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Abstract

We present Euler-type recurrence relations for some partition functions. Some of
our results provide new recurrences for p(n) the number of unrestricted partitions of
n. Others establish recurrences for partition functions not yet considered.

1 Introduction

A partition of an integer n is a finite set of positive integers {\,..., A} such that n =
A+ -+ A, The \; are called the parts of the partition. The number of partitions of n is
usually denoted by p(n) [9, A000041], with p(0) = 1 by convention. For example, we have
p(4) = 5 since there are five partitions of 4, namely

4,341,2+42,24+1+1,1+1+1+1.

The generating function of p(n), due to Euler [1, Eq. (1.1.6)], is given by

> pmr =Tl = )
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So, one can obtain the values of p(n) by expanding the right-hand side of (1) and extracting
the coefficient of ¢". Another way to obtain p(n) was found by Euler after he proved the
following identity (known as Euler’s pentagonal number theorem):

> (=g =TT - ¢b). (2)

Indeed, multiplying (1) and (2) we obtain

e}

S pmg 3 (C1yrgen e Z 1
n=0

n=—0o0

from which the following recurrence for p(n) is derived after extracting the coefficient of ¢"
from both sides:

p(n) —pn—1) = p(n = 2) +p(n = 5) +p(n = 7) — p(n —12) — p(n — 15)
+o o (=1 p(n = (35 = 1)/2) + (=1)p(n — j(3) +1)/2) + - --
1, ifn=0;
- {O, otherwise.
The numbers j(3j5 4+ 1)/2 are the pentagonal numbers [9, A001318].
Some subsequent works brought new recurrence relations for p(n) and other partition

functions. Ewell [4, Theorem 2], for instance, presented the following recurrence for p(n)
involving the triangular numbers [9, A000217]

p(n) —p(n —1) =p(n = 3) + p(n — 6) + p(n — 10) — p(n — 15) — p(n — 21)
e (=10 = (25 = 1) + (=1)p(n = (2] + 1)) + -+
B {O, if n is odd;

pa(n/2), if n is even,

where pg(n) denotes the number of partitions of n into distinct parts [9, AO00009]. Merca [6]
derived two new recurrence relations for p(n), which allowed him to obtain a more efficient
method to compute the parity of p(n). Ono, Robbins, and Wilson [8] presented recurrence
relations for some partition functions, including pg(n), ¢gq(n) (the number of partitions into
distinct odd parts [9, A000700]), pr(n) (the number of partitions into an even number of
parts [9, A027187]), and po(n) (the number of partitions into an odd number of parts [9,
A027193]). Recently, Choliy, Kolitsch, and Sills [2] found a number of new recurrences for
p(n), including

p(n) —p(n—1) —p(n —2) +p(n —4) +p(n —8) —p(n —9) — p(n — 18)
oo (S Dp(n = 57) + (=1 p(n = 25%) + -
_ {o, if n is odd:;

qq(n), if n is even,
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and

p(n) — 2p(n — 1) + 2p(n — 4) — 2p(n — 9) + 2p(n — 16) + - - -
+H(=1Y2p(n = 5%) + -+ = (=1)"qq(n).

Additional recurrence relations for partition functions can be found in [2, 4, 5, 6, 7, 8].

In this paper, using some classical identities and generating function manipulations, we
provide a number of new recurrence relations for p(n), qq(n), p(n) the number of overpar-
titions of n [9, A015128], p,(n) the number of partitions of n into odd parts [9, A000009],
and the two-parameter function p¢ (n) (the number of partitions of n into parts congruent
to £¢ modulo m). For some of these functions, it is the first time that recurrence relations
are presented.

