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Abstract

We introduce and study a “level two” generalization of the poly-Bernoulli numbers,

which may also be regarded as a generalization of the cosecant numbers. We prove a
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recurrence relation, two exact formulas, and a duality relation for negative upper-index

numbers.

1 Introduction

The first named author [7] defined the poly-Bernoulli numbers A099594 and later Arakawa

and the first named author [2] studied a slightly modified version. They are, denoted by B
(k)
n

and C
(k)
n respectively, defined by using generating series, as follows. For an integer k ∈ Z,

let (B
(k)
n )n≥0 and (C

(k)
n )n≥0 be the sequences of rational numbers given respectively by

Lik(1− e−t)

1− e−t
=

∞∑

n=0

B(k)
n

tn

n!
(1)

and

Lik(1− e−t)

et − 1
=

∞∑

n=0

C(k)
n

tn

n!
, (2)

where Lik(z) is the polylogarithm function (or rational function when k ≤ 0) defined by

Lik(z) =
∞∑

m=1

zm

mk
(|z| < 1). (3)

Since Li1(z) = − log(1 − z), the generating functions on the left-hand sides of (1) and
(2) when k = 1 become

tet

et − 1
and

t

et − 1

respectively. Hence B
(1)
n and C

(1)
n represent the standard Bernoulli numbers A027641,

A027642, the only difference being B
(1)
1 = 1/2 and C

(1)
1 = −1/2 and otherwise B

(1)
n = C

(1)
n .

Several properties of poly-Bernoulli numbers have been found including the following
results:

B(k)
n = (−1)n

n∑

i=0

(−1)ii!

{
n
i

}

(i+ 1)k
, C(k)

n = (−1)n
n∑

i=0

(−1)ii!

{
n+ 1
i+ 1

}

(i+ 1)k
,

where k is an integer, n a non-negative integer, and let

{
n
i

}
denote the Stirling numbers of

the second kind A008277. Moreover, their dualities

B(−k)
n = B

(−n)
k , (4)

C(−k−1)
n = C

(−n−1)
k (5)
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(k, n ∈ Z≥0) are derived in [7, Theorems 1 and 2] or in [8, Section 2]. For combinatorial
applications, see [3].

In this paper, we study the following ‘level 2’ analog of poly-Bernoulli numbers, denoted
by D

(k)
n , which we call the polycosecant numbers. For each k ∈ Z, define D

(k)
n by

Ak(tanh(t/2))

sinh t
=

∞∑

n=0

D(k)
n

tn

n!
, (6)

where Ak(z) is the series

Ak(z) = 2
∞∑

n=0

z2n+1

(2n+ 1)k
(7)

and tanh(z) and sinh(z) are the usual hyperbolic tangent and sine functions respectively.

Since Ak(z), tanh(z) and sinh(z) are all odd functions, we immediately see that D
(k)
2n+1 = 0

for all n ∈ Z≥0. Note that A1(z) = 2 tanh−1(z), and thus

∞∑

n=0

D(1)
n

tn

n!
=

t

sinh t
=

it

sin(it)
(i =

√
−1).

Hence D
(1)
n is the cosecant number Dn which Nörlund [14, p. 27 (39) and p. 32 (52)] first

introduced A001896, A001897. It should be noted that the terminology ‘cosecant number’
was not used by Nörlund. Apparently Kowalenko [11] was the first to use the terminology,
but he adopted the name for Dn/n! instead of Dn. He gave many applications, and studied
a generalization together with interesting number-theoretical applications [5, 11, 12, 13].

Here, we give a table of D
(k)
n for small k and n. A table for k < 0 will be given in §3.

