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Abstract

Following up on results of Aigner, we present some inequalities for Motzkin numbers
Mn. In particular, we prove that the sequence (1/Mn)n≥1 is strictly convex.

1 Introduction

The Motzkin numbers, named after the American mathematician Theodore S. Motzkin
(1908–1970), are defined by

Mn =

⌊n/2⌋
∑

k=0

1

k + 1

(

2k

k

)(

n

2k

)

(n = 0, 1, 2, . . .).
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They satisfy the recurrence relation

Mn =
2n+ 1

n+ 2
Mn−1 +

3(n− 1)

n+ 2
Mn−2 (n ≥ 2). (1)

The generating function is given by

1

2x2

(

1− x−
√
1− 2x− 3x2

)

=
∞
∑

n=0

Mnx
n.

Here are the first few Motzkin numbers (see the sequence A001006 in [3]):

1, 1, 2, 4, 9, 21, 51, 127, 323, 835.

The Motzkin numbers have interesting applications in number theory and geometry, and
they play an important role in various counting problems. For instance, Mn is the number
of paths from (0, 0) to (n, 0) in the integer plane Z×Z which never dip below the x-axis and
use only steps (1, 0), (1, 1) and (1,−1). Donaghey and Shapiro [2] presented a selection of
14 situations where these numbers occur; also see Stanley [4].

This note was inspired by an interesting paper published by Aigner [1] in 1998. He used
tools from linear algebra to prove the inequalities

Mn < 3Mn−1 (n ≥ 1), (2)

M2

n ≤ Mn−1Mn+1 (n ≥ 1), (3)

and the limit relation

lim
n→∞

Mn−1

Mn

=
1

3
.

A combinatorial proof of (3) was given by Sun and Wang [5]. From (3) we conclude that
the sequence (Mn)n≥0 is log-convex.

Here, we present counterparts of (3). In particular, we show that the sequence (1/Mn)n≥1

is strictly convex. This result and (3) lead to the double-inequality

2

1/Mn−1 + 1/Mn+1

< Mn ≤
√

Mn−1Mn+1 (n ≥ 2).

Therefore, we see that if n ≥ 2, then Mn separates the harmonic and geometric means of
Mn−1 and Mn+1.

We introduce the following notation. Let a and b be positive real numbers. The weighted
harmonic and geometric means of a and b are defined by

Ht(a, b) =
1

t/a+ (1− t)/b
and Gt(a, b) = atb1−t (0 ≤ t ≤ 1),
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respectively. For t = 1/2 we obtain the unweighted harmonic and geometric means of a and
b as follows:

H(a, b) =
2ab

a+ b
and G(a, b) =

√
ab.

Moreover, let
Ft(a, b) = tG(a, b) + (1− t)H(a, b) (t ∈ R).

We remark that there is a connection between Ft(a, b) and the so-called Heron means,

Kt(a, b) = tA(a, b) + (1− t)G(a, b),

where A(a, b) = (a+ b)/2 denotes the arithmetic mean of a and b. We have

A(a, b)Ft(a, b) = G(a, b)Kt(a, b).

2 Inequalities

First, we offer lower and upper bounds for Mn in terms of weighted harmonic and geometric
means of Mn−1 and Mn+1.

Theorem 1. Let v, w ∈ (0, 1). The inequalities

Hv(Mn−1,Mn+1) ≤ Mn ≤ Gw(Mn−1,Mn+1) (4)

hold for all n ≥ 2 if and only if v ≥ 5/14 = 0.35714 . . . and w ≤ 1/2.

Proof. We assume that (4) is valid for all n ≥ 2. Then,

Hv(M2,M4) ≤ M3 and M2 ≤ Gw(M1,M3).

This leads to
1

v/2 + (1− v)/9
≤ 4 and 2 ≤ 41−w.

It follows that v ≥ 5/14 and w ≤ 1/2.

Next, let w ≤ 1/2 and λn = Mn−1/Mn. From (3) we obtain λn ≤ λ2 = 1/2 for n ≥ 2. Thus,

Gw(Mn−1,Mn+1) = (λnλn+1)
wMn+1

≥ (λnλn+1)
1/2Mn+1

= G1/2(Mn−1,Mn+1) ≥ Mn.

The left-hand side of (4) is equivalent to

Qn ≤ v,
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where

Qn =
Mn−1(Mn+1 −Mn)

Mn(Mn+1 −Mn−1)
=

λn(1− λn+1)

1− λnλn+1

.

It remains to show that for n ≥ 2,

Qn ≤ 5

14
. (5)

We have Q2 = 1/3 and Q3 = 5/14. Let n ≥ 4. Inequality (5) can be written as

0 ≤ 5

λn

+ 9λn+1 − 14.

Applying (1) gives

1

λn

=
2n+ 1 + 3(n− 1)λn−1

n+ 2
and λn+1 =

n+ 3

2n+ 3 + 3nλn

. (6)

From (3) we conclude that λn ≤ λn−1, so that we get

λn+1 ≥
n+ 3

2n+ 3 + 3nλn−1

. (7)

Using (6) and (7) yields

5

λn

+ 9λn+1 − 14 ≥ 5(2n+ 1 + 3(n− 1)λn−1)

n+ 2
+

9(n+ 3)

2n+ 3 + 3nλn−1

− 14

=
Sn

(n+ 2)(2n+ 3 + 3nλn−1)
,

where
Sn = n2 − 13n− 15 + 9(2n2 − 6n− 5)λn−1 + 45(n2 − n)λ2

n−1.