2 Preliminaries

We recall Ramanujan’s theta functions

flab):= 3" a6 for Jab| < 1, (3)
and
U(g) = flg,q*) = _q" "2 (4)
n=0

In the proofs of some of our results, we will need Jacobi triple product identity [,
Theorem 1.3.3] given by

o
> 2" = (=24 Moo=/ 2 )o@ oo

n=—oo

where we use the following standard g-series notation:

(a;q)o =1,
(a;q)n = (1 —a)(1—aq)--- (1 —ag™"),Vn > 1,

and
(@ ¢)oe = lim (a;¢)n, |g| < 1.
Using (3), we can rewrite Jacobi triple product identity in the form

f(a,b) = (—a; ab)(—b; ab)oc (ab; ab)oo. (5)
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An important consequence of (5) is following identity (see [1, Eq. (1.3.14)])
(4% )
(g) = LiD)ee 6
& (45 ¢%) o ®)
We also recall the well-known Euler’s pentagonal number theorem [1, Corollary 1.3.5]:

[e.9]

(G @) = D (=1)"g"" D2, (7)

n=—oo

3 Main results

In what follows, we let ¢§ (resp., t7) denote the j-th even (resp., odd) triangular number [9,
A014494] (resp., [9, A014493]). So, t¢ = 0, £2 = 1, t5 = 6, t§ = 3, t5 = 10, £ = 15, etc.

Theorem 1. For all even integer n > 0, we have
p(n/2) +p((n —6)/2) + p((n —10)/2) + p((n — 28)/2) + p((n — 36)/2)+
p((n —66)/2) +p((n —78)/2) + -+ p((n — 15)/2) + - - - = pa(n), (8)
)

where pqg(n) denotes the number of partitions of n into distinct parts. For all odd integer
n > 0, we have

p((n—=1)/2) +p((n = 3)/2) + p((n — 15)/2) + p((n — 21)/2)+
p((n—45)/2) + p((n = 55)/2) + -+ +p((n = £7)/2) + - = po(n), (9)

where p,(n) = pa(n) denotes the number of partitions of n into odd parts

Proof. Initially, we note that

Z#pd(n)q" %(Zpd Q—ierd )

n=0

=3 (TTa s+ TIa+ e - )
k=1 k=1
and
O O k: 1— 2k—1
,Hl+q :U 1—Q§E )
q

q
1 — q2k—1)
2k> O

e i

= = ¥(q)-
_ _ 42k—1 _ 2k

S (=g =gt 1 1—g
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We also have

2 2k—1y _ - 2 2 1 (1_51%)
H(qu)(l—q )—’E1+qk h )(l_qk)(qu)

o0

=T

1

-+

k=1
It follows that

1+ (=)™ a1
5 pa(n)q :§<H +H )
n=0 k>1
- (I~ ) (6(a) + ¥(-0)
(IS o)
2 :
k=1 7=0 7=0
The parity of the exponent ](]TH) is given by
4i(4i + 1
%:&Mm,
4i—1)(4i—1+1
4i —2)(41—2+1
i )(22 D g2 g,
4i — 3)(4i — 1
i 3)(; SHU g2 1043,

(1— ¢ 11— ¢ )_H _lqzkw(_Q)'

(10)
(11)
(12)

(13)

The even triangular numbers are given by (10) and (11), while (12) and (13) represent the

odd triangular numbers. Thus

[e.9]

o¢]
} :qm;’” 2 : 87420 | (SP-2 4 (SP6i+] 4 8P-10i+3
i— i=0

and
(o] o0
Z W*l) Z 8i242i | q8i272i _ q8i2f6i+1 _ q81'27101'+3
)
i=0

which yields

) % i:: 2q8i2+2i + 2q8i2—2i
= 7" Zq iip(k)q%”?

