The Lie Bracket and the Arithmetic Derivative

Jun Fan and Sergey Utev
Department of Mathematics
University of Leicester
Leicester LE1 7RH
United Kingdom
jf249@leicester.ac.uk
su35@leicester.ac.uk

Abstract

We apply the Lie bracket approach to characterize the semi-derivations on the positive integers. The approach is motivated by the Stroock-Lie bracket identity commonly used in Malliavin calculus.

1 Introduction

The Malliavin derivative D, the Skorohod integral δ , and the associated Malliavin calculus are powerful tools for the analysis of stochastic processes. The Malliavin calculus, named after P. Malliavin, is also called the *stochastic calculus of variations* [8, p. VII, p. 1]. The definition of the Malliavin derivative and the Skorohod integral can be found, for example, in [2, p. 25], [3, pp. 20, 27], and [10, pp. 25, 40], respectively. The Stroock-Lie bracket type identity $[D, \delta] = D\delta - \delta D = I$ is a common notion in the Malliavin calculus [6, p. 355], which is also referred to as the fundamental theorem of calculus [3, Thm. 3.18, p. 37]. The Malliavin derivative and the Skorohod integral (the adjoint operator) act in the space of random processes, which are treated as functions of a Gaussian process.

On the one hand, many random structures satisfy the functional Gaussian approximation [9]. On the other hand, the Lie bracket is a powerful tool in the study of differential equations,

in particular, quantum stochastic calculus [11]. This motivated us to apply the Lie bracket in a totally different environment. More exactly, we treat D and δ as operators acting on integer sequences or dynamical systems on the natural numbers \mathbb{N} . Following Barbeau [1], Ufnarovski and Åhlander [14], and Kovič [7], we study a partial number derivative operator D_A . The operator is introduced and characterized as a solution to the modified Stroock-Lie bracket type identity. The Barbeau arithmetic derivative D is then characterized as the dynamics on the positive integers, which satisfies the Stroock-Lie bracket identity $[D, \ell] = I$, and which holds for all linear functions $\ell = \ell_p = pn$, where p is a prime number. Moreover, the Stroock-Lie bracket characterization is illustrated by examples on several commutative rings without zero divisors. Finally, arithmetic type differential equations driven by D_A are briefly analyzed.

2 Lie bracket analysis of linear functions of positive integers

Definition 1. For two functions $F, U : \mathbb{Z}_+ \to \mathbb{Z}_+$, we define the *Lie bracket* or the *commutator* [F, U] by

$$[F, U] = F \circ U - U \circ F$$
, where $F \circ U(n) = F(U(n))$.

Hence [F, U](n) = F(U(n)) - U(F(n)).

Let $\mathcal{L} = \{\ell_x : \ell_x(n) = nx, n \in \mathbb{Z}_+\}$ denote the set of linear functions on \mathbb{Z}_+ . Notice that \mathcal{L} is a commutative semiring with unity $\ell_1 = I$ and zero $\ell_0 = 0$ with respect to the multiplication and addition operations. Then $\ell_x \circ \ell_y = \ell_{xy}$, $\ell_x + \ell_y = \ell_{x+y}$, $\ell_x \circ \ell_1 = \ell_1 \circ \ell_x = \ell_x$, and $\ell_x + \ell_0 = \ell_0 + \ell_x = \ell_x$. By construction, the semiring \mathcal{L} is isomorphic to the semiring $(\mathbb{Z}_+, +, \cdot)$ of non-negative integers.

Definition 2. Consider $D: \mathbb{Z}_+ \to \mathbb{Z}_+$ and define the *Lie bracket linearity set* of D by

$$W_D = \{x : \text{ there exists } y = y_x \text{ such that } [D, \ell_x] = \ell_y \}.$$
 (1)

Lemma 3. W_D is a multiplicative semigroup in (\mathbb{Z}_+,\cdot) that includes 1.

