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Abstract

We apply the Lie bracket approach to characterize the semi-derivations on the posi-

tive integers. The approach is motivated by the Stroock-Lie bracket identity commonly

used in Malliavin calculus.

1 Introduction

The Malliavin derivative D, the Skorohod integral δ, and the associated Malliavin calculus
are powerful tools for the analysis of stochastic processes. The Malliavin calculus, named
after P. Malliavin, is also called the stochastic calculus of variations [8, p. VII, p. 1]. The
definition of the Malliavin derivative and the Skorohod integral can be found, for example,
in [2, p. 25], [3, pp. 20, 27], and [10, pp. 25, 40], respectively. The Stroock-Lie bracket type
identity [D, δ] = Dδ − δD = I is a common notion in the Malliavin calculus [6, p. 355],
which is also referred to as the fundamental theorem of calculus [3, Thm. 3.18, p. 37]. The
Malliavin derivative and the Skorohod integral (the adjoint operator) act in the space of
random processes, which are treated as functions of a Gaussian process.

On the one hand, many random structures satisfy the functional Gaussian approximation
[9]. On the other hand, the Lie bracket is a powerful tool in the study of differential equations,
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in particular, quantum stochastic calculus [11]. This motivated us to apply the Lie bracket
in a totally different environment. More exactly, we treat D and δ as operators acting on
integer sequences or dynamical systems on the natural numbers N. Following Barbeau [1],
Ufnarovski and Åhlander [14], and Kovič [7], we study a partial number derivative operator
DA. The operator is introduced and characterized as a solution to the modified Stroock-Lie
bracket type identity. The Barbeau arithmetic derivative D is then characterized as the
dynamics on the positive integers, which satisfies the Stroock-Lie bracket identity [D, ℓ] = I,
and which holds for all linear functions ℓ = ℓp = pn, where p is a prime number. Moreover,
the Stroock-Lie bracket characterization is illustrated by examples on several commutative
rings without zero divisors. Finally, arithmetic type differential equations driven by DA are
briefly analyzed.

2 Lie bracket analysis of linear functions of positive

integers

Definition 1. For two functions F,U : Z+ → Z+, we define the Lie bracket or the commu-
tator [F,U ] by

[F,U ] = F ◦ U − U ◦ F, where F ◦ U(n) = F (U(n)).

Hence [F,U ](n) = F (U(n))− U(F (n)).

Let L = {ℓx : ℓx(n) = nx, n ∈ Z+} denote the set of linear functions on Z+. Notice
that L is a commutative semiring with unity ℓ1 = I and zero ℓ0 = 0 with respect to the
multiplication and addition operations. Then ℓx◦ℓy = ℓxy, ℓx+ℓy = ℓx+y, ℓx◦ℓ1 = ℓ1◦ℓx = ℓx,
and ℓx + ℓ0 = ℓ0 + ℓx = ℓx. By construction, the semiring L is isomorphic to the semiring
(Z+,+, ·) of non-negative integers.

Definition 2. Consider D : Z+ → Z+ and define the Lie bracket linearity set of D by

WD = {x : there exists y = yx such that [D, ℓx] = ℓy}. (1)

Lemma 3. WD is a multiplicative semigroup in (Z+, ·) that includes 1.

Proof. Let x, z ∈ WD. By the Lie bracket definition and algebraic manipulations,

[D, ℓxz](n) = D ◦ ℓxz(n)− ℓxz ◦D(n) = [D, ℓx](zn) + ℓx ◦ [D, ℓz](n).

Now we apply to the last line, first, the definition of WD and, then, the semiring properties
of linear functions. This leads to [D, ℓxz](n) = ℓyx ◦ ℓz(n) + ℓx ◦ ℓyz(n) = ℓyxz+xyz(n).

Lemma 4. The following statements are equivalent:

(i) D satisfies the Leibnitz rule D(mn) = mD(n) + nD(m);
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(ii) D(1) = 0 and WD = Z+.

Moreover, [D, ℓm] = ℓD(m).

Proof. (i) =⇒ (ii) follows by direct calculations.

(ii) =⇒ (i): Fix m. Then, for any n ∈ Z+, we have

ymn = ℓym(n) = [D, ℓm](n) = D ◦ ℓm(n)− ℓm ◦D(n) = D(mn)−mD(n).

Finally, take n = 1. Then ym = D(m) − mD(1) = D(m). Therefore, [D, ℓm] = ℓD(m) and
D(mn) = mD(n) + nD(m), proving the lemma.

Remark 5. Let x be a linear function lx, and let the function composition ◦ be replaced by
the usual multiplication. Then the main Lie bracket characteristic becomes the Pincherle
derivative f ′ = f ·x−x ·f = [f, lx], as introduced in [12]. Tempesta [13] applied the Pincherle
derivative and the associated Lie bracket approach in quantum calculus.

