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Abstract

In this paper, given a finite set of primes Q, we derive asymptotic formulas for
generalized alternating sums of the form

∑

n≤x tQ(n)f(n) and
∑

n≤x tQ(n)
1

f(n) , where

f is a multiplicative arithmetic function, and tQ(n) equals −1 if n is divisible by some
prime q ∈ Q, and 1 otherwise. In particular, these results are applicable to known
functions, such as Euler’s totient function, the sum of divisors function, the divisor
function, and others. In the particular case of Q = {2}, we generalize various results
obtained by Tóth, even improving one of his results proposed as open problem.

1 Introduction

Throughout this paper, we let P denote the set of all prime numbers, and Q = {q1, q2, . . . , qr}
be any finite set of prime numbers. We use the notation qmin := min{qi} and qmax := max{qi}.
The letter p will always stand for a prime number.

Alternating sums appear in various topics of mathematics, including number theory.
For example, Bordellès and Cloitre [1] established asymptotic formulas with error terms for
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alternating sums of the form
∑

n≤x
(−1)n−1 1

g(n)
,

where g belongs to a class of multiplicative functions, including Euler’s totient function ϕ,
the sum-of-divisors function σ and the Dedekind function ψ.

Tóth [11] established some general results for alternating sums of the form

∑

n≤x
(−1)n−1f(n) or

∑

n≤x
(−1)n−1 1

f(n)
,

where f belongs to a broader class of multiplicative arithmetic functions than those consid-
ered by Bordellès and Cloitre [1], extending their results to a whole new kind of multiplicative
functions, such as the divisor function τ , the gcd-sum function P , the square free kernel κ,
the square free numbers µ2 function, the number of abelian groups a(n), the sum-of-unitary-
divisor function σ∗, the unitary-Euler function ϕ∗, the unitary-squarefree kernel κ∗, the
powerful part of a number, and the sum-of-bi-unitary-divisors function.

In the last part of his paper, Tóth proposes a generalization for alternating sums, and
also finds an asymptotic result for the generalized sum

∑

n≤x
tQ(n)σ(n),

where

tQ(n) =

{

1, if q ∤ n for all q ∈ Q;

−1, otherwise,

is defined for a finite set of prime numbers Q, and σ(n) =
∑

d|n d is the sum of divisors
function.

Let

DQ(f, s) :=
∞
∑

n=1

tQ(n)
f(n)

ns
,

be the Dirichlet series for the multiplicative function f , with generalized alternating signs
depending on Q. For example, if Q = {2, 3}, we have

D{2,3}(f, s) =
f(1)

1s
− f(2)

2s
− f(3)

3s
− f(4)

4s
+
f(5)

5s
− f(6)

6s
+
f(7)

7s
+ · · ·

Tóth [11, Prop. 56] proved that

DQ(f, s) = D(f, s)



2
∏

q∈Q

( ∞
∑

v=0

f(qv)

qvs

)−1

− 1



 , (1)
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where D(f, s) is the Dirichlet series associated with the multiplicative arithmetic function
f .

For q ∈ Q, let us consider the formal power series

Sf,q(x) := 1 +
∞
∑

v=1

f(qv)xv,

and its inverse formal series

Sf,q(x) := 1 +
∞
∑

v=1

bv,qx
v.

From (1) we have, by convolution, that
∑

n≤x
tQ(n)f(n) =

∑

d≤x
hf,Q(d)

∑

j≤x/d
f(j),

where

hf,Q(n) =











2bv1,q1 · · · bvr,qr , if n = qv11 · · · qvrr ;

1, if n = 1;

0, otherwise.

From this expression we can derive asymptotic formulas for
∑

n≤x
tQ(n)f(n), (2)

as long as asymptotic formulas are known for
∑

n≤x f(n), and the coefficients bv,q are ade-
quately estimated.

For example, Tóth [11, Teo. 57] proved that

∑

n≤x
tQ(n)σ(n) =

π2

12



2
∏

q∈Q

(

1− 1

q

)(

1− 1

q2

)

− 1



x2 +O(x(log x)2/3). (3)

In this paper, we obtain asymptotic expressions for (2), among whose applications we obtain
the result (3) and others.