Proof. Let $x, z \in W_D$. By the Lie bracket definition and algebraic manipulations,

$$[D,\ell_{xz}](n) = D \circ \ell_{xz}(n) - \ell_{xz} \circ D(n) = [D,\ell_x](zn) + \ell_x \circ [D,\ell_z](n).$$

Now we apply to the last line, first, the definition of W_D and, then, the semiring properties of linear functions. This leads to $[D, \ell_{xz}](n) = \ell_{y_x} \circ \ell_z(n) + \ell_x \circ \ell_{y_z}(n) = \ell_{y_xz+xy_z}(n)$.

Lemma 4. The following statements are equivalent:

(i) D satisfies the Leibnitz rule D(mn) = mD(n) + nD(m);

(ii) D(1) = 0 and $W_D = \mathbb{Z}_+$.

Moreover, $[D, \ell_m] = \ell_{D(m)}$.

Proof. (i) \Longrightarrow (ii) follows by direct calculations.

(ii) \Longrightarrow (i): Fix m. Then, for any $n \in \mathbb{Z}_+$, we have

$$y_m n = \ell_{y_m}(n) = [D, \ell_m](n) = D \circ \ell_m(n) - \ell_m \circ D(n) = D(mn) - mD(n).$$

Finally, take n = 1. Then $y_m = D(m) - mD(1) = D(m)$. Therefore, $[D, \ell_m] = \ell_{D(m)}$ and D(mn) = mD(n) + nD(m), proving the lemma.

Remark 5. Let x be a linear function l_x , and let the function composition \circ be replaced by the usual multiplication. Then the main Lie bracket characteristic becomes the Pincherle derivative $f' = f \cdot x - x \cdot f = [f, l_x]$, as introduced in [12]. Tempesta [13] applied the Pincherle derivative and the associated Lie bracket approach in quantum calculus.

We now apply Lemmas 3 and 4 to characterize the arithmetic type derivative D_A as the dynamics on the positive integers, which satisfies the Stroock-Lie bracket type identity $[D_A, \ell_x] = y_x I$.

Let \mathcal{P} denote the set of all primes. We say that sets A, B are orthogonal, if for any $x \in A$ and $y \in B$, we have gcd(x, y) = 1, i.e., the sets A and B do not have any common divisors. Notice that disjoint subsets in \mathcal{P} are orthogonal.

Lemma 6. Consider the nonempty subset of primes $A \subset \mathcal{P}$. Let $D_A : \mathbb{Z}_+ \to \mathbb{Z}_+$ be such that $D_A(1) = 0$. The following properties are equivalent:

- (i) $[D_A, \ell_p] = I$, for $p \in A$, and $[D_A, \ell_p] = 0$, for $p \in \bar{A} = \mathcal{P} A$;
- (ii) $D_A = \sum_{p \in A} D_p$, where $D_p(n) = jp^{j-1}m$, for $n = p^j m$ with $m \perp p$. Moreover, D_A satisfies the Leibnitz rule and has a representation

$$D_A(n) = n \sum_{p \in A} \frac{n_p}{p}, \text{ where } n = \prod_{p \in \mathcal{P}} p^{n_p}.$$
 (2)

Proof. (ii) \Longrightarrow (i) follows by direct calculations.

(i) \Longrightarrow (ii): Consider the linearity set W_{D_A} . Notice that $\{0,1\} \subseteq W_{D_A}$ and the smallest multiplicative semigroup, containing all primes, is $\mathbb{Z}_+ - \{0,1\}$. By Lemma 3, it then follows that $W_{D_A} = \mathbb{Z}_+$. Thus, by Lemma 4, the function D satisfies the Leibnitz rule. Moreover, $D_A(p) = 1$, for $p \in A$, and $D_A(p) = 0$, for $p \notin A$. Now we apply the argument from Ufnarovski and Åhlander [14]. Consider the log transform of D_A defined by $L_A(n) = D_A/n$. By the Leibnitz rule, we see that L_A is a homomorphism of the multiplicative semigroup to the additive semigroup on \mathbb{Z}_+ , which shows that

$$L_A(n) = \sum_{p \in \mathcal{P}} \frac{n_p}{p} D_A(p) = \sum_{p \in A} \frac{n_p}{p}$$
, where $n = \prod_{p \in \mathcal{P}} p^{n_p}$.

