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Abstract

In this paper, we consider families of Toeplitz-Hessenberg determinants the entries
of which are tetranacci numbers. In several cases, it is found that these determinants
have simple closed form expressions in terms of well-known combinatorial sequences.
Equivalently, the determinant formulas may be expressed as identities involving sums of
products of tetranacci numbers and multinomial coefficients. In particular, we establish
a connection between the tetranacci and both the Fibonacci and tribonacci number
sequences via Toeplitz-Hessenberg determinants. Finally, combinatorial proofs that
make use of sign-changing involutions and the formal definition of the determinant as
a signed sum over the permutation group may be provided for several of the identities.
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1 Introduction

Over the years many generalizations of the Fibonacci numbers have been studied; see, for in-
stance, [16] for a complete bibliography. Among the best known of these are the k-generalized

Fibonacci numbers F
(k)
n satisfying the k-th order recurrence

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k, n ≥ k, (1)

with initial values
F

(k)
0 = F

(k)
1 = · · · = F

(k)
k−2 = 0, F

(k)
k−1 = 1.

These numbers are also known as Fibonacci k-sequences, generalized Fibonacci numbers of

order k, Fibonacci k-step numbers, and k-bonacci numbers.
By subtraction, equation (1) is equivalent to the (k + 1)-st order recurrence F

(k)
n =

2F
(k)
n−1 − F

(k)
n−k−1 for all n ≥ k + 1. The F

(k)
n may be computed directly using the following

“Binet-like” formula [10]

F (k)
n =

k
∑

i=1

(αi − 1)αn−k+1
i

2 + (k + 1)(αi − 2)
, n ≥ k − 1,

where α1, . . . , αk are the roots of x
k−xk−1−· · ·−x−1 = 0. The F

(k)
n are also given explicitly

by the multinomial summation formula [24]

F (k)
n =

∑

i1,...,ik≥0
i1+2i2+···+kik=n−k+1

(

i1 + i2 + · · ·+ ik
i1, i2, . . . , ik

)

.

The cases of F
(k)
n for 2 ≤ k ≤ 6 are known as the Fibonacci, tribonacci, tetranacci,

pentanacci, and hexanacci numbers (and so on for larger k), and are denoted by Fn, Tn, tn,
pn, and hn, respectively. In this paper, we focus primarily on various combinatorial aspects
of tn, including a connection to both Fn and Tn. The sequences Fn, Tn, tn, pn, and hn are
indexed in the On-Line Encyclopedia of Integer Sequences [26], the first few terms of which
are given below (see also entries A122189, A079262, A104144):

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Seq. in [26]

Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 A000045
Tn 0 0 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 A000073
tn 0 0 0 1 1 2 4 8 15 29 56 108 208 401 773 1490 A000078
pn 0 0 0 0 1 1 2 4 8 16 31 61 120 236 464 912 A001591
hn 0 0 0 0 0 1 1 2 4 8 16 32 63 125 248 492 A001592

In addition to their significance in combinatorics, the numbers F
(k)
n have applications to

a wide variety of research areas such as physics [25], sorting algorithms [15], graph theory [2],
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coding theory [3, 18], and probability [9]. See also [1, 4, 5, 10, 12, 14, 22, 24] and references
contained therein.

In the present paper, we investigate determinants of some families of Toeplitz-Hessenberg
matrices whose entries belong to the tetranacci sequence and have successive, odd or even
subscripts. Recall that the tetranacci numbers tn = F

(4)
n are defined recursively by

tn = tn−1 + tn−2 + tn−3 + tn−4, n ≥ 4,

with t0 = t1 = t2 = 0 and t3 = 1. This sequence has been studied in its own right by several
authors; see, for example, [13, 17, 27, 28].

The organization of this paper is as follows. In the next section, we introduce notation and
remind the reader of some preliminary results. The subsequent two sections feature our main
results concerning determinants of Toeplitz-Hessenberg matrices having tetranacci number
entries, and extensions of several of the identities to F

(k)
n are observed. In the fifth sec-

tion, multi-sum versions of the identities are presented that involve products of multinomial
coefficients and powers of tetranacci numbers. In the final section, we provide combinato-
rial proofs of most of the preceding tetranacci determinant identities using a common tiling
approach.

2 Toeplitz-Hessenberg matrices and determinants

A lower Hessenberg matrix Hn = (hij) is an n × n matrix whose entries above the super-
diagonal are all zero, i.e.,

Hn =



















h11 h12 0 · · · 0 0
h21 h22 h23 · · · 0 0
h31 h32 h33 · · · 0 0

· · · · · · · · · . . . · · · · · ·
hn−1,1 hn−1,2 hn−1,3 · · · hn−1,n−1 hn−1,n

hn1 hn2 hn3 · · · hn,n−1 hnn



















.

