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Institut de Mathématiques et de Sciences Physiques

Dangbo
Bénin

adegbindinchefiath@gmail.com

Alain Togbé
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Abstract

In this paper, we determine all the Padovan and Perrin numbers that are also

Fermat numbers.
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1 Introduction

The Padovan sequence {Pm}m≥0 is defined by

Pm+3 = Pm+1 + Pm, (1)

for m ≥ 0, where P0 = P1 = P2 = 1. This is the sequence A000931 in the On-Line
Encyclopedia of Integer Sequences (OEIS). A few terms of this sequence are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, · · ·

Let {Em}m≥0 be the Perrin sequence given by

Em+3 = Em+1 + Em, (2)

for m ≥ 0, where E0 = 3, E1 = 0, and E2 = 2. Its first few terms are

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, · · ·

It is the sequence A001608 in the OEIS.
Let us also recall that a Fermat number is a number of the form

Fm = 22
m

+ 1,

where m is a nonnegative integer. The first elements of its list are

3, 5, 17, 257, 65537, 4294967297, 18446744073709551617,

340282366920938463463374607431768211457,

115792089237316195423570985008687907853269984665640564039457584007913129639937, ...

This is the sequence A019434 in the OEIS.
In a recent paper, Bravo and Herrera [2] found all k-Fibonacci and k-Lucas numbers that

are also Fermat numbers. So the aim of this paper is to find all the Padovan and Perrin
numbers that are also Fermat numbers. The proofs of the results that we obtained are
mainly based on linear forms in logarithms of algebraic numbers and a reduction algorithm
originally introduced by Baker and Davenport in [1]. Here, we use a version due to de
Weger [7]. So in Section 2, we will recall some results based on Baker’s method, the Baker-
Davenport reduction method (de Weger’s version), and some properties of Padovand and
Perrin numbers. They are very useful for the proofs of our main results. In the last section,
we will determine all Padovan and Perrin numbers that are Fermat numbers and show that
these numbers are the only.
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2 The tools

2.1 Linear forms in logarithms

We need some results from the theory of lower bounds for nonzero linear forms in logarithms
of algebraic numbers. We start by recalling [3, Theorem 9.4], which is a modified version of a
result of Matveev [6]. Let L be an algebraic number field of degree dL. Let η1, η2, . . . , ηl ∈ L

not 0 or 1 and d1, . . . , dl be nonzero integers. We put

D = max{|d1|, . . . , |dl|},

and

Γ =
l
∏

i=1

ηdii − 1.

Let A1, . . . , Al be positive integers such that

Aj ≥ h′(ηj) := max{dLh(ηj), | log ηj|, 0.16}, for j = 1, . . . l,

where for an algebraic number η of minimal polynomial

f(X) = a0(X − η(1)) · · · (X − η(k)) ∈ Z[X]

over the integers with positive a0. We write h(η) for its Weil height given by

h(η) =
1

k

(

log a0 +
k
∑

j=1

max{0, log |η(j)|}
)

.

The following consequence of Matveev’s theorem is [3, Theorem 9.4].

Theorem 1. If Γ 6= 0 and L ⊆ R, then

log |Γ| > −1.4 · 30l+3l4.5d2L(1 + log dL)(1 + logD)A1A2 · · ·Al.

2.2 The Baker-Davenport reduction method

Here, we present a variant of the reduction method of Baker and Davenport due to de Weger
[7].

Let ϑ1, ϑ2, β ∈ R be given and let x1, x2 ∈ Z be unknowns. Let

Λ = β + x1ϑ1 + x2ϑ2. (3)

Let c, δ be positive constants. Set X = max{|x1|, |x2|}. Let X0, Y be positive. Assume that

|Λ| < c · exp(−δ · Y ), (4)

3



X ≤ X0. (5)

When β = 0 in (3), we get
Λ = x1ϑ1 + x2ϑ2.

Put ϑ = −ϑ1/ϑ2. We assume that x1 and x2 are coprime. Let the continued fraction
expansion of ϑ be given by

[a0, a1, a2, . . .],

and let the kth convergent of ϑ be pk/qk for k = 0, 1, 2, . . .. We may assume without loss of
generality that |ϑ1| < |ϑ2| and that x1 > 0. We have the following results.

Lemma 2. (See [7, Lemma 3.2]) Let

A = max
0≤k≤Y0

ak+1,

where

Y0 = −1 +
log(

√
5X0 + 1)

log
(

1+
√
5

2

) .

If (4) and (5) hold for x1, x2 and β = 0, then

Y <
1

δ
log

(

c(A+ 2)X0

|ϑ2|

)

. (6)

When β 6= 0 in (3), put ϑ = −ϑ1/ϑ2 and ψ = β/ϑ2. Then we have

Λ

ϑ2

= ψ − x1ϑ+ x2.

Let p/q be a convergent of ϑ with q > X0. For a real number x, we let ‖x‖ = min{|x−n|, n ∈
Z} be the distance from x to the nearest integer. We have the following result.

