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Abstract

We use tail sums of convergent series of positive real numbers to define a sequence

of non-negative integers, and explicitly determine this sequence for classes of series

defined by reciprocal sums of polynomials and rational functions. For this purpose we

develop a new difference calculus method to approximate infinite series.

1 Introduction

Let (xm)
∞
m=1 be a sequence of positive real numbers satisfying

∑∞
m=1 xm <∞. With (xm)m≥1

one associates a sequence of non-negative integers (an)
∞
n=1 by defining

an =
⌊ 1
∑∞

m=n xm

⌋

(n ≥ 1),

where ⌊.⌋ is the floor function. We call (an)
∞
n=1 the reciprocal sequence of (xm)

∞
m=1. The

sequence (an)
∞
n=1 is non-decreasing and divergent. Reciprocal sequences capture the rate of

convergence of their defining series, and sometimes give rise to nice arithmetic and combina-
torial structures. One can replace the floor function by the ceiling function or nearest integer
function, and create variants of this notion.

Many authors have already studied reciprocal sequence of sequences defined by reciprocals
of linear recurrence. Ohtsuka and Nakamura [4] derived a formula for reciprocal sequence of

xm =
1

Fm

(m ≥ 1),
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where Fm is the mth Fibonacci number. Ramifications and generalizations of this result
appear in several places, e.g., [3, 2]. Some papers have investigated the problem beyond
reciprocals of linear recurrence relation. Reciprocal sequences of ( 1

m4 )m≥1 and ( 1
m5 )m≥1 are

recorded in sequences A248230, A248234 respectively. Xin [6] and Xu [7] studied reciprocal
sequences of

xm =
1

mk
(m ≥ 1)

for k = 2, 3, 4, 5. They showed that reciprocal sequences of these sequences are given by
polynomials or polynomial like functions (for precise formulas see Section 4.3.2). In present
article we extend results of Xin and Xu to general classes of sequences arising from reciprocals
of polynomials and rational functions.

Let K be a subfield of R. It is sufficient to consider K = R,Q for the purposes of this
article. Suppose that P (X) ∈ K[X] is a polynomial of degree k ≥ 2 with positive leading
coefficient. Now Q is a subfield of K and K is dense in R with respect to Euclidean topology.
Hence there exists M0 ∈ K so that P (x) > 0 for all real x ≥M0+1. For fixed choice of such
M0, define a sequence of positive real numbers by

xm =
1

P (m+M0)
(m ≥ 1). (1)

Since k ≥ 2 we have
∑

m≥1 xm < ∞. To calculate terms of reciprocal sequence of (xm)m≥1

one needs to estimate sums of the form

∞
∑

m=n

1

P (m+M0)
. (2)

The standard way to approximate sums of this form is to apply summation formulas from
analysis (e.g., the Euler-Maclaurin summation formula [1, p. 806]). For reciprocal power
sums, i.e., P (X) = Xk and M0 = 0, a precise estimate of (2) is readily available from
the asymptotic expansion of the polygamma function [1, p. 260]. Though these summation
formulas produce estimates up to higher order, they often lead to complicated computations
and problems regarding convergence.

The goal of this paper is to present an improvised technique based on difference calculus,
which bypasses analytic tools and provides a good upper bound as well as a lower bound
for (2). The central idea behind our method is to find a suitable polynomial f so that
the rational function 1

P (X)
is approximately equal to 1

f(X)
− 1

f(X+1)
, i.e., 1

f(X)
acts like the

difference primitive of − 1
P (X)

. Once we have determined f , bounds on (2) simply follow by

telescoping. This strategy bears resemblance to the methods employed by Xin [6] and Xu
[7].

Though the technique looks naive and insufficient, it turns out to be powerful enough to
calculate the first k − 1 terms in the asymptotic series of (2). Our main result is as follows:
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Theorem 1. Let (xm)m≥1 be the sequence defined by (1). There exists a polynomial h(X) ∈
K[X] of degree k − 1 and a positive integer N0 depending on h such that

0 < h(n) ≤
1

∑∞
m=n xm

< h(n) + 1 (n ≥ N0). (3)

Moreover, h is algorithmically computable and uniquely determined by P (X) and M0 up to
a constant term.