Hessenberg matrices play an important role in both computational and applied mathematics
(see, for example, [8, 19] and references therein). Perhaps one of the reasons for this is that
det(Hn) may be calculated quickly using the recurrence [7]

det(Hn) = hnn det(Hn−1) +
n−1
∑

k=1

(−1)n−khnk det(Hk−1)
n−1
∏

i=k

hi,i+1, n ≥ 1, (2)

where, by definition, det(H0) = 1.
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With the special choice hij = ai−j+1 for all i and j, i.e., on each diagonal all the elements
are the same, we have the Toeplitz-Hessenberg matrix

Mn(a0; a1, . . . , an) =



















a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
a3 a2 a1 · · · 0 0

· · · · · · · · · . . . · · · · · ·
an−1 an−2 an−3 · · · a1 a0
an an−1 an−2 · · · a2 a1



















,

where a0 6= 0 is assumed. Then, from (2), we obtain

det(Mn) =
n
∑

k=1

(−a0)k−1ak det(Mn−k), n ≥ 1, (3)

with det(M0) = 1.
We investigate particular cases of Toeplitz-Hessenberg matrices in which the superdiag-

onal element a0 is equal ±1. To simplify our notation, we write det(a0; a1, . . . , an) in place
of det (Mn(a0; a1, . . . , an)).

In proving the identities below, we determine a generating function (gf) formula for the
sequence (det(Mn))n≥1 in question. Let

g(x) =
∑

i≥1

(−a0)i−1aix
i and f(x) =

∑

n≥1

det(a0; a1, . . . , an)x
n.

Then recurrence (3) may be expressed equivalently in terms of gf’s as

f(x) =
g(x)

1− g(x)
. (4)

Thus, it suffices to compute the gf for the sequence (ai)i≥1. We find in several instances
below where ai corresponds to some translate of the tetranacci sequence (or half-sequence)
that the n-th coefficient of f(x) assumes a particularly simple form.

3 Fibonacci and tribonacci numbers via tetranacci de-

terminants

The next theorem provides a couple of connections between tetranacci and Fibonacci num-
bers in terms of Toeplitz-Hessenberg determinants.
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Theorem 1. The following formulas hold:

det(1; t2, t3, . . . , tn+1) =

⌊n2 ⌋
∑

i=1

(−1)n−iFn−2i+1 (5)

=

{

Fn−1

2

Fn+1

2

, if n is odd;

−(Fn/2)
2, if n is even,

n ≥ 1, (6)

det(1; t5, t7, . . . , t2n+3) = (−1)n−1Fn+2, n ≥ 3. (7)

Proof. First note that by standard methods, we have

∑

n≥3

tnx
n =

x3

1− x(1 + x+ x2 + x3)
, (8)

which implies

g(x) =
∑

n≥1

tn+1(−1)n−1xn = − x2

1 + x(1− x+ x2 − x3)
.

By (4), we then have

∑

n≥1

det(1; t2, t3, . . . , tn+1)x
n =

g(x)

1− g(x)
= − x2

1 + x(1 + x2 − x3)
.

On the other hand,

∑

n≥1

xn







⌊n2 ⌋
∑

i=1

(−1)n−iFn−2i+1






=
∑

i≥1

(−1)i
∑

n≥2i

Fn−2i+1(−x)n

=
∑

i≥1

(−1)i(−x)2i−1
∑

n≥1

Fn(−x)n =
x

1 + x2
· −x
1 + x− x2

= − x2

1 + x+ x3 − x4
,

as before, which implies (5). The expression (6) follows from (5) and considering the un-
derlying gf in each of the identities (26)–(29) from [6]. A proof similar to that given for (5)
applies to (7) wherein one considers the even part of

∑

n≥1 tn+3x
n, the details of which we

leave to the reader.

A proof comparable to the one given for Theorem 1 yields the following relation between
tetranacci and tribonacci numbers.

Theorem 2. For all n ≥ 2,

det(1; t0, t1, . . . , tn−1) = (−1)n−1Tn−2. (9)
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4 Some Toeplitz-Hessenberg determinants with tetra-

nacci entries

In this section, we feature the determinants of several Toeplitz-Hessenberg matrices whose
entries are tetranacci numbers with consecutive, even or odd subscripts.

Theorem 3. Let n ≥ 1, except when noted otherwise. Then

det(−1; t0, t1, . . . , tn−1) = (−1)⌊n/2⌋ · 2 + (−1)n
10

+
5(−1)n + 2n

30
(10)

=
n−3
∑

i=1

(−1)i(1− 2n−i−2)−
⌊n−2

2 ⌋
∑

i=1

(−1)i(1− 2n−2i−2), (11)

det(−1; t1, t2, . . . , tn) =
⌊n−3

2 ⌋
∑

i=0

n−2i−3
∑

j=0

(

n− 3− i− j

i

)(

2i

j

)

, (12)

det(1; t3, t4, . . . , tn+2) = (−1)n−1

⌊n−1

2 ⌋
∑

i=0

⌊n−1

2 ⌋
∑

j=0

(

j

2i+ 3j − n+ 1

)(

2i+ 3j − n+ 1

i

)

, (13)

det(1; t4, t5, . . . , tn+3) = 0, n ≥ 5, (14)

det(1; t5, t6, . . . , tn+4) =
1 + (−1)⌊n/2⌋

2
, n ≥ 2, (15)

det(1; t1, t3, . . . , t2n−1)