We now apply Lemmas 3 and 4 to characterize the arithmetic type derivative DA as
the dynamics on the positive integers, which satisfies the Stroock-Lie bracket type identity
[DA, ℓx] = yxI.

Let P denote the set of all primes. We say that sets A,B are orthogonal, if for any x ∈ A
and y ∈ B, we have gcd(x, y) = 1, i.e., the sets A and B do not have any common divisors.
Notice that disjoint subsets in P are orthogonal.

Lemma 6. Consider the nonempty subset of primes A ⊂ P. Let DA : Z+ → Z+ be such
that DA(1) = 0. The following properties are equivalent:

(i) [DA, ℓp] = I, for p ∈ A, and [DA, ℓp] = 0, for p ∈ Ā = P − A;

(ii) DA =
∑

p∈A Dp, where Dp(n) = jpj−1m, for n = pjm with m ⊥ p. Moreover, DA

satisfies the Leibnitz rule and has a representation

DA(n) = n
∑

p∈A

np

p
, where n =

∏

p∈P

pnp . (2)

Proof. (ii) =⇒ (i) follows by direct calculations.

(i) =⇒ (ii): Consider the linearity set WDA
. Notice that {0, 1} ⊆ WDA

and the smallest
multiplicative semigroup, containing all primes, is Z+ −{0, 1}. By Lemma 3, it then follows
that WDA

= Z+. Thus, by Lemma 4, the function D satisfies the Leibnitz rule. Moreover,
DA(p) = 1, for p ∈ A, and DA(p) = 0, for p 6∈ A. Now we apply the argument from
Ufnarovski and Åhlander [14]. Consider the log transform of DA defined by LA(n) = DA/n.
By the Leibnitz rule, we see that LA is a homomorphism of the multiplicative semigroup to
the additive semigroup on Z+, which shows that

LA(n) =
∑

p∈P

np

p
DA(p) =

∑

p∈A

np

p
, where n =

∏

p∈P

pnp .
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This implies representation (2). Take A = {p}. We then derive Dp(p
jm) = jpj−1m, for

m ⊥ p. This proves the representation DA =
∑

p∈A Dp.

Corollary 7. Let D : N → N such that D(1) = 0. Assume that for each linear function
ℓ = ℓp = pn, where p is a fixed prime, the following Stroock-Lie bracket identity

[D, ℓ] = I, i.e., Dℓ(n) = n+ ℓD(n), (3)

holds for all n ∈ N. Then D is an arithmetic derivative, i.e.,

D (n) = n′ = n
k∑

i=1

ni

pi
, where n =

k∏

i=1

pni

i .

Moreover, [D, ℓm] = D(m)I. In particular, we have the following characterization of the
Stroock-Lie bracket identity

[D, ℓm] = I if and only if m is a prime. (4)

Proof. Let us prove the last statement. The Stroock-Lie bracket equation states that

Dℓm(n) = n+ ℓmD(n) = n+mD(n) = n+mn′.

The left-hand side of the former equation is computed by

Dℓm(n) = (mn)′ = D(mn) = m′n+mn′.

Hence, by equating it to the right-hand side of the same equation, we derive m′n +mn′ =
n +mn′. Clearly the last equation holds if and only if m′ = 1. Therefore, m is a prime, as
proved in [14].

3 Lie bracket properties

3.1 Lie bracket properties for the arithmetic derivative

From Corollary 7, we derive

Corollary 8. Let m1 + · · · +mk = m. Then [D, ℓm1
+ · · · + ℓmk

] = I holds if and only if
m is a prime.

Remark 9. (i) In particular, [D, ℓp + ℓ2] = I if and only if p and p+ 2 are twin primes.

(ii) According to the Goldbach weak conjecture, every prime number greater than 5 can
be expressed as the sum of three primes. Then, for each such triple of primes p1, p2, p3
with p1 + p2 + p3 being a prime, we have [D, ℓp1 + ℓp2 + ℓp3 ] = I.
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Barbeau [1] proved that if the natural number n is not a prime or unity, then n′ > 2
√
n.

The equality holds if and only if n = p2, where p is a prime. In particular, the equation
m′ = 2 does not have solutions in positive integers. Therefore, we obtain the following
lemmas.

Lemma 10. For any primes p1 and p2,

[D, ℓp1 + ℓp2 ] 6= [D, ℓp1 ] + [D, ℓp2 ] .

Proof. By definition, the right-hand side of the former equation equals to 2n, n ∈ N.
The left-hand side of the equation is [D, ℓp1 + ℓp2 ] (n) = D ((p1 + p2)n) − (p1 + p2)D(n) =
(p1 + p2)

′ n. It remains to notice that the equation (p1 + p2)
′ = 2 does not have solutions.