The leftmost inequality in (3) implies that leading coefficient of h is positive. Now (3)
can be restated as

0 <
1

h(n) + 1
<

∞
∑

m=n

1

P (m+M0)
≤

1

h(n)
(n ≥ N0). (4)

Note that 1
h(n)

− 1
h(n)+1

= 1
h(n)(h(n)+1)

= O(n−2k+2) and 1
h(n)

, 1
h(n)+1

are of O(n−k+1). Hence

∞
∑

m=n

1

P (m+M0)
=

1

h(n)
+O(n−2k+2) (n ≥ N0).

Thus we obtain an estimate such that the main term is O(n−k+1) and error term is O(n−2k+2).
This improvement is due to a formulation as a fractional expression that resembles the
classical Padé approximants. Therefore, Theorem 1 turns out to be a more convenient
approximation technique than the usual summation formulas, and one can directly obtain the
first k−1 terms of the asymptotic expansion for suitably large n, as explained in Section 4.2.

We can use Theorem 1 to deduce estimates for classical reciprocal power sums.

Corollary 2. Let k be an integer ≥ 2. There is a polynomial h(X) ∈ Q[X] of degree k − 1
and a positive integer N0 depending on h such that

0 < h(n) ≤
1

∑∞
m=nm

−k
< h(n) + 1 (n ≥ N0).

Moreover, h is algorithmically computable and unique up to a constant term.

Theorem 1 allows us to study sequences defined by rational functions. Let P (X), Q(X) ∈
K[X] be two nonzero polynomials with positive leading coefficients such that degKP −

degKQ = k ≥ 2. Set R(X) = P (X)
Q(X)

∈ K(X). Here R(X) determines k and it is independent
of presentation. Since P and Q have positive leading coefficients, there is an M0 ∈ K so
that P (x), Q(x) > 0 for all real numbers x ≥ M0 + 1. For fixed choice of M0, consider the
sequence

xm =
1

R(m+M0)
(m ≥ 1). (5)

As before
∑

m≥1 xm <∞. We have
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Theorem 3. Let (xm)m≥1 be the sequence defined by (5). There exists a polynomial h(X) ∈
K[X] of degree k − 1 and a positive integer N0 depending on h such that

0 < h(n) ≤
1

∑∞
m=n xm

< h(n) + 1 (n ≥ N0). (6)

Moreover, h is algorithmically computable and uniquely determined by R(X) and M0 up to
a constant term.

Observe that if Q(X) = 1, then Theorem 3 reduces to Theorem 1. Though Theorem 3
is a generalization of Theorem 1, it follows easily from the earlier one. We prove both the
theorems in Section 3. Theorem 3 also offers a convenient asymptotic expression, as described
in paragraphs above. More discussion about this point is postponed to Section 4.2.

It is clear from Theorem 3 that the n-th term of the reciprocal sequence of (5) is either
⌊h(n)⌋ or ⌊h(n)⌋+ 1. We pin down the exact expression of the reciprocal sequence if P and
Q have coefficients in Q, by carefully choosing constant term of h. This procedure and its
arithmetic aspects are described in Section 4.1.

1.1 Notation and conventions

The symbols N, Z, R, C have their conventional meaning. In our convention 0 /∈ N and the
set of nonnegative integers is Z≥0. We index sequences by N.

Let K be a field. Then K× = K−{0} and K[X] is the ring of polynomials with coefficients
in K. Also K(X) is the field of rational functions. If there is more than one variable, we
use a boldface symbol to denote a tuple, e.g., X = (X1, . . . , Xn). For a fixed integer d ≥ 0,
there is a bijection between K× × Kd and K[X]d, subset polynomials of degree d, given by
ιd : (a0, . . . , ad) → a0X

d + · · ·+ ad. Here, by convention, K× ×K0 = K×. The degree of the
zero polynomial is −∞. If P is a polynomial with coefficients in R, then

sgnP =











0, if P = 0;

1, if the leading coefficient of P is positive;

−1, if the leading coefficient of P is negative.

We write ⌊.⌋, ⌈.⌉ for the floor and ceiling functions, respectively. A statement S(n) concerning
natural numbers holds for ‘n≫ 1’ if there exists a real number C (depending on S) so that
S(n) is true for all n ≥ C.