=

√
17

17



(4 +
√
17)

(

−3−
√
17

2

)n−3

− (4−
√
17)

(

−3 +
√
17

2

)n−3


 , n ≥ 3, (16)

det(1; t0, t2, . . . , t2n−2)

=

√
21

42



(5 +
√
21)

(

−3−
√
21

2

)n−3

− (5−
√
21)

(

−3 +
√
21

2

)n−3


 , n ≥ 3, (17)

det(1; t6, t8, . . . , t2n+4) = 1, n ≥ 4. (18)

Proof. We provide proofs of formulas (12), (13), (15), and (16). Adapting the featured proofs
will yield the remaining identities, the details of which we leave to the reader. First note
that from (8), we have

g(x) =
∑

n≥1

(−a)n−1tnx
n =

a2x3

1 + ax− (ax)2 + (ax)3 − (ax)4
. (19)
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Let f(x) denote the gf for the determinant expression on the left side in each of the identities
(12), (13), (15), and (16). We now show (12). Taking a = −1 in (19) implies

f(x) =
∑

n≥1

det(−1; t1, t2, . . . , tn)xn =
g(x)

1− g(x)
=

x3

1− x− x2 − 2x3 − x4
.

On the other hand, the right side of (12) has gf given by

∑

n≥3

xn

⌊n−3

2
⌋

∑

i=0

n−2i−3
∑

j=0

(

n− 3− i− j

i

)(

2i

j

)

=
∑

i≥0

∑

j≥0

(

2i

j

)

∑

n≥2i+j+3

(

n− 3− i− j

i

)

xn

=
∑

i≥0

∑

j≥0

(

2i

j

)

xi+j+3
∑

n≥i

(

n

i

)

xi =
∑

i≥0

2i
∑

j=0

(

2i

j

)

xi+j+3 · xi

(1− x)i+1

=
∑

i≥0

x2i+3

(1− x)i+1
· (1 + x)2i =

x3

1− x
· 1

1− x2(1+x)2

1−x

=
x3

1− x− x2 − 2x3 − x4
,

as before.
For (13), note that taking a = 1 in (19) yields

∑

n≥1

tn+2(−1)n−1xn =
1

x2

∑

n≥3

tn(−1)n−1xn =
x

1 + x− x2 + x3 − x4
,

and thus f(x) = x
1−x2+x3−x4 , by (4). As for the right-hand side of (13), first note that one

may assume 0 ≤ i ≤ j in the sum and thus may write

⌊n−1

2 ⌋
∑

i=0

⌊n−1

2 ⌋
∑

j=0

(

j

2i+ 3j − n+ 1

)(

2i+ 3j − n+ 1

i

)

=

⌊n−1

2 ⌋
∑

j=0

j
∑

i=0

(

j

i

)(

j − i

i+ 3j − n+ 1

)

.

Multiplying this last expression by (−1)n−1xn, summing over n ≥ 1, and interchanging
summation gives

−
∑

j≥0

j
∑

i=0

(

j

i

)

∑

n≥1

(

j − i

n− 1− 2i− 2j

)

(−x)n = −
∑

j≥0

j
∑

i=0

(

j

i

)

(−x)2j+2i+1
∑

n≥0

(

j − i

n

)

(−x)n

=
∑

j≥0

j
∑

i=0

(

j

i

)

x2j+2i+1 · (1− x)j−i =
∑

j≥0

x2j+1

j
∑

i=0

(

j

i

)

x2i(1− x)j−i

=
∑

j≥0

x2j+1 · (1− x+ x2)j =
x

1− x2(1− x+ x2)
,

as before.
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For (15), first observe that

∑

n≥1

tn+4x
n =

1

x4

∑

n≥5

tnx
n =

1

x4

(

x3

1− x(1 + x+ x2 + x3)
− x3 − x4

)

=
(1 + x)(1 + x+ x2 + x3)− 1

1− x(1 + x+ x2 + x3)
.

This gives
∑

n≥1

tn+4(−1)n−1xn =
1− (1− x)(1− x+ x2 − x3)

1 + x(1− x+ x2 − x3)
,

and thus by (4),

f(x) =
∑

n≥1

det(1; t5, t6, . . . , tn+4)x
n =

1− (1− x)(1− x+ x2 − x3)

1− x+ x2 − x3

=
(2x− 2x2 + 2x3 − x4)(1 + x)

1− x4

=
2x+ x4 − x5

1− x4
=
(

2x+ x5 + x9 + x13 + · · ·
)

+
(

x4 + x8 + x12 + · · ·
)

.

Extracting the coefficient of xn for n ≥ 2 in the last expression yields (15).
Finally, for (16), note that taking the odd part of the gf formula

∑

n≥1

tnx
n =

x3(1− x)

1− 2x+ x5

gives

∑

n≥1

t2n−1x
2n−1 =

1

2

(

x3(1− x)

1− 2x+ x5
+

x3(1 + x)

1 + 2x− x5

)

=
x3 − 2x5 + x9

1− 4x2 + 4x6 − x10
,

whence
∑

n≥1

t2n−1x
n =

x2 − 2x3 + x5

1− 4x+ 4x3 − x5
.