❍
❍

❍
❍
❍
❍

k
n

0 2 4 6 8 10

0 1 0 0 0 0 0

1 1 −1
3

7
15

−31
21

127
15

−2555
33

2 1 −4
9

176
225

−6464
2205

3328
175

−1037312
5445

3 1 −13
27

3103
3375

−859939
231525

12761501
496125

−63453851
232925

4 1 −40
81

49184
50625

−98447744
24310125

4519218688
156279375

−6868861044736
21791298375

5 1 −121
243

751927
759375

−10665916999
2552563125

1488186370469
49228003125

−25213417199300173
75506848869375

Table 1: D
(k)
n (0 ≤ k ≤ 5, 0 ≤ n ≤ 10, even)

We should also mention that our D
(k)
n is (if slightly modified) a special case of a gen-

eralization of the poly-Bernoulli number which Sasaki [15, Definition 5] introduced. The
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numbers D
(k)
n are closely connected to the ‘multiple Hurwitz zeta functions’ and the ‘level

2’ multiple zeta functions. We shall explore these connections in an ongoing project, which
will be stated in the forthcoming paper.

2 Recurrence and explicit formulas for polycosecant

numbers

In this section, we obtain a recurrence and explicit formulas for polycosecant numbers.
We begin by deriving a recurrence relation.

Proposition 1. For every integer k and n ≥ 0, the polycosecant numbers obey the recurrence
relation of

D(k−1)
n =

⌊n

2
⌋∑

m=0

(
n+ 1

2m+ 1

)
D

(k)
n−2m. (8)

Proof. First, differentiate (6), which yields

Ak−1(tanh(t/2))

sinh t
= cosh t

∞∑

n=0

D(k)
n

tn

n!
+ sinh t

∞∑

n=1

D(k)
n

tn−1

(n− 1)!
.

From the above result we have
∞∑

n=0

D(k−1)
n

tn

n!
=

∞∑

m=0

t2m

(2m)!

∞∑

n=0

D(k)
n

tn

n!
+

∞∑

m=0

t2m+1

(2m+ 1)!

∞∑

n=1

D(k)
n

tn−1

(n− 1)!

=
∞∑

n=0

⌊n

2
⌋∑

m=0

D
(k)
n−2m

tn

(2m)!(n− 2m)!
+

∞∑

n=1

⌊n

2
⌋∑

m=0

D
(k)
n−2m

tn

(2m+ 1)!(n− 2m− 1)!

=
∞∑

n=0

⌊n

2
⌋∑

m=0

(
n

2m

)
D

(k)
n−2m

tn

n!
+

∞∑

n=1

⌊n

2
⌋∑

m=0

(
n

2m+ 1

)
D

(k)
n−2m

tn

n!

=
∞∑

n=0

⌊n

2
⌋∑

m=0

(
n+ 1

2m+ 1

)
D

(k)
n−2m

tn

n!
.

Since t is arbitrary, we can equate like powers of t on both sides, thereby obtaining the
desired result.

Since A0(tanh(t/2)) = sinh(t), we observe D
(0)
0 = 1 and D

(0)
n = 0 for n ≥ 1. Hence

equation (8) can be used to compute D
(k)
n for k < 0 recursively starting from D

(0)
n . For

k > 0, we rewrite (8) as

(n+ 1)D(k)
n = D(k−1)

n −
⌊n

2
⌋∑

m=1

(
n+ 1

2m+ 1

)
D

(k)
n−2m
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in order to compute D
(k)
n recursively. We observe that D

(k)
0 = 1 for all k ∈ Z.

We continue by presenting two formulas for polycosecant numbers. Before doing so, we
require the following lemma.

Lemma 2. For n ≥ 1 we have,

xn

(
d

dx

)n

=
n∑

m=1

(−1)n−m

[
n

m

](
x
d

dx

)m

.

Here, we let

[
n

m

]
denote the Stirling numbers of the first kind.

Proof. This result can be proved in the same manner as [1, Proposition 2.6 (4)]. Hence we
omit here.

Theorem 3. For k ∈ Z and n ≥ 0, the following results hold.

(1)

D(k)
n = 4

⌊n

2
⌋∑

m=0

1

(2m+ 1)k+1

2m+1∑

p=1

n−2m∑

q=0

(2p+q+1 − 1)

(
n

q

)[
2m+ 1

p

]{
n− q

2m

}
Bp+q+1

p+ q + 1
,

where Bn (= C
(1)
n ) are the Bernoulli numbers, and

(2)

D(k)
n =

⌊n

2
⌋∑

m=0

1

(2m+ 1)k+1

n∑

p=2m

(−1)p(p+ 1)!