From (2) we obtain λn−1 > 1/3. Thus,

Sn > n2 − 13n− 15 + 9(2n2 − 6n− 5)
1

3
+ 45(n2 − n)

1

9
= 6(2n2 − 6n− 5) > 0.

This implies that (5) holds. The proof of Theorem 1 is now complete.

Our second result yields sharp bounds for Mn in terms of Ft(Mn−1,Mn+1). The following
companion to (4) is valid.

Theorem 2. Let α, β ∈ R. The inequalities

Fα(Mn−1,Mn+1) ≤ Mn ≤ Fβ(Mn−1,Mn+1) (8)

hold for all n ≥ 2 if and only if

α ≤ 8

3(11
√
2− 12)

= 0.74983 . . . and β ≥ 1.
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Proof. First, we assume that (8) is valid for all n ≥ 2. Then we have

Fα(M2,M4) ≤ M3 and M2 ≤ Fβ(M1,M3),

and hence, √
18α +

36

11
(1− α) ≤ 4 and 2 ≤ 2β +

8

5
(1− β).

Therefore, it follows that

α ≤ 8

3(11
√
2− 12)

and 1 ≤ β.

Applying (3) and the fact that Ft(a, b) is increasing with respect to t we obtain for β ≥ 1
and n ≥ 2,

Mn ≤ F1(Mn−1,Mn+1) ≤ Fβ(Mn−1,Mn+1).

Let

α0 =
8

3(11
√
2− 12)

.

We have to show that for n ≥ 2,

Fα0
(Mn−1,Mn+1) ≤ Mn,

or, equivalently,
α0 ≤ Rn,

where

Rn =
Mn −H(Mn−1,Mn+1)

G(Mn−1,Mn+1)−H(Mn−1,Mn+1)
.

By direct computation we find

R2 = 1, R3 = α0, R4 = 0.932 . . . , R5 = 0.930 . . . , R6 = 0.958 . . . ,

R7 = 0.966 . . . , R8 = 0.974 . . . , R9 = 0.979 . . . , R10 = 0.983 . . . .

Let n ≥ 11. It suffices to prove that Rn > 3/4, or, equivalently,

3G(Mn−1,Mn+1) +H(Mn−1,Mn+1) < 4Mn. (9)

As before, let λn = Mn−1/Mn. Then, (9) can be written as

0 < Un − Vn,

where

Un = 4− 2
( 1

λn

+ λn+1

)−1

and Vn = 3

√

λn
1

λn+1

.
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Using (6) gives

Un = 4− 2
( 1

λn

+
n+ 3

2n+ 3 + 3nλn

)−1

=
2
(

4n+ 6 + 3(n+ 1)λn + 3nλn(1− λn)
)

2n+ 3 + (4n+ 3)λn

and

Vn = 3

√

λn
2n+ 3 + 3nλn

n+ 3
.

Now we have

(U2

n − V 2

n )(n+ 3)
(

2n+ 3 + (4n+ 3)λn

)2

= P1(λn)n
3 + P2(λn)n

2 + P3(λn)n+ P4(λn)
(10)

with

P1(t) = −396t4 − 864t3 − 348t2 + 120t+ 64,

P2(t) = −540t4 − 2340t3 − 1260t2 + 636t+ 384,

P3(t) = −243t4 − 1512t3 − 1503t2 + 810t+ 720,

P4(t) = −243t3 − 378t2 + 189t+ 432.

Since P ′′
j (t) < 0 (j = 1, 2, 3, 4) for t ≥ 0, we conclude that the functions P1, P2, P3, and P4

are concave on [0,∞). It follows that, for t ∈ [0, 0.38],

Pj(t) ≥ mj (j = 1, 2, 3, 4),

where
mj = min{Pj(0), Pj(0.38)}.

We have
m1 = 3.68 . . . , m2 = 304.07 . . . , m3 = 720, m4 = 432.

Thus, it follows that Pj(t) > 0 (j = 1, 2, 3, 4). Since (λn)n≥1 is decreasing, we obtain
λn ≤ λ11 = 0.377 . . .. From (10) we conclude that U2

n − V 2
n > 0, so that Un + Vn > 0 leads

to Un − Vn > 0. This completes the proof of Theorem 2.

Remark 3.

(i) Computer calculations reveal that for n = 4, 5, . . . , 500 the lower bound given in (8)
with α = 8/(33

√
2− 36) is greater than the lower bound in (4) with v = 5/14.

(ii) Aigner’s inequality (3) can be written as

Mn −Mn−1

Mn+1 −Mn

≤ Mn

Mn+1

. (11)
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It is possible to show that the following counterpart of (11) holds.

Theorem 4. For all n ≥ 2 we have

c0
Mn

Mn+1

≤ Mn −Mn−1

Mn+1 −Mn

≤ c1
Mn

Mn+1

with the best possible constant factors c0 = 9/10 and c1 = 1.

This result can be proved by using the same method as in the proof of Theorem 2. So
we omit the details.
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