=0 =0 k=0 j=0

(14)

(15)



Now we extract the coefficient of ¢" on both sides of the above equation to obtain

Zpd ng —Xg(fép«n—t;m))qn,

which completes the proof of (8).
In order to prove (9), we begin with

o

> = 5( S - Snin-ar)

n=0

1(1°—°[ 1 > 1 )

— 9 T _H (k1

2 k::l(l q k’:l ]‘ ( q) )
1/ 1 >
§(H l—q%l H 1_|_q2k:1)

We note that

= h=1 k=1
and
P (1 + g2k-1) - 191_[1 (1+ ¢%F=1) (1 — ¢2F) ]I[l 1— q2k¢( q)
It follows that
© (1) 1/ 1 0 )
oy = (T vt - T o)
n=0 k=1 q paie) q
_ <kH — q%) 5 (@) = v(=0))
1 1 1/ st - G+t
= (Hl_ 2k>§(zq N )" )>
o1 - s =

By (14) and (15), we have

k=1 -
:Zp( zkzq Zzp 2k+t?'
k=0 Jj=0 k=0 7=0



Extracting the coefficient of ¢™ in the identity above, we obtain

nf%po(n)q” = ; (Zj;p((n - t?)/2))q",

from which (9) follows. O

We recall that Corteel and Lovejoy [3] introduced the overpartitions of n, which are
partitions in which the first occurrence of a number may be overlined. For instance, there
are eight overpartitions of 3, namely

3,3,2+ 1,2+ 1,2+ 1,2+ 1,1 +1+1,1T+1+1.

We let p(n) denote the number of overpartitions of n [9, A015128]. In the next three results,
we present recurrence relations for p(n).

Theorem 2. For alln > 0, we have
p(n) —2p(n — 1)+ 2p(n — 4) — 2p(n — 9) + 2p(n — 16) — 2p(n — 25)+
2p(n — 36) -+ 2A=1)p(n — ) + -+

)L ifn=0;
B 0, otherwise.

Proof. We recall from [3] that the generating function for overpartitions is given by

N )
nzop(n)q _g(l—qk)
We note that
= ok - ok (1—=¢*") (1 —g¢*)
g(l Q)_g(l )(1 1) (1 )
o (L= = (1 - ¢*)
_,El (1= g*)(1—g*1)
Qk)

L R g
H (1= 1>

o0

0l =

k*l
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By Euler’s identity, we have

emp
=
|
»Q
3
8
—
+
(=)

k=1

and, then,
I | e
k:l(l_q k:l (1+4")

Hence we obtain the following equivalent identities:

o n_ Hiozl(l + qk)
nz;p(n)q o= T (L + g%

[e.9]

> (Pl + 2Z<—1>kza<n>qk2+n) 1

o0

Z( +22 n—k2)q”:1.

n=0
The result now follows from the last identity.
Our second recurrence for p(n) involves pg(n).

Theorem 3. For alln > 0, we have

p(n) —=p(n —1) = p(n — 2) + p(n —5) + p(n = 7) — - --
o (=1) (B — §(35 — 1)/2) + Bln — §(3) +1)/2)) + - - = pa(n).



Proof. We have

k=1 k=1 q k=1
= - iGi=1)
=Y k)" > (=1)q >
k=1 k=—o00
>~ - i) SEICTES))
= Sop (1 1 S
k=0 j=1 Jj=1
s _ & - §(3j—1) > - J(35+1)
=3 (0 + SR 4 S g ).
k=0 Jj=1 Jj=1

Therefore, we obtain
S paln)d” =Y () + 3010 o = 37 = D/2) 4 5l 35 + 1/2) )"

from which the proof follows by comparing coefficients of ¢" on both sides of the last equation.
m

We let pg(n) denote the number of overpartitions of n into distinct parts. Then we have
the following recurrence for p(n).

Theorem 4. For alln > 0, we have
p(n)—p(n —2) =p(n —4) +p(n — 10) +p(n — 14) — -
A (=1 (B(n = j(37 — 1)) +B(n — j(3j + 1)) + - - = pa(n).
Proof. By (7) we have

%) B . [e%e) o) 1 q2k; 1 +qk
k=0 k=1 k=1
o (q27 q2)oo Z]—j<k>qk _ Z]_?(k>qk Z ( 1)jqj(3j—1)
k=0 k=0 J=—00
_ Zﬁ(k)qk (1 4 Z(_l)]qj(i’»]*l) + Z( 1)jqj(3j+1)>
k=0 J=1 Jj=1

= > (3o + 1 (30— 3037 - 1)+ Bl — 535+ 1) )

J=1

Thus, the result follows from extracting the coefficient of ¢" on both sides of this identity. [J

9



Now we prove a recurrence relations satisfied by gg(n), the number of partitions of n into
distinct odd parts.