Lemma 3. (See [7, Lemma 3.3]) Suppose that

‖ qψ ‖> 2X0

q
.

Then, the solutions of (4) and (5) satisfy

Y <
1

δ
log

(

q2c

|ϑ2|X0

)

.
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2.3 Properties of Padovan and Perrin sequences

In this subsection we recall some facts and properties of the Padovan and the Perrin sequences
that will be used later. For more details about the Padovan and Perrin sequences, see [8].

The characteristic equation
x3 − x− 1 = 0

has roots α, β, γ = β, where

α =
r1 + r2

6
, β =

−r1 − r2 + i
√
3(r1 − r2)

12

and

r1 =
3

√

108 + 12
√
69 and r2 =

3

√

108− 12
√
69.

Let

cα =
(1− β)(1− γ)

(α− β)(α− γ)
=

1 + α

−α2 + 3α + 1
,

cβ =
(1− α)(1− γ)

(β − α)(β − γ)
=

1 + β

−β2 + 3β + 1
, (7)

cγ =
(1− α)(1− β)

(γ − α)(γ − β)
=

1 + γ

−γ2 + 3γ + 1
= cβ.

Binet’s formula for Pn is

Pn = cαα
n + cββ

n + cγγ
n, for all n ≥ 0, (8)

and Binet’s formula for En is

En = αn + βn + γn, for all n ≥ 0. (9)

Numerically, we have

1.32 < α < 1.33,

0.86 < |β| = |γ| < 0.87,

0.72 < cα < 0.73, (10)

0.24 < |cβ| = |cγ| < 0.25.

It is easy to check that
|β| = |γ| = α−1/2.

Further, using induction, one can prove that

αn−2 ≤ Pn ≤ αn−1, holds for all n ≥ 4 (11)

and
αn−2 ≤ En ≤ αn+1, holds for all n ≥ 2, (12)

see [5].
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3 Proofs of the main results

In this section, we set and prove the two main results of our paper.

3.1 Our first main result

We will prove our first main result in this subsection.

Theorem 4. The only Fermat numbers in the Padovan sequence are P5 = 3 and P7 = 5.

Proof. Let us consider the Diophantine equation

Pn = 2m + 1. (13)

A quick computation with Maple reveals that the solutions of the Diophantine equation (13)
in the interval [0, 150] are P3, P4, P5, P7, P9, and P16. It is easy to see that the only Fermat
numbers are P5 and P7.

From now, we assume that n > 150. Then by (11), we have

αn−2 < Pn = 2m + 1 < 2m+1

and
2m < 2m + 1 = Pn < αn−1.

Thus we get
(n− 2)c1 − 1 < m < (n− 1)c1, where c1 := logα/ log 2.

In particular, we have m < n/2. So to solve equation (13), it suffices to get a good upper
bound for n.

By (8), equation (13) can be expressed as

2m − cαα
n = cββ

n + cγγ
n − 1,

which we rewrite as

|2m − cαα
n| = |cββn + cγγ

n − 1| < 3

2
.

Multiplying through by c−1
α α−n, we obtain

∣

∣2mc−1
α α−n − 1

∣

∣ < 2.1α−n. (14)

Now, we apply Matveev’s theorem by taking

Γ := 2mc−1
α α−n − 1

and
η1 := 2, η2 := cα, η3 := α, b1 := m, b2 := −1, b3 := −n.
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The algebraic numbers η1, η2 and η3 belong to L = Q(α) for which dL = 3. Since m < n/2,
therefore we can take D := n = max{1,m, n}. Furthermore, we have

h(η1) = log 2 and h(η3) =
logα

3
.

In this case we choose

max{3h(η1), |log η1| , 0.16} < 2.1 := A1

and
max{3h(η3), |log η3| , 0.16} = logα := A3.

On the other hand, the minimal polynomial of cα is

23x3 − 23x2 + 6x− 1

and has roots cα, cβ and cγ. Since |cα| < 1 and |cβ| = |cγ| < 1, then we get

h(η2) =
log 23

3
.

So we can take
max{3h(η2), |log η2| , 0.16} < 3.2 := A3.

To apply Matveev’s theorem we will prove that Γ 6= 0. Suppose the contrary i.e Γ = 0, so
we get

2m = cαα
n.

Conjugating the above relation using the Q-automorphism of Galois σ defined by σ = (αβ)
and taking the absolute value we obtain

1 < 2m = |cβ| |β|n < 1,

which is a contradiction. Thus one can see that Γ 6= 0.
Using Matveev’s theorem, we get

log |Γ| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log n) · 2.1 · logα · 3.2
> −1.82 · 1013 · logα · (2 log n) = 3.64 · 1013 · logα · log n.

The last inequality together with (14) leads to

n < 3.65 · 1013 log n.

Thus we obtain
n < 1.3 · 1015. (15)

Now, we will use Lemma 3 to reduce the upper bound (15) of n.
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Define
Λ := m log 2− n logα + log(1/cα).

