P )−1

=
a

b
cVb,a(n)

=
a

b
(a− b)n−1sb/(a−b)(n).

Note that the last equality follows from Corollary 10. Next, let d = b
a−b

, then −d− 1 = a
b−a

.
Thus, by Proposition 8 (and Corollary 10 again),

a

b
(a− b)n−1sb/(a−b)(n) =

a

b
(a− b)n−1

(−1)n−1 · b
a−b

a
a−b

sa/(b−a)(n)

= (b− a)n−1sa/(b−a)(n)

= cVa,b(n),

as desired.

We remark that Proposition 12 can also be proven combinatorially. Given a Schröder
tree T ∈ Tn, let f(T ) denote the tree obtained from reflecting T along a vertical line. In
other words, we reverse the left-to-right order of the subtrees of every internal node of the
given tree T . Then Ψ(f(T )) (where Ψ is the tree-to-path mapping described in Definition 1)
would also be a small Schröder path in Pn. Since both Ψ and f are bijective, it follows
that the mapping γ : Pn → Pn where γ(P ) = Ψ(f(Ψ−1(P ))) is also bijective, and so γ
also give a bijection on Dn ⊆ Pn. From there, it is not hard to see that for every P ∈ Dn,
K(P ) = UV (γ(P )) and UK(P ) = V (γ(P )). Hence, it follows that

cKa,b(n) =
∑

P∈Dn

aK(P )bUK(P ) =
∑

P∈Dn

aUV (γ(P ))bV (γ(P )) = cVa,b(n).

We next point out how Propositions 5 and 8 in Section 3 can be alternatively shown
using the connections between sd(n), c

V
a,b(n), and c

K
a,b(n) established above. First, we revisit

Proposition 5 and the sequence s−1/2(n). For every integer n ≥ 2 and k ∈ {0, . . . , n− 1},
define

c(n, k) =
1

n− 1

(

n− 1

k − 1

)(

n− 1

k

)

,

and let c(1, 0) = 1. These are known as the Narayana numbers (A090181 in the OEIS), and
c(n, k) counts the number of Dyck paths in Dn with exactly k peaks.
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c(n, k) k = 0 1 2 3 4 5 · · ·
n = 1 1

2 0 1
3 0 1 1
4 0 1 3 1
5 0 1 6 6 1
6 0 1 10 20 10 1
...

...
...

...
...

...
...

. . .

If we define the generating function

Cd(x) =
∑

n≥1

∑

k≥0

c(n, k)dkxn,

then it is not hard to check that Cd(x) satisfies the functional equation

Cd(x)
2 + (dx− x− 1)Cd(x) + x = 0.

(See, for instance, Stanley [16, Exercise 6.36b] for the details of the derivation.) Solving the
above gives

Cd(x) =
1 + x− dx−

√

(dx− x− 1)2 − 4x

2
.

When d = −1, 1, this specializes to

C−1(x) =
1 + 2x−

√
1 + 4x2

2
, C1(x) =

1−
√
1− 4x

2
.

Obviously, C1(x) is the generating function for the ordinary Catalan numbers, and so
[xn]C1(x) = c(n) for every n ≥ 1. Also notice that C1(−x2) = C−1(x) − x. Putting
things together, we see that, for every n ≥ 2,

2n−1s−1/2(n) = cK−1,1(n) =
∑

P∈Dn

(−1)K(P ) =
n−1
∑

k=0

c(n, k)(−1)k

= [xn]C−1(x) = [xn]C1(−x2)

=











0, if n is odd;

c(n/2), if n ≡ 0 (mod 4);

−c(n/2), if n ≡ 2 (mod 4),

which aligns with Proposition 5. Moreover, the fact that 2n−1s−1/2(n) = cK−1,1(n) also implies
that

2n−1s−1/2(n) =
∑

k even

c(n, k)−
∑

k odd

c(n, k)

for all n ≥ 1. Thus, we see that given a fixed length, the number of Dyck paths with an odd
number of peaks and that with an even number of peaks are either identical, or differ by a
Catalan number. This produces the following two sequences:
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n 1 2 3 4 5 6 7 8 9 10 · · ·
|{P ∈ Dn : K(P ) is even}| 1 0 1 3 7 20 66 217 715 2424 · · ·
|{P ∈ Dn : K(P ) is odd}| 0 1 1 2 7 22 66 212 715 2438 · · ·

These two sequences, with the terms for n = 1 removed, give A071688 and A071684 in
the OEIS, respectively.