This implies representation (2). Take $A = \{p\}$. We then derive $D_p(p^j m) = jp^{j-1}m$, for $m \perp p$. This proves the representation $D_A = \sum_{p \in A} D_p$.

Corollary 7. Let $D: \mathbb{N} \to \mathbb{N}$ such that D(1) = 0. Assume that for each linear function $\ell = \ell_p = pn$, where p is a fixed prime, the following Stroock-Lie bracket identity

$$[D,\ell] = I, i.e., D\ell(n) = n + \ell D(n), \tag{3}$$

holds for all $n \in \mathbb{N}$. Then D is an arithmetic derivative, i.e.,

$$D(n) = n' = n \sum_{i=1}^{k} \frac{n_i}{p_i}, \text{ where } n = \prod_{i=1}^{k} p_i^{n_i}.$$

Moreover, $[D, \ell_m] = D(m)I$. In particular, we have the following characterization of the Stroock-Lie bracket identity

$$[D, \ell_m] = I \text{ if and only if } m \text{ is a prime.}$$
 (4)

Proof. Let us prove the last statement. The Stroock-Lie bracket equation states that

$$D\ell_m(n) = n + \ell_m D(n) = n + mD(n) = n + mn'.$$

The left-hand side of the former equation is computed by

$$D\ell_m(n) = (mn)' = D(mn) = m'n + mn'.$$

Hence, by equating it to the right-hand side of the same equation, we derive m'n + mn' = n + mn'. Clearly the last equation holds if and only if m' = 1. Therefore, m is a prime, as proved in [14].

3 Lie bracket properties

3.1 Lie bracket properties for the arithmetic derivative

From Corollary 7, we derive

Corollary 8. Let $m_1 + \cdots + m_k = m$. Then $[D, \ell_{m_1} + \cdots + \ell_{m_k}] = I$ holds if and only if m is a prime.

Remark 9. (i) In particular, $[D, \ell_p + \ell_2] = I$ if and only if p and p + 2 are twin primes.

(ii) According to the Goldbach weak conjecture, every prime number greater than 5 can be expressed as the sum of three primes. Then, for each such triple of primes p_1, p_2, p_3 with $p_1 + p_2 + p_3$ being a prime, we have $[D, \ell_{p_1} + \ell_{p_2} + \ell_{p_3}] = I$.

Barbeau [1] proved that if the natural number n is not a prime or unity, then $n' \ge 2\sqrt{n}$. The equality holds if and only if $n = p^2$, where p is a prime. In particular, the equation m' = 2 does not have solutions in positive integers. Therefore, we obtain the following lemmas.

Lemma 10. For any primes p_1 and p_2 ,

$$[D, \ell_{p_1} + \ell_{p_2}] \neq [D, \ell_{p_1}] + [D, \ell_{p_2}].$$

Proof. By definition, the right-hand side of the former equation equals to 2n, $n \in \mathbb{N}$. The left-hand side of the equation is $[D, \ell_{p_1} + \ell_{p_2}](n) = D((p_1 + p_2)n) - (p_1 + p_2)D(n) = (p_1 + p_2)'n$. It remains to notice that the equation $(p_1 + p_2)' = 2$ does not have solutions. \square

Lemma 11. For any primes p_1 and p_2 ,

$$[D + \ell_{p_1}, \ell_{p_2}] = I.$$

Proof. The left-hand side of the former equation is $[D + \ell_{p_1}, \ell_{p_2}] = [D, \ell_{p_2}] + [\ell_{p_1}, \ell_{p_2}] = I + [\ell_{p_1}, \ell_{p_2}]$. Clearly $[\ell_{p_1}, \ell_{p_2}] = 0$, which completes the proof.

Next lemma shows that there are infinitely many non-linear dynamics or integer sequences satisfying the Stroock-Lie bracket lemma for the arithmetic derivative.

Lemma 12. Let p_1 , p_2 and q be three different prime numbers. And let $\sigma(q^q) = p_1 q^q$, $\sigma(n) = p_2 n$, for $n \neq q^q$. Then $[D, \sigma] = I$ and σ is not linear.