Lemma 11. For any primes p1 and p2,

[D + ℓp1 , ℓp2 ] = I.

Proof. The left-hand side of the former equation is [D + ℓp1 , ℓp2 ] = [D, ℓp2 ] + [ℓp1 , ℓp2 ] =
I + [ℓp1 , ℓp2 ]. Clearly [ℓp1 , ℓp2 ] = 0, which completes the proof.

Next lemma shows that there are infinitely many non-linear dynamics or integer sequences
satisfying the Stroock-Lie bracket lemma for the arithmetic derivative.

Lemma 12. Let p1, p2 and q be three different prime numbers. And let σ(qq) = p1q
q,

σ(n) = p2n, for n 6= qq. Then [D, σ] = I and σ is not linear.

Proof. For n 6= qq,
Dσ(n) = (p2n)

′ = n+ p2(n
′) = n+ σ(n).

On the other hand, by definition we have D(qq) = qq if q is a prime. Hence, for n = qq,
Dσ(qq) = (p1q

q)′ = qq + p1(q
q)′ = qq +σ(qq), proving that [D, σ] = I. Clearly σ is not linear,

since σ(2qq) = p2(2q
q) 6= 2qq = 2σ(qq).

3.2 Lie bracket properties for other derivatives

Following Ufnarovski and Åhlander [14], we define the generalized arithmetic derivative by

D (x) = x
k∑

i=1

xiD (pi)

pi
, where x =

k∏

i=1

pxi

i .

Note that from this definition D (p) = 1 is no longer true for prime p, in general. Then the
restriction on the linear function ℓm in (4) can be weakened to m such that D(m) = 1.
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3.2.1 Partial arithmetic derivative Dp

The function Dp, defined in Lemma 6, is originated in Kovič [7] and referred to as the partial
arithmetic derivative. Notice that Dp = D{p} = D is a generalized arithmetic derivative
defined by D(p) = 1 and D(q) = 0 for all other primes q.

Lemma 13. Let p, q be two different primes. Then

(i) [Dp, ℓp] = I;

(ii) [Dp, ℓq] = 0;

(iii) [Dp, ℓp + ℓq] = 0;

(iv) [Dp +Dq, ℓp + ℓq] = 0.

Proof. The first two properties follow from Lemma 6 (i). By the Leibnitz rule for Dp and
since p ∤ p + q, we have [Dp, ℓp + ℓq] = 0. This shows that Dp is not linear and proves (iii).
Finally, the last property (iv) follows by the linearity of the Lie bracket.

3.2.2 General arithmetic derivative DA

Now consider the general arithmetic derivative DA defined in Lemma 6. Notice that for
A 6= ∅, the derivative DA is not linear. Motivated by Haukkanen et al. [5], we derive the
following properties on DA.

Lemma 14. Let A,Ai, i = 1, 2, . . . be nonempty subsets of primes. Then

(i) [DA1
, DA2

] = 0 if and only if A1 = A2;

(ii) Let n =
∏

p∈∩Ai
pnp. Then DAi

(n) = DAj
(n), for all i, j.

(iii) Let n = pj where p is a prime. Assume that all prime divisors of 2, 3, . . . , j are not in⋃
i Ai. Then, for any positive integers k and i1, . . . , ik, we have

DAi1
· · ·DAik

(n) = Dk
p(n).

Proof. It follows by direct calculations.

By inspecting the proof of Lemma 13, we extend it to the general arithmetic derivatives.

Lemma 15. Let p ∈ A, q ∈ B and A ⊥ B. Then

(i) [DA, ℓp] = I;

(ii) [DA, ℓq] = 0;

(iii) [DA, ℓp + ℓq] = 0;

(iv) [DA +DB, ℓp + ℓq] = 0.
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4 Extensions of the Stroock-Lie bracket lemma to other

rings

Motivated by Ufnarovski and Åhlander [14] and Haukkanen et al. [4], we discuss the exten-
sions of Lemma 6 to commutative rings with the unique factorization property.

4.1 Extensions to polynomial rings

Consider a polynomial ring K[C], which is a unique factorization domain. By Fi denote
monic irreducible polynomials, i.e., single-variable polynomials with leading coefficients 1.
Any F ∈ K[C] admits the unique factorization F = z

∏k

i=1 F
ni

i , where ni ∈ N and z ∈ C.
Following Ufnarovski and Åhlander [14], define the derivative of polynomials as

DF = F
k∑

i=1

ni

Fi

and D (z) = 0, for z ∈ C. Since D (zF ) = zD (F ) = zF
∑k

i=1 (ni/Fi), it follows that D
satisfies the Leibnitz rule. Notice that D (G) = 1 if and only if G is a monic irreducible
polynomial. Consider a linear functional ℓ = ℓG(H) = GH, where G,H ∈ K[C]. Then,
by direct calculations similar to (4), the Stroock-Lie bracket identity holds [D, ℓG] = I if
and only if D(G) = 1, i.e., G is the monic irreducible polynomial. Moreover, the sum of
k monic irreducible polynomials is an irreducible polynomial with the leading coefficient k.
Therefore, similar to Corollary 8, we then derive the following result.