2 Main results

Theorem 1. Let f be a multiplicative function and consider the following four conditions

(i) there exists a constant Cf such that
∑

n≤x
f(n) = Cfx

2 +O(xRf (x)),

where 1 ≪ Rf (x) when x→ ∞ and Rf (x) is an increasing function;
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(ii) Sf,qi

(

1
q2i

)

converges for all i;

(iii) the sequence (bv,qi)v≥0 satisfies bv,qi ≪ 1 for all i;

(iv) the sequence (bv,qi)v≥0 satisfies |bv,qi | ≪ (ri)
v with 1 ≤ ri ≤ q2i

qmax
for all i.

Assume that conditions (i) and (ii) hold and that one of the two conditions (iii) or (iv) also
holds. Then

∑

n≤x
tQ(n)f(n) = Cfx

2

(

2

Sf,q1(1/q
2
1) · · ·Sf,qn(1/q2n)

− 1

)

+O(xRf (x)).

Theorem 2. Let f be a multiplicative function, and let us suppose that

(i) there exist constants Df and Ef such that

∑

n≤x

1

f(n)
= Df (log x+ Ef ) +O(x−1R1/f (x)),

where 1 ≪ R1/f (x) = o(x) if x→ ∞ and R1/f (x) is an increasing function;

(ii) the radius of convergence of S1/f,qi(x) is r1/f,qi > 1, for all i;

(iii) the coefficients of bv,qi satisfy bv,qi ≪M v
i if v → +∞, for all i and where Mi <

qmin

qi
.

Then

∑

n≤x
tQ(n)

1

f(n)

= Df

(

(

2
∏

i S1/f,qi(1)
− 1

)

(log x+ Ef ) +
2

∏

i S1/f,qi(1)
·

r
∑

i=1

log(qi)S
′
1/f,qi

(1)

S1/f,qi(1)

)

+O(T1/f,Q(x)),

where

T1/f,Q(x) =










x−1R1/f (x), if max(qiMi) < 1;

x−1R1/f (x)(log x)
r, if max(qiMi) = 1;

(log x)r−1max{log x · xlogMmax/ log qmin , xlog(max(qiMi))/ log qmin · x−1R1/f (x)}, if max(qiMi) > 1.
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3 Proofs of the main results

3.1 Proof of Theorem 1

Proof. Under the hypothesis of the theorem, we have that

∑

n≤x
tQ(n)f(n) =

∑

d≤x
hf,Q(d)

∑

j≤x/d
f(j) =

∑

d≤x
hf,Q(d)

(

Cf
x2

d2
+O

(x

d
Rf (x/d)

)

)

= Cfx
2 ·
∑

d≤x

hf,Q(d)

d2
+O

(

xRf (x)
∑

d≤x

|hf,Q(d)|
d

)

.

On one hand, for some δ′ < 1,

∑

d≤x

|hf,Q(d)|
d

≤
∑

q
v1
1 ···qvrr ≤x

2|bv1,q1 · · · bvr,qr |
qv11 · · · qvrr

+ 1

≪
∑

q
v1
1 ···qvrr ≤x

rv11 · · · rvrr
qv11 · · · qvrr

≪
∑

v1+···+vr≤ log x

log qmin

(δ′)v1+···+vr

≪
∑

n≤ log x

log qmin

(δ′)n
(

n+ r − 1

r − 1

)

=
∑

n≤ log x

log qmin

(δ′)n
(n+ r − 1) · · · (n+ 2) · (n+ 1)

(r − 1)!

≪
∑

n≤ log x

log qmin

(δ′)n(n+ r − 1)r−1 ≪ 1.

On the other hand, setting s = 2 in (1),

∑

d≤x

|hf,Q(d)|
d2

=
∞
∑

d=1

|hf,Q(d)|
d2

−
∑

d>x

|hf,Q(d)|
d2

=
2

Sf,q1(1/q
2
1) · · ·Sf,qr(1/q2r)

− 1,

and

x2
∑

d>x

|hf,Q(d)|
d2

≪ x2
∑

q
v1
1 ···qvrr >x

bv1,q1 · · · bvr,qr
q2v11 · · · q2vrr

.

Case (iii) of Theorem 1:

x2
∑

d>x

|hf,Q(d)|
d2

≪ x2
∑

d>x

1

d2
≪ x≪ xRf (x).