Proof. For $n \neq q^q$,

$$D\sigma(n) = (p_2 n)' = n + p_2(n') = n + \sigma(n).$$

On the other hand, by definition we have $D(q^q) = q^q$ if q is a prime. Hence, for $n = q^q$, $D\sigma(q^q) = (p_1q^q)' = q^q + p_1(q^q)' = q^q + \sigma(q^q)$, proving that $[D, \sigma] = I$. Clearly σ is not linear, since $\sigma(2q^q) = p_2(2q^q) \neq 2q^q = 2\sigma(q^q)$.

3.2 Lie bracket properties for other derivatives

Following Ufnarovski and Åhlander [14], we define the generalized arithmetic derivative by

$$D(x) = x \sum_{i=1}^{k} \frac{x_i D(p_i)}{p_i}$$
, where $x = \prod_{i=1}^{k} p_i^{x_i}$.

Note that from this definition D(p) = 1 is no longer true for prime p, in general. Then the restriction on the linear function ℓ_m in (4) can be weakened to m such that D(m) = 1.

3.2.1 Partial arithmetic derivative D_p

The function D_p , defined in Lemma 6, is originated in Kovič [7] and referred to as the partial arithmetic derivative. Notice that $D_p = D_{\{p\}} = D$ is a generalized arithmetic derivative defined by D(p) = 1 and D(q) = 0 for all other primes q.

Lemma 13. Let p, q be two different primes. Then

- (i) $[D_p, \ell_p] = I;$
- (ii) $[D_p, \ell_q] = 0;$
- (iii) $[D_p, \ell_p + \ell_q] = 0;$
- (iv) $[D_p + D_q, \ell_p + \ell_q] = 0.$

Proof. The first two properties follow from Lemma 6 (i). By the Leibnitz rule for D_p and since $p \nmid p + q$, we have $[D_p, \ell_p + \ell_q] = 0$. This shows that D_p is not linear and proves (iii). Finally, the last property (iv) follows by the linearity of the Lie bracket.

3.2.2 General arithmetic derivative D_A

Now consider the general arithmetic derivative D_A defined in Lemma 6. Notice that for $A \neq \emptyset$, the derivative D_A is not linear. Motivated by Haukkanen et al. [5], we derive the following properties on D_A .

Lemma 14. Let $A, A_i, i = 1, 2, ...$ be nonempty subsets of primes. Then

- (i) $[D_{A_1}, D_{A_2}] = 0$ if and only if $A_1 = A_2$;
- (ii) Let $n = \prod_{p \in \cap A_i} p^{n_p}$. Then $D_{A_i}(n) = D_{A_j}(n)$, for all i, j.
- (iii) Let $n = p^j$ where p is a prime. Assume that all prime divisors of $2, 3, \ldots, j$ are not in $\bigcup_i A_i$. Then, for any positive integers k and i_1, \ldots, i_k , we have

$$D_{A_{i_1}}\cdots D_{A_{i_k}}(n)=D_p^k(n).$$

Proof. It follows by direct calculations.

By inspecting the proof of Lemma 13, we extend it to the general arithmetic derivatives.

Lemma 15. Let $p \in A$, $q \in B$ and $A \perp B$. Then

- (i) $[D_A, \ell_p] = I;$
- (ii) $[D_A, \ell_q] = 0;$
- (iii) $[D_A, \ell_p + \ell_q] = 0;$
- (iv) $[D_A + D_B, \ell_p + \ell_q] = 0.$

4 Extensions of the Stroock-Lie bracket lemma to other rings

Motivated by Ufnarovski and Åhlander [14] and Haukkanen et al. [4], we discuss the extensions of Lemma 6 to commutative rings with the unique factorization property.