Then by (4),
∑

n≥1

det(1; t1, t3, . . . , t2n−1)x
n = − x2 + 2x3 − x5

1 + 4x+ x2 − 2x3
,

and thus

∑

n≥3

det(1; t1, t3, . . . , t2n−1)x
n =

2x3 + x4 − x5

1 + 4x+ x2 − 2x3
=

x3(2− x)

1 + 3x− 2x2
.

8



On the other hand, a straightforward calculation gives

√
17

17



(4 +
√
17)
∑

n≥3

(

−3−
√
17

2

)n−3

xn − (4−
√
17)
∑

n≥3

(

−3 +
√
17

2

)n−3

xn





=
2x3 − x4

1 + 3x− 2x2
,

which implies (16).

Remark 4. Extensions of formulas (9), (10), and (13) above in terms of the generalized

Fibonacci numbers F
(k)
n were given in [11] where combinatorial proofs are provided. When

k = 4 in the extensions of (10) and (13), one gets equivalently ⌊2n+14
30
⌋ for the right side of

(10) and (−1)n−1qn for the right side of (13), where qn is the sequence defined recursively
by qn = qn−2 + qn−3 + qn−4 for n ≥ 4, with initial conditions q0 = 0, q1 = 1, q2 = 0, q3 = 1.
The equivalence between qn and the binomial expression above will be apparent with the
combinatorial proof of (13) given in the final section.

Furthermore, generalizing the combinatorial proof yields the following extension of (7)

in terms of F
(k)
n for k ≥ 3:

(−1)n−1 det
(

1;F
(k)
k+1, F

(k)
k+3, . . . , F

(k)
2n+k−1

)

=































k

2
∑

i=1

iF
( k

2 )
n−i+ k−2

2

+

k−2

2
∑

i=1

iF
( k

2 )
n+i− k+2

2

, if n ≥ k − 1, k even;

k+1

2
∑

i=1

iF
( k−1

2 )
n−i+ k−3

2

+

k−1

2
∑

i=1

iF
( k−1

2 )
n+i− k+3

2

, if n ≥ k, k odd.

(20)

Taking k = 4 in (20) gives (7), while taking k = 3 gives det(1;T4, T6, . . . , T2n+2) = 4(−1)n−1

for n ≥ 3, which occurs in [11]. Finally, the combinatorial argument for formula (14) may
be readily generalized to yield

det
(

1;F
(k)
k , F

(k)
k+1, . . . , F

(k)
n+k−1

)

= 0, n ≥ k + 1. (21)

5 Applications by Trudi’s formula

In this section, we consider multinomial versions of Theorems 1–3 above using the following
result, known as Trudi’s formula. See, for example, [20, Theorem 1] and [21].

Lemma 5. Let n be a positive integer. Then

det(Mn) =
∑

s1,...,sn≥0
s1+2s2+···+nsn=n

(

s1 + · · ·+ sn
s1, . . . , sn

)

(−a0)n−s1−···−snas11 as22 · · · asnn (22)
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or, equivalently,

det(Mn) =
n
∑

k=1

(−a0)n−k
∑

i1,...,ik≥1
i1+i2+···+ik=n

ai1ai2 · · · aik .

The case a0 = 1 of Trudi’s formula is known as Brioschi’s formula [23]. Note that the sum
in (22) may be regarded as being over the set of partitions of the positive integer n.

We may use Trudi’s formula to obtain some new tetranacci identities involving multino-
mial coefficients. Formula (22), when taken together with Theorems 1–3 above, yields the
following identities.

Corollary 6. Let n ≥ 1, except when noted otherwise, and let σn = s1 + 2s2 + · · · + nsn,
|s| = s1 + s2 + · · ·+ sn, and mn(s) =

(

s1+···+sn
s1,...,sn

)

where si ≥ 0 for all i. Then

∑

σn=n

(−1)|s|mn(s)t
s1
2 ts23 · · · tsnn+1 =

⌊n2 ⌋
∑

i=1

(−1)iFn−2i+1,

∑

σn=n

(−1)|s|mn(s)t
s1
5 ts27 · · · tsn2n+3 = −Fn+2, n ≥ 3,

∑

σn=n

(−1)|s|mn(s)t
s1
0 ts21 · · · tsnn−1 = −Tn−2, n ≥ 2,

∑

σn=n

mn(s)t
s1
0 ts21 · · · tsnn−1 = (−1)⌊n/2⌋ · 2 + (−1)n

10
+

5(−1)n + 2n

30
,

∑

σn=n

mn(s)t
s1
1 ts22 · · · tsnn =

⌊n−3

2 ⌋
∑

i=0

n−2i−3
∑

j=0

(

n− 3− i− j

i

)(

2i

j

)

,

∑

σn=n

(−1)|s|mn(s)t
s1
3 ts24 · · · tsnn+2 = −

⌊n−1

2 ⌋
∑

i=0

⌊n−1

2 ⌋
∑

j=0

(

j

2i+ 3j − n+ 1

)(

2i+ 3j − n+ 1

i

)