Case (iv) of Theorem 1:
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Let us define δ := maxi

(

ri
q2i

)

< 1
qmax

. Then

x2
∑

d>x

|hf,Q(d)|
d2

≪ x2
∑

v1+···+vr> log x

log qmax

(

r1
q21

)v1

· · ·
(

rr
q2r

)vr

≪ x2
∑

v1+···+vr> log x

log qmax

(δ)v1+···+vr

≪ x2
∑

n> log x

log qmax

δnnr−1 ≪ x2δ
log x

log qmax (log x)r−1 = x2+
log δ

log qmax (log x)r−1 ≪ xRf (x).

3.2 Proof of Theorem 2

Proof. From the hypothesis of the theorem, we have that

∑

n≤x
tQ(n)

1

f(n)
=
∑

d≤x
h1/f,Q(d)

∑

j≤x/d

1

f(j)

=
∑

d≤x
h1/f,Q(d)

(

Df

(

log
x

d
+ Ef

)

+O

(

(x

d

)−1

R1/f (x/d)

))

= Df (log x+ Ef )
∑

d≤x
h1/f,Q(d)−Df

∑

d≤x
h1/f,Q(d) log d+O

(

x−1R1/f (x) ·
∑

d≤x
d|h1/f,Q(d)|

)

= Df (log x+ Ef )
∞
∑

d=1

h1/f,Q(d) +O

(

log x
∑

d>x

|h1/f,Q(d)|
)

−Df

∞
∑

d=1

h1/f,Q(d) log d+O

(

∑

d>x

|h1/f,Q(d)| log d
)

+O

(

x−1R1/f (x)
∑

d≤x
d · |h1/f,Q(d)|

)

.

In particular, by (1),

∞
∑

d=1

h1/f,Q(d)

ds
=

2

S1/f,q1(1/q
s
1) · · ·S1/f,qr(1/q

s
r)

− 1,

then we see that ∞
∑

d=1

h1/f,Q(d) =
2

S1/f,q1(1) · · ·S1/f,qr(1)
− 1,

and

∞
∑

d=1

h1/f,Q(d) log d = −2 ·
(

log q1 · S ′
1/f,q1

(1)

S2
1/f,q1

(1) · · ·S1/f,qr(1)
+ · · ·+

log qr · S ′
1/f,qr

(1)

S1/f,q1(1) · · ·S2
1/f,qr

(1)

)

.
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We also have that

∑

d>x

|h1/f,Q(d)| ≤ 1 +
∑

q
v1
1 ···qvrr >x

2|bv1,q1 · · · bvr ,qr | ≪
∑

q
v1
1 ···qvrr >x

M v1
1 · · ·M vr

r ≪
∑

q
v1
1 ···qvrr >x

M v1+···+vr
max

≪
∑

v1+···+vr> log x

log qmax

M v1+···+vr
max ≪

∑

n> log x

log qmax

Mn
max(n+ r − 1)r−1 ≪

(

log x

log qmax

)r−1

M
log x

log qmax
max

≪ (log x)r−1x
logMmax
log qmax .

Similarly,

∑

d>x

|h1/f,Q(d)| log d≪
∑

q
v1
1 ···qvrr >x

|bv1,q1 · · · bvr ,qr |(v1 log q1 + · · ·+ vr log qr)

≪
∑

q
v1
1 ···qvrr >x

(Mmax)
v1+···+vr log qmax · (v1 + · · ·+ vr) ≪

∑

n> log x

log qmax

(Mmax)
n(n+ r − 1)r−1 · n

≪
∑

n> log x

log qmax

(Mmax)
nnr ≪ (log x)rxlogMmax/ log qmax .

On the other hand,

∑

d≤x
d|h1/f,Q(d)| ≪

∑

q
v1
1 ···qvrr ≤x

qv11 · · · qvrr M v1
1 · · ·M vr

r =
∑

q
v1
1 ···qvrr ≤x

(q1M1)
v1 · · · (qrMr)

vr

≪
∑

v1+···+vr≤ log x

log qmin

(max(qiMi))
v1+···+vr ≪

∑

n≤ log x

log qmin

(max(qiMi))
n · nr−1

≪











1, if max(qiMi) < 1;

(log x)r, if max(qiMi) = 1;

xlogmax(qiMi)/ log qmin · (log x)r−1, if max(qiMi) > 1.

Case 1: If max(qiMi) < 1, then

(log x)r · xlogMmax/ log qmax ≪ x−1R1/f (x)

⇔ (log x)rx1+logMmax/ log qmax ≪ R1/f (x),

since qmaxMmax < 1, which implies that log qmax + logMmax < 0.