Corollary 16. Let Fi, i = 1, . . . , k, be the monic irreducible polynomials in the polynomial
ring K[C]. Then [D, ℓF1

+ · · ·+ ℓFk
] = kI.

4.2 Extensions to integers and rational numbers

Following Ufnarovski and Åhlander [14], we define

D (x) = x

k∑

i=1

xi

pi
,

where 0 < x =
∏k

i=1 p
xi

i ∈ Q, pi are different primes, and xi are integers. Then, for 0 > x ∈ Q,
we take D(x) = −D(x).

The function D is a map from Q to Q. As proved in Ufnarovski and Åhlander [14], the
map D satisfies the Leibnitz rule. In particular, the Stroock-Lie bracket identity [D, ℓx] = I
holds if and only if D(x) = 1. In this case, x does not need to be a prime, for example one
can take x = −5/4 (see [14]).
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5 Arithmetic type differential equations

5.1 First order linear arithmetic type differential equations

We begin by considering several cases of the arithmetic type differential equations.

Lemma 17. Let A be a nonempty set of primes and x be a positive integer. Then

(i) DA(x) = 0 if and only if x ⊥ A;

(ii) DA(x) = 1 if and only if x is a prime in A;

(iii) DA(x) = x if and only if x = ppk for p ∈ A and a positive integer k ⊥ A;

(iv) pDA(x) = x, where p ∈ A, if and only if x = pk for a positive integer k ⊥ A.

Proof. (i) Notice that DA =
∑

p∈A Dp, Dp(x) ≥ 0. Haukkanen et al. [5, Theorem 1]
proved that Dp(x) = 0 if and only if p ∤ x. Thus, DA = 0 if and only if x ⊥ A.

(ii) For the above representation, DA(x) = 1 if and only if there exists p ∈ A such that
Dp(x) = 1, which is equivalent to x = p.

(iii) We follow arguments in the proofs of [14, Theorem 4 and 5]. Assume that x = pjk,
where p ∤ k and p ∈ A. Then DA(x) = pj−1(jk + pDA(k)). And so, if 0 < j < p, then
DA(x) = pj−1k̃, where p ∤ k̃, implying that DA(x) 6= x. On the other hand, assume
that x = ppk with k > 1. Then

DA(x) = pp(k +DA(k)) = ppk

if and only if DA(k) = 0, which holds by (i) if and only if k ⊥ A.

(iv) Clearly p|x. Let x = np, n ∈ N. By assumption p ∈ A and, hence, DA(p) = 1. By the
Leibnitz rule, we obtain

pDA(x) = pDA(np) = p(pDA(n) + n) > pn = x,

where the equality holds if and only if DA(n) = 0. By (i), then n ⊥ A, proving (iv).

5.2 Lie bracket arithmetic type differential equations

Fix a nonempty subset A of primes and consider the following equation

x = [DA, ℓx] (a) = DA(x)a,

where a, x are positive integers.
In the next lemma, we characterize those pairs (a, x) that satisfy the equation.
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Lemma 18. The arithmetic differential equation aDA(x) = x has a solution in natural
numbers a, x if and only if one of the following statements is satisfied:

(i) a = p and x = kp;

(ii) a = 1 and x = kpp,

where p is a prime in A and k ⊥ A.

Proof. To identify the pair (a, x), we first determine a, and then solve the equation aDA(x) =
x. First, assume a = 1. The equation becomes DA(x) = x. According to property (iii) of
Lemma 17, then x = ppk, where p is a prime in A and k ⊥ A.

Next, assume a = p with p ∈ A. Then the equation becomes pDA(x) = x. By property
(iv) of Lemma 17, we then have x = pk, where p is a prime in A and k ⊥ A.

Now assume that a 6= 1. We show that a = p, for some p ∈ A. Firstly, consider a subcase
a ⊥ A. Then the equation becomes aDA(x) = x. Hence,

x = aDA(x) = aDA[aDA(x)] = a2D2
A(x) .

For any j, we then derive x = ajDj
A(x), which is not possible. Hence, a = pc, for some p ∈ A

and c ≥ 1. The equation becomes pcDA(x) = x and it remains to show that c = 1. We
proceed by absurd and assume that c > 1. Let DA(x) = b. Then

pcDA(x) = pcDA(pcb) = pc(cb+ pDA(cb)) > pcb = x,

because c > 1 and DA(cb) ≥ 0. Thus, the statement x = pcDA(x) is not possible. Hence,
c = 1 and the proof is complete.
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