2 Approximate difference primitive

We begin by introducing some preliminary concepts necessary to define approximate differ-
ence primitives. The main result of this section is the existence of canonical approximants
satisfying definite requirements. Our arguments are algebraic in nature, and most of the
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conclusions are valid even in a formal situation, which is briefly mentioned at the end of
section.

Let K be a field of characteristic 0 and k be an integer ≥ 2. Suppose that g(X) ∈ K[X]k.
Write

g(X) = a0X
k + · · ·+ ak. (7)

Here (a0, . . . , ak) is the unique point in K× ×Kk which corresponds to g(X) under ιk. Now
f(X) ∈ K[X] be a nonzero polynomial such that 1

f(X)
is a difference primitive of − 1

g(X)
, i.e.,

1
g(X)

= 1
f(X)

− 1
f(X+1)

holds in K(X). Then

f(X)f(X + 1) = g(X)(f(X + 1)− f(X)). (8)

Suppose degKf = d. Since the left-hand side of (8) is not zero, we have d ≥ 1. Comparing
the degrees of both sides gives d = k − 1.

Let x0, x1, . . . , xk−1 be k unknowns. Set

F (X,x) = x0X
k−1 + · · ·+ xk−1 ∈ Z[X, x0, . . . , xk−1].

With each c = (c0, . . . , ck−1) ∈ K× ×Kk−1 one associates F (X, c) ∈ K[X]k−1. Using (8) we
see that 1

F (X,c)
is a difference primitive of − 1

g(X)
if and only if

F (X + 1, c)F (X, c) = g(X)(F (X + 1, c)− F (X, c)).

To solve the equation above, one defines a collection of polynomials

{

yi(x), uj(x), vl(x, g) | 1 ≤ i ≤ k − 1, 0 ≤ j, l ≤ 2k − 2
}

⊆ K[x0, . . . , xk−1]

by the relations

F (X + 1,x) = x0X
k−1 + (x1 + y1(x))X

k−2 + · · ·

· · ·+ (xk−2 + yk−2(x))X + (xk−1 + yk−1(x)), (9)

H(X,x) = F (X + 1,x)F (X,x)

= u0(x)X
2k−2 + · · ·+ u2k−3(x)X + u2k−2(x), (10)

G(X,x, g) = g(X)
(

F (X + 1,x)− F (X,x)
)

= v0(x, g)X
2k−2 + · · ·+ v2k−3(x, g)X + v2k−2(x, g). (11)

The coefficient of Xk−1 in F (X + 1,x) is x0 and the degrees of H(X,x), G(X,x, g) in X
are at most 2k − 2. Therefore, the equations above are justified. Note that the polynomials
{yi(x), uj(x) | 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 2k − 2} are independent of g and defined over
Z[x0, . . . , xk−1].

As a consequence of the binomial theorem

yi(x) =

(

k − i

1

)

xi−1 +

(

k − i+ 1

2

)

xi−2 + · · ·+

(

k − 1

i

)

x0 (12)
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for all 1 ≤ i ≤ k − 1. For convenience put y0(x) = yk(x) = 0.
Equation (9), (10), and (11) together imply that

uj(x) =

j
∑

r=0

xr(xj−r + yj−r(x)) (0 ≤ j ≤ k − 1), (13)

vl(x, g) =
l

∑

r=0

aryl−r+1(x) (0 ≤ l ≤ k − 1). (14)

Subtracting (10) from (11) gives

G(X,x, g)−H(X,x) =
2k−2
∑

i=0

(vi(x, g)− ui(x))X
2k−2−i. (15)

To construct an approximate difference primitive we need to find a point (c0, . . . , ck−1) ∈ Kk

so that the first few coefficients in (15) vanish at the point (c0, . . . , ck−1). But for generic
(a0, . . . , ak), one cannot expect to find a common zero of all the coefficients. Moreover, we
would like to have c0 6= 0, so that F (X, c0, . . . , ck−1) is actually of degree k − 1. These
considerations lead to a formal definition.