Case 2: If max(qiMi) = 1, then

(log x)r · xlogMmax/ log qmax ≪ (log x)rx−1R1/f (x)

⇔ x1+logMmax/ log qmax ≪ R1/f (x).

7



Case 3: If max(qiMi) > 1,

(log x)rxlogMmax/ log qmax ≪ x−1R1/f (x)x
logmax(qiMi)

log qmin (log x)r−1

⇔ (log x) · x1+
logMmax
log qmax

− logmax(qiMi)

log qmin ≪ R1/f (x).

Since all three cases have been considered, the proof of Theorem 2 is complete.

4 Applications

For the applications to various multiplicative functions shown in this section, it is sufficient
to verify that conditions (i), (ii), (iii) and (iv) of Theorems 1 and 2 hold.

4.1 Euler’s totient function ϕ(n)

Let us consider Euler’s totient function ϕ(n) = n
∏

p|n

(

1− 1
p

)

.

Theorem 3.

∑

n≤x
tQ(n)ϕ(n) =

3

π2
x2





2
∏

q∈Q

(

1 + 1
q

) − 1



+O
(

x(log x)2/3(log log x)4/3
)

, (4)

and

∑

n≤x
tQ(n)

1

ϕ(n)
= A

(

(

2
∏

q∈Q

(q − 1)2

q2 − q + 1
− 1
)

(log x+ γ −B)

+ 2
∏

q∈Q

(q − 1)2

q2 − q + 1
·
∑

q∈Q

q2 log q

(q − 1)(q2 − q + 1)

)

+O(R1/ϕ(x)),

(5)

where R1/ϕ(x) = x−1(log x)2/3 if 2 6∈Q, and R1/ϕ(x) = x−1(log x)2/3+r if 2∈Q, γ is Euler’s
constant, and constants A and B are defined by

A =
ζ(2)ζ(3)

ζ(6)
, B =

∑

p∈P

log p

p2 − p+ 1
.

Proof. Concerning (4), we know from Walfisz [12, p. 144] that

∑

n≤x
ϕ(n) =

3

π2
x2 +O(x(log x)2/3(log log x)4/3).
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Then we have Rϕ(x) = (log x)2/3(log log x)4/3, so condition (i) of Theorem 1 is satisfied.
On the other hand, we can see that

Sf,q(x) = 1 +
∞
∑

v=1

ϕ(qv)xv = 1 +
∞
∑

v=1

(qv − qv−1)xv

= 1 + (1− 1

q
)

(

qx

1− qx

)

=
1− x

1− qx
, |x| < 1/q,

and condition (ii) of Theorem 1 is satisfied.
Then we conclude that

Sϕ,q(x) =
1− qx

1− x
= 1 +

(1− q)x

(1− x)
= 1 + (1− q)x

∞
∑

v=0

xv (|x| < 1),

so bv,q = (1− q) ≪ 1, and condition (iii) of Theorem 1 is satisfied. Furthermore, we see that

Sϕ,q(1/q
2) = 1−1/q2

1−q·1/q2 = q+1
q
.

Concerning (5), we know from Landau [2, Thm. 1.1] and Sitaramachandraro [4] that

∑

n≤x

1

ϕ(n)
= A(log x+ γ − B) +O(x−1(log x)2/3).

Then we have that R1/ϕ(x) = (log x)2/3, impliying that condition (i) of Theorem 2 is satisfied.
On the other hand, we see that

S1/ϕ,q(x) = 1 +
∞
∑

v=1

1

ϕ(qv)
xv = 1 +

∞
∑

v=1

xv

(qv − qv−1)

= 1 +
q

(q − 1)

x

(q − x)
=

x+ q(q − 1)

(q − 1)(q − x)
(|x| < q),

so condition (ii) of Theorem 2 is satisfied.
Finally,

S1/ϕ,q(x) = (q − 1)

(

− 1 +
q2

x+ q(q − 1)

)

= (q − 1)
(

− 1 +
q

q − 1

∞
∑

v=0

(−1)v

qv(q − 1)v
xv
)

(|x| < q(q − 1)),

so bv,q = (−1)vq
qv(q−1)v(q−1)

≪
(

1
q(q−1)

)v

, having that Mq = 1
q(q−1)

< qmin

q
, and condition (iii) of

Theorem 2 is satisfied with max(Miqi) = 1/(qmin − 1) = 1 if qmin = 2, and max(Miqi) < 1 if
qmin > 2. Furthermore, we see that

S1/ϕ,q(1) =
q2 − q + 1

(q − 1)2
and S ′

1/ϕ,q(1) =
q2

(q − 1)3
.
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4.2 Sum of divisors function

The sum of divisors functions is defined by σ(n) =
∑

d|n d.