2p

(
p

2m

){
n+ 1

p+ 1

}
.

Proof. We may express (6) as

∞∑

n=0

D(k)
n

tn

n!
=

Ak(tanh(t/2))

sinh t

= 2
∞∑

m=0

(tanh(t/2))2m+1

(2m+ 1)k
1

sinh t

= 4
∞∑

m=0

1

(2m+ 1)k
et(et − 1)2m

(et + 1)2m+2
. (9)

Since

1

(x+ 1)n+1
=

(−1)n

n!

(
d

dx

)n
1

x+ 1
, (10)
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we see that by setting x = et and introducing Lemma 2,

ent

(et + 1)n+1
=

1

n!

n∑

p=1

(−1)p

[
n

p

](
d

dt

)p
1

et + 1
. (11)

Moreover, from the generating functions

t

et − 1
=

∞∑

q=0

Bq

tq

q!
,

and

1

et + 1
=

1

et − 1
− 2

e2t − 1
,

we find that

1

et + 1
=

∞∑

q=0

(1− 2q)Bq

tq−1

q!
.

Taking the p-th derivative on both sides yields
(

d

dt

)p (
1

et + 1

)
=

∞∑

q=p+1

(1− 2q)
Bq

q

tq−p−1

(q − p− 1)!
=

∞∑

q=0

(1− 2p+q+1)
Bp+q+1

p+ q + 1

tq

q!
.

Now we substitute the above result into (11) to obtain

ent

(et + 1)n+1
=

1

n!

n∑

p=1

(−1)p

[
n

p

]
∞∑

q=0

(1− 2p+q+1)
Bp+q+1

p+ q + 1

tq

q!

=
1

n!

∞∑

q=0

n∑

p=1

(−1)p

[
n

p

]
(1− 2p+q+1)

Bp+q+1

p+ q + 1

tq

q!
.

Hence we obtain

et

(et + 1)2m+2
=

e−(2m+1)t

(e−t + 1)2m+2

=
1

(2m+ 1)!

∞∑

q=0

2m+1∑

p=1

(−1)p+q

[
2m+ 1

p

]
(1− 2p+q+1)

Bp+q+1

p+ q + 1

tq

q!
.

With the aid of the generating function given by [1, Proposition 2.6 (7)] and noting that{
s

2m

}
= 0 if s < 2m and

(et − 1)2m = (2m)!
∞∑

s=0

{
s

2m

}
ts

s!
,
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we arrive at

et(et − 1)2m

(et + 1)2m+2

=
1

2m+ 1

∞∑

q=0

∞∑

s=0

2m+1∑

p=1

(−1)p+q(1− 2p+q+1)

[
2m+ 1

p

]{
s

2m

}
Bp+q+1

p+ q + 1

tq+s

q!s!

=
1

2m+ 1

∞∑

n=0

n∑

q=0

2m+1∑

p=1

(−1)p+q(1− 2p+q+1)

(
n

q

)[
2m+ 1

p

]{
n− q

2m

}
Bp+q+1

p+ q + 1

tn

n!
.

Substituting the above result into (9), we have

∞∑

n=0

D(k)
n

tn

n!

= 4
∞∑

m=0

1

(2m+ 1)k+1

∞∑

n=0

n∑

q=0

2m+1∑

p=1

(−1)p+q(1− 2p+q+1)

×
(
n

q

)[
2m+ 1

p

]{
n− q

2m

}
Bp+q+1

p+ q + 1

tn

n!

= 4
∞∑

n=0

⌊n

2
⌋∑

m=0

1

(2m+ 1)k+1

2m+1∑

p=1

n−2m∑

q=0

(2p+q+1 − 1)

(
n

q

)[
2m+ 1

p

]{
n− q

2m

}
Bp+q+1

p+ q + 1

tn

n!
.