2.1 Good approximants

Let f(X) ∈ K[X] be a nonzero polynomial. Set

δ(f, g,X) :=
1

f(X)
−

1

f(X + 1)
−

1

g(X)
, (16)

N(f, g,X) := g(X)
(

f(X + 1)− f(X)
)

− f(X + 1)f(X). (17)

A good approximant of g is a polynomial f ∈ K[X]k−1 so that N(f, g,X) is a polynomial of
degree ≤ k − 1.

Note that

δ(f, g,X) =
N(f, g,X)

f(X)f(X + 1)g(X)
(18)

and N(f, g,X) = 0 if and only if 1
f(X)

is a difference primitive of − 1
g(X)

.
The following lemma ensures existence of a canonical good approximant:

Lemma 4. Let k ≥ 2 and g ∈ K[X]k. Consider the system of k equations

ui(x) = vi(x, g) (0 ≤ i ≤ k − 1) (19)

in k unknowns x0, . . . , xk−1. The system of equations (19) has a unique solution in K××Kk−1,
i.e., there is a unique tuple (c0(g), . . . , ck−1(g)) ∈ Kk with c0(g) 6= 0, which is a solution to
the system of equation (19).
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Proof. To fix notation, assume that g is given in the form (7). This polynomial remains
fixed throughout the discussion, and we omit it from the notation. Now ui depends on
{x0, . . . , xi, y0, . . . , yi}. Using (12), one concludes that the set of variables appearing in ui is
{x0, . . . , xi}. Similarly, vi depends on {y1, . . . , yi+1}, i.e., on {x0, . . . , xi}. These statements
hold for all 0 ≤ i ≤ k − 1. Therefore one can use a recursive approach to solve the system
of equations.

Let 0 ≤ i ≤ k − 1 and consider subsystems of i+ 1 equations

u0 = v0, . . . , ui = vi (20)

in i+1 variables x0, . . . , xi. We would like to show that (20) has unique solution in K××Ki

for each 0 ≤ i ≤ k − 1.
For the base case, consider the equation u0(x0) = v0(x0). We have u0 = x20, and v0 =

y1 = a0
(

k−1
1

)

x0 = a0(k − 1)x0. Now a0(k − 1) 6= 0 and it is the only nonzero solution to
u0 = v0. Put c0 = a0(k − 1).

Assume that the statement holds for some 0 ≤ i ≤ k − 2, i.e., there is a unique solution
to (20) in K× ×Ki. Note that the first coordinate of this solution is necessarily c0. Let the
unique solution be (c0, . . . , ci). We now construct ci+1 ∈ K so that (c0, . . . , ci, ci+1) is the
unique solution of ui+1 = vi+1 in K× × Ki+1. In what follows, we consider ui+1 and vi+1 as
polynomials of xi+1 with coefficients in K[x0, . . . , xi]. Equation (13) and (14) together imply
that ui+1, vi+1 are linear in the variable xi+1.

There are two possibilities.

2.1.1 Case I: i < k − 2

Here i+1 ≤ k− 2. From (13) and (14) we deduce that coefficient of xi+1 in ui+1 is 2x0 (one
x0 arises from term x0(xi+1+yi+1) and other x0 arises from the term xi+1(x0+y0)). Similarly
coefficient of xi+1 in vi+1 is a0 times coefficient of xi+1 in yi+2, i.e., a0

(

k−i−2
1

)

= a0(k− i− 2).
Hence ui+1 = vi+1 can be rewritten as

(

2x0 − a0(k − i− 2)
)

xi+1 = a polynomial in x0, . . . , xi over K. (21)

But
(

2c0 − a0(k − i− 2)
)

= a0(k + i) 6= 0. Therefore we can substitute x0 = c0, . . . , xi = ci
in (21) and solve for xi+1 to get a tuple (c0, . . . , ci+1) ∈ Ki+2 that is a solution to the system
of equations

u0 = v0, . . . , ui+1 = vi+1.