Theorem 4.

∑

n≤x
tQ(n)σ(n) =

π2

12
x2

(

2
∏

q∈Q

(q − 1)2(q + 1)

q3
− 1

)

+O
(

x(log x)2/3
)

, (6)

and

∑

n≤x
tQ(n)

1

σ(n)
= E

(

( 2
∏

iKqi

− 1
)

(log x+ γ + F )

+
2

∏

iKqi

·
r
∑

i=1

log qi ·K ′
qi

Kqi

)

+O(x−1(log x)2/3+r(log log x)4/3),

(7)

where γ is Euler’s constant, the constants Kq and K
′
q are defined by

Kq = 1 + (q − 1)
∞
∑

v=1

1

qv+1 − 1
and K ′

q = (q − 1)
∞
∑

v=1

v

qv+1 − 1
,

(as a particular case, we have that K2
.
= 1.606695 is the Erdős-Borwein constant, which can

be seen in the sequence A065442 of the Sloane’s On-line Encyclopedia of Integer Sequences
(OEIS) [8]), and the constants E and F are defined by

E =
∏

p∈P
α(p), F =

∑

p∈P

(p− 1)2β(p) log p

pα(p)
,

with

α(p) = 1− (p− 1)2

p

∞
∑

j=1

1

(pj − 1)(pj+1 − 1)
,

β(p) =
∞
∑

j=1

j

(pj − 1)(pj+1 − 1)
.

Proof. Concerning (6), we know from Walfisz [12, p. 99] that

∑

n≤x
σ(n) =

π2

12
x2 +O(x(log x)2/3).

Then we have that Rϕ(x) = (log x)2/3, so condition (i) of Theorem 1 is satisfied.
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On the other hand, we have that

Sσ,q(x) = 1 +
∞
∑

v=1

σ(qv)xv = 1 +
∞
∑

v=1

qv+1 − 1

q − 1
xv

= 1 +
1

q − 1

(

q2x

1− qx
− x

1− x

)

=
1

(1− qx)(1− x)
, |x| < 1/q,

so condition (ii) of Theorem 1 is satisfied.
Then we see that

Sσ,q(x) = (1− qx)(1− x) = 1− (q + 1)x+ qx2 (x ∈ R),

so b0,q = 1, b1,q = −(q + 1), b2,q = q and bv,q = 0 if v ≥ 3, and condition (iii) of Theorem 1 is

satisfied. Furthermore, we see that Sσ,q(1/q
2) = 1

(1−1/q)(1−1/q2)
= q3

(q−1)2(q+1)
.

Concerning (7), we know from Sita Ramaiah and Suryanarayana [6, Cor. 4.1] that

∑

n≤x

1

σ(n)
= E(log x+ γ + F ) +O(x−1(log x)2/3(log log x)4/3).

Then we conclude that R1/ϕ(x) = (log x)2/3(log log x)4/3, so condition (i) of Theorem 2 is
satisfied.

On the other hand,

S1/σ,q(x) = 1 +
∞
∑

v=1

1

σ(qv)
xv = 1 +

∞
∑

v=1

(q − 1)

qv+1 − 1
xv, (|x| < q),

so condition (ii) of Theorem 2 is satisfied.

The coefficients
(

q−1
qv+1−1

)

of this last power series form a log-convex sequence. Indeed,

(

q − 1

qv+1 − 1

)2

≤
(

q − 1

qv − 1

)

·
(

q − 1

qv+2 − 1

)

, v ≥ 0

⇔ (qv − 1)(qv+2 − 1) ≤ (qv+1 − 1)2 ⇔ 2qv+1 ≤ qv + qv+2 ⇔ 2q ≤ 1 + q2.