4.1 Extensions to polynomial rings

Consider a polynomial ring $K[\mathbb{C}]$, which is a unique factorization domain. By F_i denote monic irreducible polynomials, i.e., single-variable polynomials with leading coefficients 1. Any $F \in K[\mathbb{C}]$ admits the unique factorization $F = z \prod_{i=1}^k F_i^{n_i}$, where $n_i \in \mathbb{N}$ and $z \in \mathbb{C}$. Following Ufnarovski and Åhlander [14], define the derivative of polynomials as

$$DF = F \sum_{i=1}^{k} \frac{n_i}{F_i}$$

and D(z) = 0, for $z \in \mathbb{C}$. Since $D(zF) = zD(F) = zF\sum_{i=1}^{k} (n_i/F_i)$, it follows that D satisfies the Leibnitz rule. Notice that D(G) = 1 if and only if G is a monic irreducible polynomial. Consider a linear functional $\ell = \ell_G(H) = GH$, where $G, H \in K[\mathbb{C}]$. Then, by direct calculations similar to (4), the Stroock-Lie bracket identity holds $[D, \ell_G] = I$ if and only if D(G) = 1, i.e., G is the monic irreducible polynomial. Moreover, the sum of k monic irreducible polynomials is an irreducible polynomial with the leading coefficient k. Therefore, similar to Corollary 8, we then derive the following result.

Corollary 16. Let F_i , i = 1, ..., k, be the monic irreducible polynomials in the polynomial ring $K[\mathbb{C}]$. Then $[D, \ell_{F_1} + \cdots + \ell_{F_k}] = kI$.

4.2 Extensions to integers and rational numbers

Following Ufnarovski and Åhlander [14], we define

$$D\left(x\right) = x \sum_{i=1}^{k} \frac{x_i}{p_i},$$

where $0 < x = \prod_{i=1}^k p_i^{x_i} \in \mathbb{Q}$, p_i are different primes, and x_i are integers. Then, for $0 > x \in \mathbb{Q}$, we take D(x) = -D(x).

The function D is a map from \mathbb{Q} to \mathbb{Q} . As proved in Ufnarovski and Åhlander [14], the map D satisfies the Leibnitz rule. In particular, the Stroock-Lie bracket identity $[D, \ell_x] = I$ holds if and only if D(x) = 1. In this case, x does not need to be a prime, for example one can take x = -5/4 (see [14]).

5 Arithmetic type differential equations

5.1 First order linear arithmetic type differential equations

We begin by considering several cases of the arithmetic type differential equations.

Lemma 17. Let A be a nonempty set of primes and x be a positive integer. Then

- (i) $D_A(x) = 0$ if and only if $x \perp A$;
- (ii) $D_A(x) = 1$ if and only if x is a prime in A;
- (iii) $D_A(x) = x$ if and only if $x = p^p k$ for $p \in A$ and a positive integer $k \perp A$;
- (iv) $pD_A(x) = x$, where $p \in A$, if and only if x = pk for a positive integer $k \perp A$.
- *Proof.* (i) Notice that $D_A = \sum_{p \in A} D_p$, $D_p(x) \ge 0$. Haukkanen et al. [5, Theorem 1] proved that $D_p(x) = 0$ if and only if $p \nmid x$. Thus, $D_A = 0$ if and only if $x \perp A$.
 - (ii) For the above representation, $D_A(x) = 1$ if and only if there exists $p \in A$ such that $D_p(x) = 1$, which is equivalent to x = p.
- (iii) We follow arguments in the proofs of [14, Theorem 4 and 5]. Assume that $x = p^j k$, where $p \nmid k$ and $p \in A$. Then $D_A(x) = p^{j-1}(jk + pD_A(k))$. And so, if 0 < j < p, then $D_A(x) = p^{j-1}\tilde{k}$, where $p \nmid \tilde{k}$, implying that $D_A(x) \neq x$. On the other hand, assume that $x = p^p k$ with k > 1. Then

$$D_A(x) = p^p(k + D_A(k)) = p^p k$$

if and only if $D_A(k) = 0$, which holds by (i) if and only if $k \perp A$.

(iv) Clearly p|x. Let x = np, $n \in \mathbb{N}$. By assumption $p \in A$ and, hence, $D_A(p) = 1$. By the Leibnitz rule, we obtain

$$pD_A(x) = pD_A(np) = p(pD_A(n) + n) \geqslant pn = x,$$

where the equality holds if and only if $D_A(n) = 0$. By (i), then $n \perp A$, proving (iv).

5.2 Lie bracket arithmetic type differential equations

Fix a nonempty subset A of primes and consider the following equation

$$x = [D_A, \ell_x](a) = D_A(x)a,$$

where a, x are positive integers.