If (C0, . . . , Ci+1) is another solution with C0 6= 0 then by recursion hypothesis (c0, . . . , ci) =
(C0, . . . , Ci). Using (21) we have Ci+1 = ci+1. Hence the uniqueness. So for i < k − 2 a
solution to the first i + 1 equations of (19) in K× × Ki extends to a unique solution to the
first i+ 2 equations in K× ×Ki+1.
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2.1.2 Case II: i = k − 2

This case is essentially similar to Case I. Here coefficient of xk−1 in vk−1 is 0. Now uk−1 = vk−1

can be rewritten as

2x0xk−1 = a polynomial in x0, . . . , xk−2 over K.

Since c0 6= 0, the arguments of the previous case go through to yield a unique tuple
(c0, . . . , ck−1) that is a solution to (19).

In this way we can recursively construct
(

c0(g), . . . , ck−1(g)
)

∈ Kk so that
(

c0(g), . . . , ck−1(g)
)

is the unique solution to (19) in K× ×Kk−1. Hence the lemma is proved.

Lemma 4 constructs a point c(g) =
(

c0(g), . . . , ck−1(g)
)

∈ Kk such c0(g) 6= 0 and
G
(

X, c(g), g
)

−H
(

X, c(g)
)

is of degree ≤ k − 2. Therefore F
(

X, c(g)
)

is a good approax-
imant of g. The condition that the first k coefficients of G

(

X, c(g), g
)

−H
(

X, c(g)
)

vanish
is better than expected, but control on one extra term turns out to be useful. For simplicity
we frequently omit g from the notation for the solution, if it is understood from the context.

2.2 Consequences of Lemma 4

The technique used to prove Lemma 4 has several corollaries that are indispensable for later
developments.

Corollary 5.

(i) Let 0 ≤ i0 ≤ k − 1. Consider the subsystem of equations

ui(x) = vi(x, g) (0 ≤ i ≤ i0).

Observe that variables appearing in these equations are x0, . . . , xi0. This system has a
unique solution in K× ×Ki0 given by the first i0 +1 coordinates of c, i.e., (c0, . . . , ci0).

(ii) Let g1, g2 ∈ K[X]k with g1 − g2 ∈ K. Then c(g1) = c(g2).

Proof.

(i) Follows from the recursion argument in the proof of Lemma 4.

(ii) A consequence of the fact that for any g ∈ K[X]k, the polynomials

{vi(X, g) | 0 ≤ i ≤ k − 1}

do not depend on the constant term of g.
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The next corollary characterizes all good approximants and provides a necessary and
sufficient condition for existence of difference primitives.

Corollary 6.

(i) For each c ∈ K the polynomial F (X, c0, . . . , ck−2, c) is a good approximant of g and
every good approximant of g is in this form.

(ii) There exists a nonzero polynomial f(X) ∈ K[X] so that 1
f(X)

is a difference primitive

of − 1
g(X)

if and only if the tuple c = (c0, . . . , ck−1) constructed in Lemma 4 satisfies

ui(c) = vi(c, g) (k ≤ i ≤ 2k − 2).

If this condition holds then f(X) is uniquely determined and equals F (X, c).

Proof.

(i) By definition, all good approximants of g have degree k− 1. Let C = (C0, . . . , Ck−1) ∈
K× × Kk−1. Using (15) one sees that F (X,C) is good approximant if and only if
ui(C) = vi(C, g) for each 0 ≤ i ≤ k − 2. Now the result follows from uniqueness part
of Corollary 5.

(ii) We have already seen that f has to be of degree k − 1. From (15) it follows that such
f exists if and only if the system of 2k − 1 equations

ui(x) = vi(x, g) (0 ≤ i ≤ 2k − 2)

has a solution in K× ×Kk−1. Lemma 4 implies that if such solution exists it is unique
and given by the tuple c = (c0, . . . , ck−1) ∈ K× × Kk−1 constructed in lemma. Thus
both parts of assertion are proved.

The following corollary investigates effect of scaling g.

Corollary 7. Let g1(X) ∈ K[X] be a nonzero scalar multiple of g(X), i.e., g1(X) = αg(X)
for some α ∈ K×. Then

(

αc0(g), . . . , αck−1(g)
)

∈ K××Kk−1 is the unique solution to system
of equations

ui(x) = vi(x, g1) (0 ≤ i ≤ k − 1).