By Kaluza’s theorem (if a power series
∑∞

v=0 av satisfies the conditions av > 0 and
a2v ≤ av−1av+1(v ≥ 1), then the coefficients of its reciprocal power series

∑

v≥0 bv satisfy

−av/a20 ≤ bv ≤ 0, v ≥ 1) [11, Lem. 8], we have that − q−1
qv+1−1

≤ bv,q ≤ 0, and therefore,

bv,q ≪
(

1
q

)v

. We conclude that Mi =
1
qi
< qmin

qi
, so condition (iii) of Theorem 2 is satisfied

with max(qiMi) = 1.
Furthermore, we see that

S1/σ,q(1) = Kq and S ′
1/σ,q(1) = K ′

q.
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4.3 Unitary divisor function

A natural number m is a unitary divisor of a number n if m is a divisor of n, and m and n/m
are coprime. Let us define the arithmetic function σ∗(n) as the sum of the unitary divisors
of n (analogous to the sum of divisors function).

We have that σ∗ is multiplicative and σ∗(pv) = pv + 1.

Theorem 5. If qmin ≥ q
2/3
max (in particular, if Q consists of a single prime), then

∑

n≤x
tQ(n)σ

∗(n) =
π2

12ζ(3)
x2



2
∏

q∈Q

(q2 − 1)

(q2 + q + 1)
− 1



+O
(

x(log x)5/3
)

, (8)

and

∑

n≤x
tQ(n)

1

σ∗(n)
= E∗

Q log x+ F ∗
Q +O(x−1(log x)5/3+r(log log x)4/3) (9)

for some constant F ∗
Q, and for E∗

Q, the latter being defined by

E∗
Q = B∗

(

2
∏

q∈QRq

− 1

)

with B∗ =
∏

p

(

Rp ·
(

1− 1

p

))

and Rq := 1+
∞
∑

v=1

1

qv + 1
.

Proof. We first prove (8). We know from Sitaramachandrarao and Suryanarayana [3, Eq.
1.4] that

∑

n≤x
σ∗(n) =

π2

12ζ(3)
x2 +O(x(log x)5/3),

so Rσ∗(x) = (log x)5/3, and condition (i) of Theorem 1 is satisfied.
Similarly, we have that

Sσ∗,q(x) = 1 +
∞
∑

v=1

σ∗(qv)xv = 1 +
∞
∑

v=1

(qv + 1)xv =
1− qx2

(1− qx)(1− x)

for |x| < 1/q, so condition (ii) of Theorem 1 is satisfied.
We conclude that the reciprocal of the power series is given by

Sσ∗,q(x) =
1− (q + 1)x+ qx2

1− qx2
= −1 +

2− (q + 1)x

1− qx2

= −1 +

(

1 + 1/2(q1/2 + q−1/2)

1 +
√
qx

+
1− 1/2(q1/2 + q−1/2)

1−√
qx

)

= −1 +
(

1 + 1/2(q1/2 + q−1/2)
)

∞
∑

v=0

(−1)v
√
qvxv +

(

1− 1/2(q1/2 + q−1/2)
)

∞
∑

v=0

√
qvxv,

12



with |x| < 1√
q
. Then

bv,q =
(

1 + 1/2(q1/2 + q−1/2)
)

(−1)v
√
qv +

(

1− 1/2(q1/2 + q−1/2)
)√

qv ≪ √
qv.

We see that ri = q0.5i and ri ≤ q2i /qmax, so condition (iv) of Theorem 2 is satisfied. Further-
more, we see that

Sσ∗,q(
1

q2
) =

1− 1/q3

(1− 1/q)(1− 1/q2)
=
q2 + q + 1

q2 − 1
.

Now, we prove (9). We know from Sita Ramaiah and Suryanarayana [7, p. 1352] that

∑

n≤x

1

σ∗(n)
= B∗ log x+D∗ +O(x−1(log x)5/3(log log x)4/3).