In obtaining the above result, we have used Bp+q+1 = 0 for p + q ≥ 1 and even, while{
n− q

2m

}
= 0 for n − q < 2m. By equating like powers, we arrive at the first result in the

theorem.
To prove the second result, we require a formula from [4] for the higher order tangent

numbers, Tn,m, whose generating function is

tanm t

m!
=

∞∑

n=m

Tn,m

tn

n!
. (12)

The formula is

Tn,m =
in−m

m!

n∑

p=m

(−2)n−pp!

(
p− 1

m− 1

){
n

p

}
. (13)

7



From (6),

∞∑

n=0

D(k)
n

tn

n!
=

Ak(tanh(t/2))

sinh t
=

d

dt
Ak+1(tanh(t/2))

= 2
d

dt

∞∑

m=0

(tanh(t/2))2m+1

(2m+ 1)k+1
. (14)

By using tanh t = −i tan(it) and equations (12) and (13), we can write

(tanh(t/2))m = (−i)mm!
∞∑

n=m

Tn,m

in

2n
tn

n!

= (−i)m(−1)
n−m

2

∞∑

n=m

n∑

p=m

(−2)n−pp!

(
p− 1

m− 1

){
n

p

}
in

2n
tn

n!

= (−1)m
∞∑

n=m

n∑

p=m

(−1)p
p!

2p

(
p− 1

m− 1

){
n

p

}
tn

n!
.

Therefore, we find that

∞∑

n=0

D(k)
n

tn

n!
=

∞∑

m=0

1

(2m+ 1)k+1

∞∑

n=2m+1

n∑

p=2m+1

(−1)p+1 p!

2p−1

(
p− 1

2m

){
n

p

}
tn−1

(n− 1)!

=
∞∑

m=0

1

(2m+ 1)k+1

∞∑

n=2m

n∑

p=2m

(−1)p
(p+ 1)!

2p

(
p

2m

){
n+ 1

p+ 1

}
tn

n!

=
∞∑

n=0

⌊n

2
⌋∑

m=0

1

(2m+ 1)k+1

n∑

p=2m

(−1)p(p+ 1)!

2p

(
p

2m

){
n+ 1

p+ 1

}
tn

n!
.

By equating like powers of t, we arrive at the second result in the theorem.

3 Duality

We now turn our attention to the duality property of the polycosecant numbers. We shall
present two different proofs using the same generating function. The first proof is based on a
closed symmetric formula for the generating function, while the second is more indirect and
complicated. However, we have decided to include the latter proof since it reveals fascinating
results, especially regarding hyperbolic trigonometric functions.

Here is a table of D
(−2k−1)
2n for small k and n.

Theorem 4. For n, k ∈ Z≥0, the polycosecant numbers possess the duality property of

D
(−2k−1)
2n = D

(−2n−1)
2k . (15)
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❍
❍
❍

❍
❍
❍

k
n

0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 13 121 1093 9841 88573

2 1 121 4081 111721 2880481 72799321

3 1 1093 111721 7256173 403087441 20966597653

4 1 9841 2880481 403087441 42931692481 4032800405041

5 1 88573 72799321 20966597653 4032800405041 638704166793133

Table 2: D
(−2k−1)
2n (0 ≤ k ≤ 5, 0 ≤ n ≤ 5)

First proof. We show that the generating function of D
(−2k−1)
2n ,

F (x, y) :=
∞∑

n=0

∞∑

k=0

D
(−2k−1)
2n

x2n

(2n)!

y2k

(2k)!
, (16)

is symmetric in x and y. This is ensured by the following closed formula for F (x, y).

Proposition 5. Let

G(x, y) =
ex+y

(1 + ex + ey − ex+y)2
.

Then one finds

F (x, y) = G(x, y) +G(x,−y) +G(−x, y) +G(−x,−y).

Proof. We first compute the generating function of all D
(−k)
n ,

f(x, y) =
∞∑

n=0

∞∑

k=0

D(−k)
n

xn

n!

yk

k!
. (17)

We claim that the formula

f(x, y) =
ex(ey − 1)

1 + ex + ey − ex+y
+

e−x(ey − 1)

1 + e−x + ey − e−x+y
(18)

holds. To prove this, we first observe that, by definition,

f(x, y) =
∞∑

k=0

A−k(tanh(x/2))

sinh x

yk

k!