Next, we re-consider Proposition 8. Notice that for every real number m 6= 1,

cKm,1(n) =
∑

P∈Dn

mK(P ) = m
∑

P∈Dn

mV (P ) = mcV1,m(n).

Thus, applying Corollary 10 and substituting d = 1
m−1

, we obtain

mcV1,m(n) = m(m− 1)n−1s1/(m−1)(n) =

(

d+ 1

d

)

d−(n−1)sd(n)

Likewise, we also have

cKm,1(n) = (1−m)n−1sm/(1−m)(n) = (−1)n−1d−(n−1)s−d−1(n),

which yields a proof of Proposition 8 for all cases where d 6= 0.
Finally, inspired by David Scambler’s comments in the OEIS, we show how sd(n) counts

families of Dyck paths with certain forbidden peak types. Scambler claimed (in A107841,
slightly paraphrased here) that s2(n) counts the number of Dyck paths from (0, 0) to (2n−
2, 0) with 3 types of up steps U1, U2, U3, one type of down step D, and avoid U1D. Similarly,
he commented (A131763) that s3(n) gives the number of Dyck paths from (0, 0) to (2n −
2, 0) with two types of up steps U1, U2, two types of down steps D1, D2, and avoid U1D1.
Independently, Geffner and Noy [6, Theorem 3] showed that s(n) counts the number of Dyck
paths in Dn with one type of up step U , two types of down steps D1, D2, and avoid UD1.
We show that a generalization of these statements follow readily from our findings above.

Proposition 13. Given integers k, ℓ ≥ 1, let Dk,ℓ(n) denote the number of ways to construct
Dyck paths from (0, 0) to (2n− 2, 0) using k types of up steps U1, . . . , Uk and ℓ types of down
steps D1, . . . , Dℓ, while avoiding peaks of the type U1D1. Then

Dk,ℓ(n) = skℓ−1(n).

for every n ≥ 1.

Proof. Notice that Dk,ℓ(n) can be reinterpreted as the number of Dyck paths where

• each of the K(P ) peaks of P is assigned kℓ − 1 colors (since there are a total of kℓ
types of possible peaks, 1 of which is forbidden);

• each of the UK(P ) up steps not contained in a peak is assigned one of k colors;
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• each of the DK(P ) down steps not contained in a peak is assigned one of ℓ colors.

Hence, we obtain that

Dk,ℓ(n) =
∑

P∈Dn

kUK(P )(kℓ− 1)K(P )ℓDK(P )

=
∑

P∈Dn

(kℓ)UK(P )(kℓ− 1)K(P )

= cKkℓ−1,kℓ(n)

= cVkℓ−1,kℓ(n)

= skℓ−1(n).

Note that the second equality above is due to UK(P ) = DK(P ) for every Dyck path P , and
the last two equalities are due to Propositions 9 and 12, respectively.

Note that the above argument can be easily extended to cases where more than 1 of the
kℓ possible peak types are forbidden. More precisely, one could show that the number of
Dyck paths from (0, 0) to (2n− 2, 0) with k types of up steps, ℓ types of down steps, with p
of the kℓ peak types forbidden, is cKkℓ−p,kℓ(n) = pn−1s(kℓ−p)/p(n).

5 Concluding remarks

In this manuscript, we looked at sd(n), a natural generalization of the small Schröder numbers
that had made cameos in a number of contexts but was never the main focus of study until
now. We also saw that the study of sd(n) led to implications for familiar combinatorial
objects such as Schröder paths and Dyck paths.

We remark that there are many natural combinatorial interpretations of sd(n) that we
have yet to mention. For instance, as we have seen with Schröder trees and small Schröder
paths, any combinatorial interpretation of s(n, k) readily extends to a corresponding set of
objects counted by sd(n) for positive integers d. For another example, it is known [14] that
s(n, k) counts the number of ways to subdivide the regular (n+ 1)-gon into k regions using
non-crossing diagonals. Therefore, sd(n) gives the number of ways to subdivide the regular
(n+ 1)-gon using non-crossing diagonals, with each of the regions colored one of d colors.

Other interpretations of s(n, k) (e.g., in terms of standard Young tableaux [14], and
loopless outerplanar maps [6]) can be extended similarly, and it is possible that sd(n) — or
other generalizations of related integer sequences — can lend new perspectives to solving
combinatorial problems involving these familiar quantities.
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Figure 6: The s2(3) = 10 ways to 2-color subdivisions of a square
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