Proof. One writes coefficients as functions of polynomials. By assumption ar(g1) = αar(g)
for all 0 ≤ r ≤ k − 1. From explicit expressions (12), (13) and (14) it follows that
uj is quadratic polynomial of {x0, . . . , xk−1} while vl is linear in both {x0, . . . , xk−1} and
{a0, . . . , ak−1}. Therefore the system of equations

ui(x) = vi(x, g) (0 ≤ i ≤ k − 1)

is invariant under transformation xi → αxi, 0 ≤ i ≤ k − 1, and ar → αar, 0 ≤ r ≤ k − 1.
Hence

(

αc0(g), . . . , αck−1(g)
)

is a solution to the system corresponding to g1. But αc0(g) 6= 0.
The result follows by uniqueness.
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Let c ∈ K. Define fg(c,X) ∈ K[X] by

fg(c,X) := c0(g)X
k−1 + . . .+ ck−2(g)X + c (22)

By Corollary 6 fg(c) is a good approximant of g and all good approximants are in this form.
The leading term of N

(

fg(c), g,X
)

is Xk−1 and its coefficient is

(

vk−1(c0, . . . , ck−2, c; g)− uk−1(c0, . . . , ck−1, c)
)

.

By (14) xk−1 does not appear in vk−1(x) and from the proof of Lemma 4, we know that the
term involving xk−1 in uk−1(x) is 2xk−1x0. Now

vk−1(c0, . . . , ck−2, c; g)− uk−1(c0, . . . , ck−1, c)

= vk−1(c0, . . . , ck−2, ck−1; g)− uk−1(c0, . . . , ck−1, c)

= uk−1(c0, . . . , ck−2, ck−1; g)− uk−1(c0, . . . , ck−1, c)

= 2c0(ck−1 − c). (23)

Here in third step one uses Lemma 4. Therefore coefficient of Xk−1 in N(fg(c), g,X) is
2c0

(

ck−1 − c
)

.

2.3 Formal algebraic version

We conclude the section with a formal version of Lemma 4. Let k ≥ 2 and a0, . . . , ak be
formal variables. Suppose that g(X, a) is an element of Z[a0, . . . , ak] given by

g(X, a) = a0X
k + · · ·+ ak. (24)

Define auxiliary polynomials

{

yi(x), uj(x), vl(x, a) | 0 ≤ i ≤ k − 1, 0 ≤ j, l ≤ 2k − 2
}

⊆ Z[x, a]

using (9), (10) and (11). It is easy to see that these polynomials satisfy (12), (13) and (14).
Consider the system of equations

ui(x) = vi(x, a) (0 ≤ i ≤ k − 1) (25)

in variables x0, . . . , xk−1.

Lemma 8. Let F = Q(a0, . . . , ak), the field of rational functions in variables a0, . . . , ak with
coefficients in Q. Then there is a unique tuple of rational functions (c0(a), . . . , ck−1(a)) ∈
Fk with c0(a) 6= 0, which is a solution to the system of equations (25). Further, ci(a) ∈
Q[a0, . . . , ai][a

−1
0 ] for all 0 ≤ i ≤ k − 1.
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Proof. Similar to the proof of Lemma 4. The base case holds since c0 = a0(k − 1) 6= 0. Let
0 ≤ i ≤ k−2. The recursion step goes through, since ui+1 is independent of {a0, . . . , ak} and
vi+1 depends only on {a0, . . . , ai+1} and to determine ci+1 one needs to divide by an element
of Q×a0. Recursively, one deduces

ci(a) ∈ Q[a0, . . . , ai][a
−1
0 ] (0 ≤ i ≤ k − 1).

In the formal version of the theory, it is enough to consider only one polynomial, namely,
the universal polynomial g(X, a). Statements analogous to Corollary 5(i) and Corollary 7
hold in this situation, i.e., one can restrict to suitable subsystems and scaling of variables
results into scaling of solution. The notion of good approximant with coefficients in F can
be introduced in exactly same manner. Lemma 8 constructs a canonical good approximant
for g(X, a) and classification of Corollary 6 continues to hold.

3 Proofs of the theorems

In this section we use the theory developed in Section 2 to prove Theorem 1. An appropriate
application of the same ideas yields Theorem 3. Corollary 2 is an easy consequence of
Theorem 1.