,

∑

σn=n

(−1)|s|mn(s)t
s1
4 ts25 · · · tsnn+3 = 0, n ≥ 5,

∑

σn=n

(−1)|s|mn(s)t
s1
5 ts26 · · · tsnn+4 =

(−1)n + (−1)⌊3n/2⌋
2

, n ≥ 2,

∑

σn=n

(−1)|s|mn(s)t
s1
1 ts23 · · · tsn2n−1

=

√
17

17



(4−
√
17)

(

3−
√
17

2

)n−3

− (4 +
√
17)

(

3 +
√
17

2

)n−3


 , n ≥ 3,
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∑

σn=n

(−1)|s|mn(s)t
s1
0 ts22 · · · tsn2n−2

=

√
21

42



(5−
√
21)

(

3−
√
21

2

)n−3

− (5 +
√
21)

(

3 +
√
21

2

)n−3


 , n ≥ 3,

∑

σn=n

(−1)|s|mn(s)t
s1
6 ts28 · · · tsn2n+4 = (−1)n, n ≥ 4.

6 Combinatorial proofs

Recall that the determinant of an n× n matrix A = (ai,j) is given by

det(A) =
∑

σ∈Sn

(−1)sgn(σ)a1,σ(1)a2,σ(2) · · · an,σ(n),

where Sn is the set of permutations σ of size n and sgn(σ) denotes the sign of σ. Assume
permutations are expressed in the standard cycle form; i.e., the smallest element is first
in each cycle with cycles arranged from left to right in increasing order of first elements.
In the case when A is Toeplitz-Hessenberg, the only permutations σ making a potentially
nonzero contribution towards the determinant are those in which each cycle comprises a set
of consecutive integers in increasing order. Note that otherwise the product corresponding
to σ would contain an ai,j factor for some j > i+ 1.

If Pn denotes the set of all such permutations σ of length n, then one may replace Sn by Pn

in the definition of det(A) above when A is Toeplitz-Hessenberg. Recall that a composition

of n is a sequence of positive integers, called parts, whose sum is n. Note that σ ∈ Pn may
be regarded as a composition ρ of n, upon identifying the sequence of cycle lengths as a
sequence of parts. Assume that the sign of ρ is the same as that of the associated σ; i.e., let
ρ have sign (−1)n−ν(ρ), where ν(ρ) denotes the number of parts of ρ.

For a composition ρ = (x1, . . . , xm) of n, define the (signed) weight by (−1)n−m
∏m

i=1 axi
,

where (ai)i≥0 is the sequence associated with A. If A is of size n with superdiagonal entry
a0 = 1, then det(A) gives the sum of the (signed) weights of all compositions of n. In what
follows, it will be convenient to view compositions ρ of n as linear tilings of length n where
parts are identified as tiles of various lengths. Here, it is understood that all tiles of the
same length are indistinguishable. The tilings themselves may be viewed as coverings of the
members of [n] = {1, 2, . . . , n}, written consecutively in a row.

Tiles covering a single, two consecutive, or three consecutive numbers are known as
squares, dominos, and trominos, respectively. Let s, d, t, q denote respectively a square,
domino, tromino, or 4-tile. We will refer to tilings using only pieces from {s, d, t, q} as
quaternary. Let Qn denote the set of quaternary tilings of length n. From the recurrence, it
is seen that there are tn+3 members of Qn for all n ≥ 0. Here, we will make frequent use of
this interpretation for tn in providing bijective proofs of several of the foregoing determinant
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identities. More generally, F
(k)
n+k−1 for k ≥ 2 counts the tilings of length n where one is

allowed to use any tile of length up to and including k. When k = 2, this gives the familiar
square-and-domino tilings enumerated by Fn+1; see, e.g., [6, Chapter 1]. Benjamin and
Heberle [5] proved combinatorially some k-generalized Fibonacci identities that had been
shown algebraically by Howard and Cooper [12] employing a tiling approach, which has
been used subsequently in deducing tetranacci identities [13].

Note that generalizations of identities (9)–(11) above appear in [11], where combinatorial
proofs were given. Below, we provide combinatorial proofs of all the remaining identities in
Theorems 1–3 above with the exception of (16) and (17). In the first group of identities,
the determinant in question can be viewed as a sum of signs of “marked” members of Qn

wherein certain tiles may be designated.

6.1 Proofs of identities (5), (6), (7), and (14)

For (5) and (6), we may assume n ≥ 2, the n = 1 case being obvious. For (5), first let A = An

denote the set of quaternary tilings of length n in which d’s may be marked and ending in
a marked d. Define the sign by (−1)n−(# of marked d’s). Note that a cycle of length i within
σ ∈ Pn whose contribution towards det(1; t2, t3, . . . , tn+1) is nonzero must have i ≥ 2 and be
associated with a tiling (of length i− 2) enumerated by ti+1. Putting a marked d at the end
of each such tiling and concatenating the resulting tilings yields a member λσ ∈ A for each
possible σ. Since the sign of λσ equals sgn(σ) for all σ, it follows that det(1; t2, t3, . . . , tn+1)
gives the sum of the signs of all members of A.