Theorem 5. For all n > 0, we have
qq(n) — qq(n —4) — qq(n — 8) + qq(n — 20) + qg(n — 28) — qq(n — 48)—
qq(n —60) + -+ (=1)? (gq(n — 2§(3j — 1)) + qq(n — 2j(3j + 1))) - -

B {1, if no1s a triangular number;

0, otherwise.

Proof. 1t is easy to see that

- 2%k—1y = (1+qk) o - (1+qk)(1 C]%)
e =1 = 0=
Thus
- Do A+ -

[T =) qali)d = Zpd(i)Q’ [T -
That is to say
(0% 0" Y aa(N)d = (0% 6% Y _pali)g

Then, by (7), we have
L 4Y) Z q4(j)d’
(1 +Z e 4 3 (1) g ) qu
k=1

[e.9]

- ( +i *(qq n—2j(3J—1))+QQ(n—2j(3J+1)))>q”

n=0



On the other hand, we have

(7% 0% > pali)g
=0
:Oo q 1+ kk3k1+oo kk3k+1>
oo (14 e 3

=> (pd(n) + ) (=1 (pa(n — k(3k — 1)) + pa(n — k(3k + 1))))q".

k=1
Hence

> (gg(n) + > (1) (qa(n — 2j(3j — 1)) + qq(n — 2j(3j + 1)))) q"

- Z (pd(n) + Z(—l)k(pd(n — k(3k — 1)) + pa(n — k(3k + 1)))>q"

The result follows from extracting the coefficient of ¢" on both sides of the last equation and
using Theorem 1 of [8]. O

We let p,(n) denote the number of partitions into odd parts. The next theorem presents
a recurrence for p,(n).

Theorem 6. For all n > 0, we have
Po(n)—po(n — 1) — po(n —5) + po(n — 8) + p,(n — 16) —
(1) (poln — 5 (35 = 2)) +po(n — 5(3) +2))) + -+
B {1, if nois 3 times a triangular number;

0, otherwise.

Proof. Setting a = —q and b = —¢® in (3) and (5) we obtain

o0

) o
(4:0%)2(0% 0% (0% % )oe = (=0, =) = > _ (=0)" 2 (=¢")" 7 .
j=—00
from which it follows that
S (1P =TT~ ™90 — (1 - ) (16)
j=—o00 k=1
0o B 1 — k3
— 1 q6k 5 1 q6k 1 1 qﬁk (
kr_[1< (1= - ) s
6k

O 2k1 1
-

=1

ol
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Then, by (4), we have

3 M 1 S 7(35—2
w(g*) = g = ;_jof 1)/
- Zpo(i)qi (1 - Z( Jgi3i=2) 4 Z 7(3j+2) )

=3 (o) 4 31 ol 535 = D)+ = 5635+ 2) )

n=0 J=1
The result follows by comparing the coefficients of ¢" on both sides of the last expression. [

Let ¢ be a positive integer. A partition of n having no part divisible by ¢ is called an
(-regular partition of n. We let by(n) denote the number of ¢-regular partitions of n. The
generating function of by(n) is

(4; q)
Our next result is a recurrence relation for p(n) involving by(n).
Theorem 7. Let { > 1. For all n > 0, we have
p(n) = p(n — £) = p(n — 20) + p(n — 50) + p(n — 7€) —
o (=1 (p(n = €535 = 1)/2) + p(n = £5(3) +1)/2)) + -+ = be(n).

Proof. We have

> bi(n)g"
17 (1 —¢")
B kl;[l (1-q")

= (bl + 31 (o) — £3637 = )/2) + ol — 535+ 1)/20) )
from which the result follows. O]
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We close this section with a recurrence relation for the number of partitions of n having
parts congruent to £c¢ (mod m).