=
2

sinh x

∞∑

k=0

∞∑

n=0

(2n+ 1)k(tanh(x/2))2n+1y
k

k!
.

9



Noting that

2
∞∑

n=0

(2n+ 1)kt2n+1 = 2

(
t
d

dt

)k
t

1− t2
=

(
t
d

dt

)k (
1

1− t
− 1

1 + t

)
, (19)

and by the standard formula (cf., e.g., [1, Proposition 2.6 (4)])

(
t
d

dt

)k

=
k∑

m=1

{
k

m

}
tm

(
d

dt

)m

,

we find that the right-hand side of (19) becomes

k∑

m=1

{
k

m

}
tm

(
d

dt

)m (
1

1− t
− 1

1 + t

)

=
k∑

m=1

{
k

m

}
m!

(
tm

(1− t)m+1
− (−t)m

(1 + t)m+1

)
.

Therefore, by setting t = tanh(x/2) and noting t/(1−t) = (ex−1)/2, −t/(1+t) = (e−x−1)/2,
(sinh x)(1− t) = e−x(ex − 1), (sinh x)(1 + t) = ex − 1, we arrive at

f(x, y) =
1

sinh x

∞∑

k=0

k∑

m=1

{
k

m

}
m!

(
tm

(1− t)m+1
− (−t)m

(1 + t)m+1

)
yk

k!

=
∞∑

k=0

k∑

m=1

{
k

m

}
m!

(
ex

ex − 1

(
ex − 1

2

)m

− 1

ex − 1

(
e−x − 1

2

)m )
yk

k!

=
∞∑

m=1

(ey − 1)m
(

ex

ex − 1

(
ex − 1

2

)m

− 1

ex − 1

(
e−x − 1

2

)m )

=
ex

ex − 1
· (ey − 1)(ex − 1)

2− (ey − 1)(ex − 1)
− 1

ex − 1
· (ey − 1)(e−x − 1)

2− (ey − 1)(e−x − 1)

=
ex(ey − 1)

1 + ex + ey − ex+y
+

e−x(ey − 1)

1 + e−x + ey − e−x+y
.

This proves the identity (18). From (18) we see that f(x, y) is even in x, and so we have

f(x, y)− f(x,−y)

2
=

∞∑

n=0

∞∑

k=0

D
(−2k−1)
2n

x2n

(2n)!

y2k+1

(2k + 1)!
.

Our generating function F (x, y) is the derivative of this relation with respect to y, and
Proposition 5 follows from a straightforward calculation, and by the symmetry of F (x, y) in
x and y, Theorem 4 is proved.
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Before presenting the second proof of Theorem 4, we require several lemmas.

Lemma 6. The function F (x, y) defined by (16) can be expressed as

F (x, y) = 2
∞∑

n=0

∂

∂x

(
tanh2n+1(x/2)

)
cosh((2n+ 1)y).

Proof. By (6) and (16), we have

F (x, y) = 2
∞∑

k=0

A−2k−1(tanh(x/2))

sinh(x)

y2k

(2k)!

=
2

sinh(x)

∞∑

k=0

∞∑

n=0

(2n+ 1)2k+1 tanh2n+1(x/2)
y2k

(2k)!

=
2

sinh(x)

∞∑

n=0

(2n+ 1) tanh2n+1(x/2) cosh((2n+ 1)y)

=
1

sinh(x/2) cosh(x/2)

∞∑

n=0

(2n+ 1) tanh2n(x/2)
sinh(x/2)

cosh(x/2)
cosh((2n+ 1)y)

= 2
∞∑

n=0

∂

∂x

(
tanh2n+1(x/2)

)
cosh((2n+ 1)y).

This completes the proof.

We write

F (x, y) =
∞∑

m=0

gm(x)
y2m

(2m)!
=

∞∑

m=0

hm(y)
x2m

(2m)!
.