We define a sign-changing involution on A by identifying the rightmost d within λ ∈ A,
excluding the final d, and either marking or unmarking it. Let A′ denote the set of survivors
of this involution. Then members of A′ contain a single d (at the end) and thus have sign
(−1)n−1. Furthermore, they may be identified as tilings that use only s, t or q pieces. Let L
denote the set of tilings of length n− 2 using {s, d} and ending in an even number (possibly
zero) of d. Then the replacements d2 7→ q, ds 7→ t, with all other s pieces staying the same
within each member of L, defines a bijection between L and A′ and hence |A′| = |L|.

To complete the proof of (5), it suffices to show that the product of |L| with (−1)n−1 is
given by the right-hand side. To do so, we consider the set of ordered pairs (α, β) where α is
a square-and-domino tiling of length n−2i for some 1 ≤ i ≤ ⌊n/2⌋ and β = di, with the sign

taken to be (−1)n−i. Then
∑⌊n/2⌋

i=1 (−1)n−iFn−2i+1 gives the sum of the signs of all possible
(α, β). Define an involution as follows. If α ends in an odd number of d’s, then remove a d
from α and add it to β, and vice versa, if α ends in an even number of d’s and β = di with
i ≥ 2. The survivors of this involution each have sign (−1)n−1 and are synonymous with the
members of L, as desired.

To show (6), we consider the parity of n. First assume n = 2m. If m = 2t for some t ≥ 1,
then members of L in this case are of the form ρ = ρ′sd2ℓ where 0 ≤ ℓ ≤ t− 1. Thus ρ′ is of
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length 4t− 4ℓ− 3 and considering all possible ℓ gives

|L| =
t−1
∑

ℓ=0

F4t−4ℓ−2 = F 2
2t,

where the second equality follows from [6, Identity 27], which was explained combinatorially
there. Note that since each survivor had sign (−1)n−1, the n = 4t case of (6) follows. If
m = 2t+ 1 where t ≥ 0, then ρ ∈ L implies ρ = d2t or ρ = ρ′sd2ℓ where 0 ≤ ℓ ≤ t− 1 and ρ′

is of length 4t− 4ℓ− 1. This implies

|L| = 1 +
t−1
∑

ℓ=0

F4t−4ℓ = 1 + F2tF2t+2 = F 2
2t+1,

where the last two equalities, which themselves have combinatorial proofs, follow from Iden-
tities 29 and 8 respectively in [6]. This then completes the even case of (6). The odd case
of (6) follows in a similar fashion and makes use of Identities 26 and 28 from [6].

To show (7), first let B = Bn denote the set of quaternary tilings of length 2n in which
tiles terminating in even-numbered positions (including squares) may be marked, with the
terminal tile always marked. Define the sign by (−1)n−(# of marked tiles). Note that a cycle of
length i within σ ∈ Pn is associated with a quaternary tiling of length 2i for each i ≥ 1.
Upon marking the final piece within each of these associated tilings and concatenating, one
obtains for each σ ∈ Pn a unique λσ ∈ B. Since σ and λσ have the same sign for all σ, it
follows that det(1; t5, t7, . . . , t2n+3) gives the sum of the signs of all members of B.

Let B′ ⊆ B consist of those tilings λ of the form λ = sαs, sαt, tαs, or tαt, where α
contains no s or t. Note that members of B′ contain no piece ending in an even-numbered
position (other than the terminal) and thus have sign (−1)n−1. Since n ≥ 3, it is seen upon
halving that

|B′| = Fn + 2Fn−1 + Fn−2 = 2Fn + Fn−1 = Fn+2.

Furthermore, all members of B that do not contain a tile terminating in an even-numbered
position other than the last are of one of the four aforementioned forms and hence belong to
B′. To complete the proof of (7), define a sign-changing involution of B−B′ by identifying the
rightmost piece terminating at position 2i for some i < n and either marking or unmarking
that piece.

For (14), let C denote the set of quaternary tilings of length n in which any tile may be
marked, with the final tile always marked and the sign defined as in the proof of (7). Then
we have that det(1; t4, t5, . . . , tn+3) gives the sum of the signs of all members of C. Define an
involution by either marking or unmarking the penultimate tile. Note that n ≥ 5 implies
that this involution is defined on all of C, whence the determinant is zero.

6.2 Identities (12) and (13)

We may assume n ≥ 3 in the proof of (12), the n = 1, 2 cases being easily verified. Let D
denote the set of quaternary tilings of length n in which trominos may be marked, with the
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final piece a marked tromino. Within the contribution of each σ ∈ Pn towards the determi-
nant sum, the product of the superdiagonal −1’s is the same as sgn(σ). Since each cycle C
within a contributing σ has length at least 3 in this case and is associated with a quaternary
tiling of length |C| − 3 (to which we append a marked tromino prior to concatenating the
various tilings that result), it is seen that det(−1; t1, t2, . . . , tn) gives the cardinality of the
set D.