Then we have R1/σ∗ = (log x)5/3(log log x)4/3, so condition (i) of Theorem 2 is satisfied.
On the other hand,

S1/σ∗,q(x) = 1 +
∞
∑

v=1

1

σ∗(qv)
xv = 1 +

∞
∑

v=1

1

qv + 1
xv (|x| < q),

so condition (ii) of Theorem 2 is satisfied.
Let us choose an := 1

qn+1
, if n ≥ 1, and a0 = 1, as the coefficients for this formal power

series. We also define bn as the coefficients of the associated reciprocal series. Then

anbn+1 =
n−1
∑

k=1

bk(an+1an−k − anan+1−k) + bn(an+1 − ana1) (n ≥ 2),

1

qn + 1
bn+1 =

n−1
∑

k=1

bk ·
(

1

qn+1 + 1
· 1

qn−k + 1
− 1

qn + 1
· 1

qn+1−k + 1

)

+ bn

(

1

qn+1 + 1
− 1

qn + 1

1

q + 1

)

=
n−1
∑

k=1

bk
((qn + 1)(qn+1−k + 1)− (qn+1 + 1)(qn−k + 1))

(qn+1 + 1)(qn−k + 1)(qn + 1)(qn+1−k + 1)
+ bn

(qn + 1)(q + 1)− (qn+1 + 1)

(qn+1 + 1)(qn + 1)(q + 1)
.

Then

bn+1 =
qn(q − 1)

qn+1 + 1
·
n−1
∑

k=1

bk(q
−k − 1)

(qn−k + 1)(qn+1−k + 1)
+

bn
q + 1

· (qn + q)

(qn+1 + 1)

=
(q − 1)qn

qn+1 + 1
·
n−1
∑

k=1

bk
qk − q2k

(qn + qk)(qn+1 + qk)
+

bn
q + 1

· (qn + q)

(qn+1 + 1)
.

(10)
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Let us suppose that |bi| ≤ C
qi

for some constant C and for all i = 0, 1, 2, . . . , n. We prove by

induction that |bn+1| ≤ C
qn+1 . Indeed, we have that

|bn+1| ≤ C ·
(

(q − 1)qn

qn+1 + 1
·
n−1
∑

k=1

qk

(qk + qn)2
+

qn + q

(q + 1) · qn · (qn+1 + 1)

)

. (11)

Let us define the function f(n) := qn+1·(qn+q)
(q+1)·qn·(qn+1+1)

= qn+1+q2

(q+1)(qn+1+1)
→ 1

q+1
if n→ ∞.

Furthermore, f(n) = 1
q+1

(

1 + q2−1
qn+1+1

)

is an increasing function on n, therefore f(n) ≤
1.01
q+1

for n large enough.

Similarly, we define the function g(n) := (q−1)qnqn+1

qn+1+1
·∑n−1

k=1
qk

(qk+qn)2
. We have that

g(n) =
(q − 1)q2n+1

q2n+1 + qn
·
n−1
∑

k=1

qk

(qn/2 + qk−n/2)2
=

q − 1

1 + q−1−n ·
n−1
∑

k=1

1

(q(n−k)/2 + q−(n−k)/2)2

=
1

4

(q − 1)

(1 + q−1−n)
·
n−1
∑

k=1

1

cosh2(n−k
2

log q)
=

(q − 1)

4(1 + q−1−n)
·
n−1
∑

j=1

1

cosh2(j log q/2)

≤ (q − 1)
∞
∑

j=1

1

(ej log q/2 + e−j log q/2)2
= (q − 1) ·

∞
∑

j=1

1

(qj/2 + q−j/2)2

= (q − 1)
∞
∑

j=1

q−j

(1 + q−j)2
≤ (q − 1)

∞
∑

j=1

q−j(1− q−j + q−2j)2

= (x−1 − 1)
∞
∑

j=1

xj · (1− xj + x2j)2,

where we set x := q−1. We have that

g(n) ≤ (q − 1) ·
∞
∑

j=1

(xj − 2x2j + 3x3j − 2x4j + x5j)

= (q − 1)

(

x

1− x
− 2x2

1− x2
+

3x3

1− x3
− 2x4

1− x4
+

x5

1− x5

)

=
q9 + q8 + 5q7 + 5q6 + 7q5 + 7q4 + 8q3 + 4q2 + 3q + 1

(q4 + q3 + q2 + q + 1)(q2 + q + 1)(q2 + 1)(q + 1)
=: s(q).

Continuing with (10), we have that, for all n sufficiently large,

|bn+1| ≤
C

qn+1

(

s(q) +
1.01

q + 1

)

≤ C

qn+1
,

since s(q) + 1.01/(q + 1) < 1 for all primes q. Indeed, the real function s(x) + 1.01/(x + 1)
decreases in the interval [2, δ], for some δ, and increases in [δ,∞), but it is always less than
1. Then condition condition (iii) of Theorem 2 is satisfied with Mi =

1
qi
.
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The result (9) improves the result (51) by Tóth [11], thus solving open problem 41 of
that publication.