If one can show that gm(x) = hm(x) for all m ≥ 0, then the second proof will be complete.
First, we consider gm(x). Expanding cosh((2n + 1)y) in Lemma 6 and equating like

powers of y, we obtain

gm(x) =

(
∂

∂y

)2m

F (x, y)

∣∣∣∣
y=0

= 2
d

dx

∞∑

n=0

(2n+ 1)2m tanh2n+1(x/2).

Next we note that

∞∑

n=0

(2n+ 1)2mt2n+1 =

(
t
d

dt

)2m ∞∑

n=0

t2n+1 =

(
t
d

dt

)2m
t

1− t2
. (20)

Setting t = tanh(x/2) and noting

dt =
1

2

1

cosh2(x/2)
dx,

t

1− t2
=

tanh(x/2)

1− tanh2(x/2)
=

1

2
sinh x,

11



we have

t
d

dt
= tanh(x/2) · 2 cosh2(x/2)

d

dx
= sinh x

d

dx
.

Therefore we obtain

gm(x) =
d

dx

(
sinh x

d

dx

)2m

sinh x. (21)

We can explicitly write down the right-hand side by using the following lemma.
For m ∈ Z≥0, we define sequences (a

(m)
i )0≤i≤m ⊂ Q inductively by

a
(0)
0 = 1,

a
(m)
i =

1

2

(
i(2i− 1)a

(m−1)
i−1 − (2i+ 1)2a

(m−1)
i + (i+ 1)(2i+ 3)a

(m−1)
i+1

)
(m ≥ 1),

(22)

where we formally interpret a
(m)
i = 0 for i < 0 or i > m.

Lemma 7. For m ∈ Z≥0,

(
sinh x

d

dx

)2m

sinh x =
m∑

i=0

a
(m)
i sinh((2i+ 1)x). (23)

Proof. We give the proof by induction on m. For m = 0, the identity trivially holds. We
assume (

sinh x
d

dx

)2(m−1)

sinh x =
m−1∑

i=0

a
(m−1)
i sinh((2i+ 1)x).

Using

cosh(kx) sinh(x) =
1

2
(sinh((k + 1)x)− sinh((k − 1)x)) ,

we have

(
sinh x

d

dx

)2m−1

sinh x =
1

2

m−1∑

i=0

(2i+ 1)a
(m−1)
i (sinh((2i+ 2)x)− sinh(2ix)) ,

12



and

(
sinh x

d

dx

)2m

sinh x

=
m−1∑

i=0

(2i+ 1)a
(m−1)
i

(
i+ 1

2
(sinh((2i+ 3)x)− sinh((2i+ 1)x))

− i

2
(sinh((2i+ 1)x)− sinh((2i− 1)x))

)

=
1

2

m∑

i=1

i(2i− 1)a
(m−1)
i−1 sinh((2i+ 1)x)

− 1

2

m−1∑

i=0

(2i+ 1)2a
(m−1)
i sinh((2i+ 1)x)

+
1

2

m−2∑

i=0

(i+ 1)(2i+ 3)a
(m−1)
i+1 sinh((2i+ 1)x).

Thus we observe that the coefficients of sinh((2i+1)x) are in accordance with (22), thereby
completing this proof by induction.

Using this lemma, we obtain

gm(x) =
m∑

i=0

(2i+ 1)a
(m)
i cosh((2i+ 1)x). (24)

Secondly, we compute hm(y). Again by using Lemma 6, we have

hm(y) =

(
∂

∂x

)2m

F (x, y)

∣∣∣∣
x=0

= 2
∞∑

n=0

(
d

dx

)2m+1 (
tanh2n+1(x/2)

)
cosh((2n+ 1)y)

∣∣∣∣
x=0

= 2
m∑

n=0

(
d

dx

)2m+1

tanh2n+1(x/2)

∣∣∣∣
x=0

· cosh((2n+ 1)y) (25)

because

tanh2n+1(x/2) =
x2n+1

22n+1
+O(x2n+2) (x → 0).