We now show that the right side of (12) also counts the members of D, but in a different
way. To do so, note that members of D may be formed as follows. Given 0 ≤ j ≤ n − 3,
we first form a square-and-domino tiling ρ of length n − 3 − j having exactly i dominos,
which can be effected in

(

n−3−i−j
i

)

ways. Then select exactly j of the 2i numbered positions

within ρ that are covered by the i dominos, which can be done in
(

2i
j

)

ways. Let d denote
an arbitrary domino of ρ. If both halves of d correspond to chosen positions, then replace d
with a q. If only one of the halves of d was chosen, then replace d with a t, which we mark if
the first half of d was chosen and leave unmarked if not. If neither half of d corresponds to
a chosen position, then leave d unchanged. Finally, we leave all squares of ρ unchanged and
add a marked t to the end of the resulting tiling. In this way, ρ is transformed to ρ′ ∈ D in
which there are exactly i+1 pieces of length at least two altogether (counting the last piece)
and (# of t) + 2(# of q) = j + 1. Since the operation converting ρ to ρ′ may be reversed,
considering all possible i and j implies |D| is given by the right side of (12), as desired.

For (13), let E denote the set of quaternary tilings of length n in which squares may
be marked and ending in a marked square. Define the sign as (−1)n−(# of marked s’s). Then
det(1; t3, t4, . . . , tn+2) gives the sum of the signs of all members of E . Define an involution
on E by identifying the rightmost non-terminal square and either marking or unmarking
it. Then the set E ′ of survivors are synonymous with the tilings of length n − 1 that use
{d, t, q}, with each member of E ′ having sign (−1)n−1. To complete the proof, we must show
that the sum on the right side gives |E ′|. Note that we may assume i ≤ j in this sum,
with 0 ≤ n− 1− 2i− 2j ≤ j, for otherwise the product of the binomial coefficients is zero.
Consider members of E ′ containing i q’s and j tiles altogether. Then there are n−1−2i−2j
t’s and thus

(

j

i, n− 1− 2i− 2j, i+ 3j − n+ 1

)

=

(

j

2i+ 3j − n+ 1

)(

2i+ 3j − n+ 1

i

)

such members of E ′. Summing over all possible i and j implies (13).

We conclude with proofs of formulas (15) and (18), where we regard the determinant
in each case as a signed sum over sets of configurations whose members are vectors with
quaternary tiling components where the sum of component lengths now depends upon the
number of components.
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6.3 Identities (15) and (18)

To show (15), first let Fn,j for n ≥ 2 and 1 ≤ j ≤ n be given by

Fn,j = {(λ1, . . . , λj) :

j
∑

i=1

(|λi| − 1) = n, where λi is quaternary with |λi| ≥ 2 for all i}.

Define the sign of members of Fn,j by (−1)n−j and let Fn = ∪n
j=1Fn,j. Then, by the

definition of the determinant, we have that det(1; t5, t6, . . . , tn+4) gives the sum of the signs
of all members of Fn.

We define a sign-changing involution on Fn for n ≥ 3. To do so, we pair members of
Fn,j for the various j with members of Fn,j−1 by changing in several cases the final few
components of λ = (λ1, . . . , λj) ∈ Fn,j as indicated (only the relevant components being
shown):

• λj−1 = α, λj = d←→ λj−1 = αs,

• λj−1 = α, λj = t←→ λj−1 = αd,

• λj−1 = α, λj = q ←→ λj−1 = αt,

• λj−1 = βd, λj = sd←→ λj−1 = βq,

• λj−1 = d, λj = sd←→ λj−1 = st,

• λj−2 = α, λj−1 = s2, λj = sd←→ λj−2 = αs, λj−1 = sd,

• λj−2 = α, λj−1 = q, λj = sd←→ λj−2 = αt, λj−1 = sd,

• λj−2 = α, λj−1 = sq, λj = sd←→ λj−2 = αq, λj−1 = sd,

where α and β denote tilings of length at least 2 and 1, respectively.
We now describe more fully the cases for 2 ≤ n ≤ 6. If n = 2, then the determinant is

zero in this case and we define the pairings on F2 as follows: (s3) ↔ (s2, d), (ds) ↔ (d, d),
(sd) ↔ (d, s2), and (t) ↔ (s2, s2). If n = 3, then we may apply the general pairings given
above for n ≥ 3, noting that the following cases are missed: λ = (q), λ = (s2, sd), or
λ = (λ′, s2) where λ′ ∈ F2 (written without parenthesization within λ). We may then
pair the first two cases since they are of opposite sign, with members λ in the third case
contributing zero towards the overall sum of signs by virtue of the pairings given in the n = 2
case. This implies that for n = 3 the determinant is also zero. If n = 4, then members of F4

that are not matched in the general pairings above are λ = (t, sd) or of the form λ = (λ′, s2)
where λ′ ∈ F3. Since the contribution in the second case is zero by virtue of the n = 3
pairings, the n = 4 case is established.