In the next lemma, we characterize those pairs (a, x) that satisfy the equation.

Lemma 18. The arithmetic differential equation $aD_A(x) = x$ has a solution in natural numbers a, x if and only if one of the following statements is satisfied:

- (i) a = p and x = kp;
- (ii) a = 1 and $x = kp^p$,

where p is a prime in A and $k \perp A$.

Proof. To identify the pair (a, x), we first determine a, and then solve the equation $aD_A(x) = x$. First, assume a = 1. The equation becomes $D_A(x) = x$. According to property (iii) of Lemma 17, then $x = p^p k$, where p is a prime in A and $k \perp A$.

Next, assume a = p with $p \in A$. Then the equation becomes $pD_A(x) = x$. By property (iv) of Lemma 17, we then have x = pk, where p is a prime in A and $k \perp A$.

Now assume that $a \neq 1$. We show that a = p, for some $p \in A$. Firstly, consider a subcase $a \perp A$. Then the equation becomes $aD_A(x) = x$. Hence,

$$x = aD_A(x) = aD_A[aD_A(x)] = a^2D_A^2(x)$$
.

For any j, we then derive $x = a^j D_A^j(x)$, which is not possible. Hence, a = pc, for some $p \in A$ and $c \ge 1$. The equation becomes $pcD_A(x) = x$ and it remains to show that c = 1. We proceed by absurd and assume that c > 1. Let $D_A(x) = b$. Then

$$pcD_A(x) = pcD_A(pcb) = pc(cb + pD_A(cb)) > pcb = x,$$

because c > 1 and $D_A(cb) \ge 0$. Thus, the statement $x = pcD_A(x)$ is not possible. Hence, c = 1 and the proof is complete.

6 Acknowledgments

We are grateful to the Editor-in-Chief and the referee for their valuable comments and suggestions.

References

- [1] E. J. Barbeau, Remark on an arithmetic derivative, Canad. Math. Bull. 4 (1961), 117–122.
- [2] D. R. Bell, The Malliavin Calculus, Dover, 2007.
- [3] G. Di Nunno, B. Oksendal, and F. Proske, Malliavin Calculus for Levy Processes with Applications to Finance, Springer-Verlag, 2009.

- [4] P. Haukkanen, M. Mattila, J. K. Merikoski, and T. Tossavainen, Can the arithmetic derivative be defined on a non-unique factorization domain? *J. Integer Sequences* **16** (2013), Article 13.1.2.
- [5] P. Haukkanen, J. K. Merikoski, and T. Tossavainen, On arithmetic partial differential equations, J. Integer Sequences 19 (2016), Article 16.8.6.
- [6] Y. Hu, Analysis on Gaussian Space, World Scientific, 2017.
- [7] J. Kovič, The arithmetic derivative and antiderivative, J. Integer Sequences 15 (2012), Article 12.3.8.
- [8] P. Malliavin and A. Thalmaier, Stochastic Calculus of Variations in Mathematical Finance, Springer, 2005.
- [9] F. Merlevede, M. Peligrad, and S. Utev, Functional Gaussian approximation for dependent structures, Vol. 6 of Oxford Studies in Probability, Oxford University Press, 2019.
- [10] D. Nualart, The Malliavin calculus and Related Topics, 2nd edition, Springer, 2006.
- [11] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhäuser, 2012.
- [12] S. Pincherle, Operatori lineari e coefficienti di fattoriali, Alti Accad. Naz. Lincei, Rend. Cl. Fis. Mat. Nat. 18 (1933), 417–519.
- [13] P. Tempesta, From symmetries to number theory, Physics of Atomic Nuclei 72 (2009), 866–874.
- [14] V. Ufnarovski and B. Åhlander, How to differentiate a number, J. Integer Sequences 6 (2003), Article 03.3.4.

2000 Mathematics Subject Classification: Primary 11A25; Secondary 11A41, 11R27.

Keywords: arithmetic derivative, unique factorization, prime number, Leibnitz rule, integer sequence.

Received July 26 2019; revised version received February 19 2020. Published in *Journal of Integer Sequences*, February 19 2020.

Return to Journal of Integer Sequences home page.