Clearly, we have eΛ − 1 = Γ. Since Γ 6= 0, then Λ 6= 0. If Λ > 0, then we get

0 < Λ < eΛ − 1 =
∣

∣eΛ − 1
∣

∣ = |Γ| < 2.1α−n.

If Λ < 0, then we have 1 − eΛ =
∣

∣eΛ − 1
∣

∣ = |Γ| < 1/2, because n > 150. This implies that

e|Λ| < 2. Thus we have

0 < |Λ| < e|Λ| − 1 = e|Λ| |Γ| < 4.2α−n.

From both cases, we deduce that

0 < |n(− logα) +m log 2 + log(1/cα)| < 4.2 exp(−n logα).

The inequality (15) implies that we take X0 := 1.3 · 1013. Further, we choose

c := 4.2, δ := logα, ψ :=
log(1/cα)

log 2

ϑ :=
logα

log 2
, ϑ1 := − logα, ϑ2 := log 2, β := log(1/cα).

Using Maple, we see that
q41 = 2263631680285337

satisfies the hypotheses of Lemma 3. Furthermore, Lemma 3 implies that

n <
1

logα
log

(

22636316802853372 · 4.2
log 2 · 1.3 · 1013

)

≤ 150. (16)

This contradicts the assumption that n > 150. Therefore, the theorem is proved.

3.2 Our second main result

In this subsection we will prove the following result.

Theorem 5. The only Fermat numbers in the Perrin sequence are E0 = E3 = 3, E5 = E6 =
5, and E10 = 17.

Proof. Let us consider the Diophantine equation

En = 2m + 1. (17)

A quick computation in Maple reveals that the solutions of Diophantine equation (13) in the
interval [0, 150] are E0, E2, E3, E4, E5, E6 and E10. It is easy to see that the only Fermat
numbers are E0, E3, E5, E6 and E10.
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From now, we assume that n > 150, then by (12) we have

αn−2 < En = 2m + 1 < 2m+1

and
2m < 2m + 1 = En < αn+1.

Then, we get

(n− 2)c1 − 1 < m < (n+ 1)c1, where c1 := logα/ log 2.

In particularly we have m < n/2. To solve equation (17), it suffices to get a good upper
bound for n.

By (9), equation (17) can be rewritten into the form

2m − αn = βn + γn − 1.

So we deduce that
|2m − αn| = |βn + γn − 1| < 2.8.

Dividing both sides by α−n, we get
∣

∣2mα−n − 1
∣

∣ < 2.8α−n. (18)

Now, we apply Matveev’s theorem by taking

Γ′ := 2mα−n − 1

and
η1 := 2, η2 := α, b1 := m, b2 := −n.

The algebraic numbers η1 and η2 belong to L := Q(α) for which dL = 3. Since m < n/2,
therefore we take D := n = max{1,m, n}. As seen before, we choose

A1 := 2.1 and A2 := logα.

We can prove that Γ′ 6= 0 using the same method as above to show that Γ 6= 0.
Matveev’s theorem gives

log |Γ′| > −1.4 · 305 · 24.5 · 32(1 + log 3)(1 + log n) · 2.1 · logα
> −3.06 · 1010 · logα · (2 log n) = −6.12 · 1010 · logα · log n.

Comparing the last inequality with (18) yields

n < 6.13 · 1010 log n.

Consequently, we obtain
n < 1.8 · 1012. (19)
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Now, to reduce the upper bound (19) of n, we will use Lemma 2.
Consider

Λ′ := m log 2− n logα.

Clearly, we have eΛ
′ − 1 = Γ′. Since Γ′ 6= 0, then Λ′ 6= 0. If Λ′ > 0, then we get

0 < Λ′ < eΛ
′ − 1 =

∣

∣

∣
eΛ

′ − 1
∣

∣

∣
= |Γ′| < 2.8α−n.

If Λ′ < 0, then we have 1 − eΛ
′

=
∣

∣eΛ
′ − 1

∣

∣ = |Γ′| < 1/2, because n > 150. Thus e|Λ
′| < 2.

Therefore, we obtain
0 < |Λ′| < e|Λ

′| − 1 = e|Λ
′| |Γ′| < 5.6α−n.

In both cases we have

0 < |n(− logα) +m log 2| < 5.6 exp(− logα · n).

The inequality (15) implies that we can take X0 := 1.8 · 1012, thus we get Y0 = 59.3134 . . ..
Further, we choose

c := 5.6, δ := logα, ϑ :=
logα

log 2
, ϑ1 := − logα, ϑ2 := log 2.

We use Maple to find that
A := max

0≤k≤59
ak+1 = 80.

So Lemma 2 tells us

n <
1

logα
log

(

5.6 · (80 + 2) · 1.8 · 1012
log 2

)

≤ 126. (20)

This contradicts the assumption that n > 150. Therefore, the theorem is proved.
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