We write down the right-hand side of (25) by using the following lemma.

13



Lemma 8. For n, l ∈ Z≥0, there exist sequences (b
(n,l)
j )0≤j≤l ⊂ Q such that

(
d

dx

)l

tanh2n+1(x/2) =
l∑

j=0

b
(n,l)
j tanh2n+1−l+2j(x/2), (26)

where b
(n,l)
j = 0 if 2n+ 1− l + 2j < 0. In particular,

(
d

dx

)2m+1

tanh2n+1(x/2)

∣∣∣∣
x=0

= b
(n,2m+1)
m−n . (27)

Proof. For each n, we can immediately obtain the form (26) by induction on l, using the
relation

d

dx
tanh2n+1(x/2) =

2n+ 1

2

(
tanh2n(x/2)− tanh2n+2(x/2)

)
.

Combining Lemma 8 and (25), we obtain

hm(y) = 2
m∑

n=0

b
(n,2m+1)
m−n cosh((2n+ 1)y). (28)

Now we are going to show 2b
(n,2m+1)
m−n = (2i + 1)a

(m)
i , which implies gm(x) = hm(x). For

m,n ∈ Z≥0 with n ≤ m, set b̃
(m)
n = 2b

(n,2m+1)
m−n . Then, by (27), we have b̃

(0)
0 = 1. Furthermore

the following lemma holds.

Lemma 9. For m ∈ Z≥1, the b̃
(m)
n satisfy the recurrence relation given by

b̃(m)
n =

2n+ 1

2

(
nb̃

(m−1)
n−1 − (2n+ 1)̃b(m−1)

n + (n+ 1)̃b
(m−1)
n+1

)
(n ≤ m), (29)

where we interpret b
(k)
i = 0 for i < 0 or i > k.

Proof. It follows from (26) that

(
d

dx

)2m+1

tanh2n+1(x/2) =
2m+1∑

j=0

b
(n,2m+1)
j tanh2n−2m+2j(x/2). (30)

14



Differentiating twice and using (26), we see that the left-hand side is equal to

(
d

dx

)2m (
2n+ 1

2
tanh2n(x/2)− tanh2n+2(x/2)

)

=
2n+ 1

2

(
d

dx

)2m−1 (
n tanh2n−1(x/2)− (2n+ 1) tanh2n+1(x/2) + (n+ 1) tanh2n+3(x/2)

)

=
2n+ 1

2

(
n

2m−1∑

j=0

b
(n−1,2m−1)
j tanh2n−2m+2j(x/2)

− (2n+ 1)
2m−1∑

j=0

b
(n,2m−1)
j tanh2n−2m+2+2j(x/2)

+ (n+ 1)
2m−1∑

j=0

b
(n+1,2m−1)
j tanh2n−2m+4+2j(x/2)

)
.

If we let x → 0, the above result goes to

2n+ 1

2

(
nb

(n−1,2m−1)
m−n − (2n+ 1)b

(n,2m−1)
m−n−1 + (n+ 1)b

(n+1,2m−1)
m−n−2

)

=
2n+ 1

4

(
nb̃

(m−1)
n−1 − (2n+ 1)̃b(m−1)

n + (n+ 1)̃b
(m−1)
n+1

)
.

On the other-hand, the right-hand side of equation (30) tends to b
(n,2m+1)
m−n = b̃

(m)
n /2 as x → 0.

Thus we obtain (29).

Second proof of Theorem 4. For (a
(m)
i )0≤i≤m defined by (22), set ã

(m)
i = (2i + 1)a

(m)
i . Then

(22) can be written as ã
(0)
0 = 1 and

ã
(m)
i =

2i+ 1

2

(
iã

(m−1)
i−1 − (2i+ 1)2ã

(m−1)
i + (i+ 1)ã

(m−1)
i+1

)

which has exactly the same form as the recurrence relation (29) for b̃
(m)
n . Therefore one

concludes ã
(m)
n = b̃

(m)
n . Comparing (24) and (28), we obtain gm(x) = hm(x). Thus we

complete our second proof of Theorem 4.
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