Theorem 8. Given integers a and m > 1, we let pt,(n) denote the number of partitions of
n having parts congruent to =c modulo m. Then, for alln > 0,

P () =B — (m — ) = (0 — ) + b, (0 — (3m — 20))
+ph(n = (m+20) + -+ + (=1)7py, (n — (mj® + (m — 2)5)/2)
+ (=175, (n — (mg® — (m — 2¢)j)/2) +
1, if n = mks;
=9 -1, ifn=mky;
0, otherwise,

where k5 (resp., k?) is the j-th even (resp., odd) pentagonal number [9, AO14633] (resp., [9,
A014632]).

Proof. Setting ¢ = —¢™ ¢ and b = —¢¢ in (3) and (5), we obtain

(@™ %50 )oo (0% 0™ )oc(@™: 4™ )00 = f(=¢" % —4°)

> ey G 3G
=) (=¢") T (=)
Jj=—00
which yields
0 . mj +(7n 2¢)j a m C mk—(m—c m
> (-1 =II0 - a™ =i - ()
j=—00 k=1

The generating function for pf, is given by

[e.9]

prn@)q’ - H mk—c mk—(m—c)\ "’
— o (L= gmhe)(1 — gk lmee))

Hence, we can rewrite (17) as

o' 1 [e%e] . o o0
H (1 — gmk—c)(1 — gmk—(m—)) Z (=1)q : H = H L—q"

k=1 j=—00 k=1

or, equivalently,

o0

me )¢ i ) A ) S S e

j=—00 Jj=—00

13


https://oeis.org/A014633
https://oeis.org/A014632

This last identity yields

o . mjZ4(m—2c)j e . mjZ—(m—2c)j
me ( +2 (=1 TETR LY (1t 2“)

Z( +Z — (mj%+ (m —20)5)/2)

n=0

—_

.

(1Y (n — (g — (m— 2c>j>/2>) -

Therefore
00 ' m](3j o) 00 .
S (-1 Z( ny+3 (-1 (m? + (m — 20)5)/2)
j=—o00 n=0 j=1
H1)88 (0 — (mg? — (m — 2c>j>/2>)qn
which completes the proof. ]

As special cases of Theorem 8, we have the following corollaries which provide recurrence
relations for the number of partitions that appear in the well-known Rogers-Ramanujan’s
identities.

Corollary 9. Let pri(n) denote the number of partitions of n whose parts are congruent to
+1 modulo 5 and let pro(n) denote the number of partitions of n whose parts are congruent
to £2 modulo 5. Then, for all n > 0, we have

pri(n) —pri(n —1) = pri(n —4) + pri(n —7) + pri(n — 13) —
-+ (=1 (pra(n — j(55 — 3)/2) + pra(n — j(55 + 3)/2)) +

1, if n = 5hg;
=91, fn=>5"%;
0, otherwise,

and

pr2(n) — Pro(n — 1) — pro(n — 2) + pro(n — 5) + pro(n = 7) — - -
A (=1 (pra(n = 5(37 = 1)/2) + pro(n — § (35 +1)/2)) +

1, ifn=kj;
=<1, ifn==Fky;
0, otherwise,

where h§ (resp., h$) is the j-th heptagonal number [9, AOSSTS8T] with j even (resp., odd).

14
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Corollary 10. Let s1(n) denote the number of partitions of n having congruent to +£1 modulo
6 and let so(n) denote the number of partitions of n whose parts are congruent to +2 modulo
6. Then, for alln >0,

si(n) —si(n—1) —s1(n —5) + s1(n —8) + s1(n — 16) — - -
o (1) (s1(n = 535 = 2)) +s1(n = j(35 +2))) + -

= $9(n) — sa(n —2) — sa(n —4) + so(n — 10) + so(n — 14) — - -
o (=1 (s2(n = (35 = 1) + s2(n — j(3] + 1)) +

1, if n = 6kj;
=4 —1, ifn=06k
0, otherwise.
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