If n = 5, then the unpaired λ ∈ F5 are those of the form (i) λ = (λ′, s2) where λ′ ∈ F4,
(ii) λ = (s2, t, sd) or (d, t, sd), or (iii) λ = (st, sd) or (q, sd). Since the cases (ii) and (iii)
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cancel, applying the n = 4 pairings to (i) implies that the determinant is also 1 when n = 5.
Finally, if n = 6, then the unpaired λ ∈ F6 are those of the form (i) λ = (λ′, s2) where
λ′ ∈ F5, (ii) λ = (λ′, t, sd) where λ′ ∈ F2, or (iii) λ = (s2, st, sd), (d, st, sd), or (sq, sd). Note
that case (ii) contributes zero towards the sum of signs, while the unpaired λ in case (i),
namely (t, sd, s2, s2), may be matched with (s2, st, sd), and (d, st, sd) with (sq, sd), which
implies that the determinant is zero when n = 6. Thus, the required involution has been
defined completely for 2 ≤ n ≤ 6.

If n ≥ 7, then the set of survivors of the involution above are those λ whose last com-
ponent is γ = (s2) or whose last two components are either δ = (t, sd) or ε = (st, sd). In
this case, we look to the rightmost component of λ, say λs, where this does not hold and
apply one of the pairings given above, provided

∑s
i=1(|λi| − 1) ≥ 7. If not, then λ may be

expressed as λ = ρ∪ τ , where ρ ∈ Fi for some 2 ≤ i ≤ 6 and τ is a sequence in {γ, δ, ε} such
that ρ ∪ x has length at least 7, with x denoting the first “letter” of τ .

We may define an involution for λ = ρ ∪ τ of the stated form as follows. First suppose
ρ ∈ F2. Then x = ε and we may pair λ accordingly using ρ and the n = 2 case above.
Henceforth, we may assume ρ /∈ F2. Suppose that there exists a δ, γ string within τ . Then
we may replace the rightmost occurrence of such a string by ε, and vice versa, which reverses
the sign as the number of components of λ changes by one. Note that ρ /∈ F2 implies that
this operation is well-defined, for it would never be the case then that we would be replacing
an initial ε letter with δ, γ such that ρ ∪ δ ∈ F6. Now assume τ has the form γkδℓ for some
k and ℓ. If k ≥ 1, then ρ must belong to F6 and so we may apply the n = 6 case to ρ. Thus,
the only survivors of this last involution (taken together with all of the previous ones) are
those λ of the form λ = ρ ∪ δℓ such that ρ ∈ Fr where 3 ≤ r ≤ 6 and r ≡ n (mod 4). Note
that ρ and λ have the same sign and thus applying the pairings from the 3 ≤ r ≤ 6 cases
above to ρ implies for all n ≥ 7 that det(1; t5, t6, . . . , tn+4) = det(1; t5, t6, . . . , tr+4) where r
is as given, which completes the proof of (15).

To show (18), define Hn,j for n ≥ 4 and 1 ≤ j ≤ n by

Hn,j = {(λ1, . . . , λj) :

j
∑

i=1

|λi| = 2n+ j, where λi is quaternary with |λi| ≥ 3 odd for all i}.

Let members of Hn,j have sign (−1)n−j and Hn = ∪n
j=1Hn,j. Then it is seen from the

definitions that det(1; t6, t8, . . . , t2n+4) gives the sum of the signs of all members of Hn.
We define a sign-changing involution on Hn. To do so, we pair members of Hn,j with

members ofHn,j−1 by changing in several cases the final few components of λ = (λ1, . . . , λj) ∈
Hn,j as indicated (only the relevant components being shown):

• λj−1 = α, λj = s3 ←→ λj−1 = αd,

• λj−1 = α, λj = sd←→ λj−1 = αs2,

• λj−1 not ending in q, λj = ds←→ λ′
j−1,
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• λj−2 = γd, λj−1 = t, λj = t←→ λj−2 = γq, λj−1 = ds,

• λj−2 = βs, λj−1 = t, λj = t←→ λj−2 = βt, λj−1 = t,

• λj−2 = α, λj−1 = sq, λj = t←→ λj−2 = αq, λj−1 = t,

• λj−1 = βs, λj = t←→ λj−1 = βt,

• λj−1 = γd, λj = t←→ λj−1 = γq,

where α, β and γ represent arbitrary tilings of lengths at least 3, 2 and 1, respectively, and
λ′
j−1 in the third case is obtained from λj−1 by increasing the length of the last tile by one

and then appending s. Note that the sixth case above requires n ≥ 4.
Let H∗

n denote the set comprising those members of Hn not covered by one of the pre-
ceding pairings. Then λ ∈ H∗

n implies either (i) the final three or more components of λ are
each equal to the tiling consisting of a single t, preceded by a tiling that ends in s or d, (ii)
the final two or more components of λ equal t, preceded by a tiling that ends in t or q and
containing at least two pieces, or (iii) λ = (t, . . . , t) ∈ Hn,n. One may pair tilings in (i) with
those in (ii) by changing the final s or d piece in the rightmost tiling that is not t to t or
q, respectively, and deleting one of the terminal components t. This pairing, taken together
with those preceding it, implies that each member of Hn is paired with another of opposite
sign except for λ = (t, . . . , t) whose sign is positive, which yields (18).
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