4.4 Dedekind ψ function

Recall that the Dedekind function ψ(n) is defined as ψ(n) = n
∏

p|n
(1 +

1

p
).

Theorem 6. We have that

∑

n≤x
tQ(n)ψ(n) =

15

2π2
x2

(

2
∏

q∈Q

(

q(q − 1)

q2 + 1

)

− 1

)

+O(x(log x)2/3) (12)

and

∑

n≤x
tQ(n)

1

ψ(n)
= C

(

(log x+ γ +D) ·
(

2
∏

q∈Q

q2 − 1

q2 + q − 1
− 1

)

+ 2
∏

q∈Q

q2 − 1

q2 + q − 1
·
∑

q∈Q

q2 log q

(q − 1)(q2 + q − 1)

)

+O(x−1(log x)2/3(log log x)4/3),

(13)

where

C =
∏

p

(

1− 1

p(p+ 1)

)

and D =
∑

p

log p

p2 + p− 1
.

(The constant C
.
= 0.704442 is sometimes called the carefree constant, and its digits form

the sequence A065463 in OEIS [8].)

Proof. The proof of (12) is quite similar to that of (4). We know from Walfisz [12, p. 100]
that

∑

n≤x
ψ(n) =

15

2π2
x2 +O(x(log x)2/3),

and we obtain that

Sψ,q(x) := 1 +
∞
∑

v=1

ψ(qv)xv =
1 + x

1− qx
(|x| < 1

q
),

thus concluding that

Sψ,q(x) =
1− qx

1 + x
= 1 + (q + 1)x

∞
∑

v=1

(−1)vxv.

Therefore, bv,q = (−1)v(q + 1) ≪ 1.
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The proof of (13) is quite similar to that of (5). We know from Sita Ramaiah and
Suryanarayana [7, Cor. 4.2] that

∑

n≤x

1

ψ(n)
= C(log x+ γ +D) +O(x−1(log x)2/3(log log x)4/3).

and, for the reciprocal power series, we obtain that

S1/ψ,q(x) = 1 +
∞
∑

v=1

1

ψ(qv)
xv =

q2 + q − x

(q + 1)(q − x)
,

and

S1/ψ,q(x) =
(q + 1)(q − x)

q2 + q − x
= 1− q

∞
∑

v=1

(
1

q2 + q
)vxv.

Then we have that bv,q = −q
(

1
q2+q

)v

and Mi = 1/(q2i + qi).

4.5 Euler’s unitary function

We now consider an analogue of the Euler totient function, namely the multiplicative function
ϕ∗ defined on the prime powers pv by ϕ∗(pv) = pv − 1.

Theorem 7. If qmin ≥ q
2/3
max, we have that

∑

n≤x
tQ(n)ϕ

∗(n) =
C

2
x2

(

2
∏

q∈Q

(

q2 − 1

q2 + q − 1

)

− 1

)

+O(x(log x)5/3(log log x)4/3), (14)

where C is defined as in Theorem 6.

Proof. The proof is quite similar to that of (8). We know from Sitaramachandrarao and
Suryanarayana [3] that

∑

n≤x
ϕ∗(n) =

C

2
x2 +O(x(log x)5/3(log log x)4/3),

and we obtain that

Sϕ∗,q(x) = 1 +
∞
∑

v=1

ϕ∗(qv)xv =
1− 2x+ qx2

(1− qx)(1− x)

thus concluding that

Sϕ∗,q(x) =
(1− qx)(1− x)

qx2 − 2x+ 1
= 1 +

√
q − 1

2
i

(

− 1

ω

∞
∑

v=0

(x/ω)v+1 +
1

ω

∞
∑

v=0

(x/ω)v+1

)

,

with ω = 1
q
· (1 + i

√
q − 1). Consequently, bv,q = −

√
q−1
2
i(− 1

ω
ω−v − 1

ω
ω−v) ≪ (q1/2)v.
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Note: Knowing, from [5], that for certain constants L∗ and M∗,

∑

n≤x

1

ϕ∗(n)
= L∗ log x+M∗ +O(x−1(log x)5/3),

the author conjectures that a general result can be established for

∑

n≤x
tQ(n)

1

ϕ∗(n)

by proceeding in a manner similar to the one used in the proof of (9).
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