We initiate the discussion with a useful remark. In what follows, K is always a subfield
of R unless otherwise specified.

Remark 9.

(i) Let φ(X) = a0X
d + a1X

d−1 + · · · + ad ∈ K[X] is a polynomial with sgnφ = 1. Then
φ(x) > 0 for all real x satisfying

x ≥ max{1,
(d+ 1)|aj|

|a0|
| 1 ≤ j ≤ d}. (26)

If d = 0 then the right-hand side is interpreted as 1. Note that expression on the
right-hand side is an element of K.

(ii) The lower bound appearing in the first part is not best possible. To determine the best
possible bound, we need to locate the real zeroes of φ.

(iii) Using (i) one can effectively determine the constant M0 appearing in the statement of
Theorems 1 and 3.
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3.1 Proof of Theorem 1

Let P (X) ∈ K[X] be of degree k ≥ 2 with sgnP = 1. Suppose that M0 is an element of K
with property that P (x) > 0 for all real x ≥M0 + 1.

With the notation of Section 2 we use Lemma 4 for g(X) = P (X). Note that a0, the
leading coefficient of P (X), is positive. Let (c0, . . . , ck−1) ∈ K××Kk−1 be the unique solution
to the system of equations (19) corresponding to P .

Now (ck−1 − 1, ck−1) ∩ K is nonempty since K is dense in R. Let c be an element of
(ck−1 − 1, ck−1) ∩K. Define fP (c,X) ∈ K[X] by (22). Since c0 = a0(k − 1) > 0 there exists
a MfP (c) ∈ R so that fP (c, x) > 0 for all real x ≥ MfP (c). We know that fP (c,X) is a good
approximant of P (X), and the coefficient of Xk−1 in N

(

fP (c), P,X
)

is 2c0(ck−1 − c). But
2c0(ck−1 − c) > 0. Hence there is a M1 ∈ R such that N(fP (c), P, x) > 0 for all real x ≥M1.

Let M ′
1 = max{M1,MfP (c)}. Suppose that m is a positive integer ≥ M ′

1 −M0. Then by
(16) and (17)

δ
(

fP (c), P,m+M0

)

> 0

i.e.,
1

fP (c,m+M0)
−

1

fP (c,m+ 1 +M0)
>

1

P (m+M0)
.

Using telescoping summation we have

1

fP (c, n+M0)
>

∞
∑

m=n

1

P (m+M0)
(27)

for all positive integers n ≥M ′
1 −M0.

Now let C = c + 1 ∈ K, and consider fP (C,X) ∈ K[X]. It is a good approximant of P
and coefficient of Xk−1 in N

(

fP (C), P,X
)

is 2c0(ck−1 −C). But ck−1 − c− 1 < 0. Therefore
2c0(ck−1 −C) < 0 and there exists a M2 ∈ R so that N(fP (C), P, x) < 0 for all real x ≥M2.

Let M ′
2 = max{M2,MfP (c)} and m be a positive integer ≥M ′

2 −M0. It follows that

δ
(

fP (C), P,m+M0

)

< 0

i.e.,
1

fP (c,m+M0) + 1
−

1

fP (c,m+ 1 +M0) + 1
<

1

P (m+M0)
.

By telescoping we have

1

fP (c, n+M0) + 1
<

∞
∑

m=n

1

P (m+M0)
(28)

for all positive integers n ≥M ′
2 −M0.

Suppose that M3 = max{M ′
1,M

′
2}. Using (27) and (28)

0 <
1

fP (c, n+M0) + 1
<

∞
∑

m=n

1

P (m+M0)
<

1

fP (c, n+M0)

12



for all positive integers n ≥ M3 −M0. The leftmost inequality is a consequence of M3 ≥
MfP (c).

Let h(X) = fP (c,X +M0). Note that it has degree k− 1. Since M0 ∈ K, the polynomial
h(X) ∈ K[X]. Put N0 = max{⌈M3 −M0⌉, 1}. Then

0 <
1

h(n) + 1
<

∞
∑

m=n

1

P (m+M0)
<

1

h(n)

for all integers n ≥ N0. It is clear that h and N0 so defined have properties required by
Theorem 1. This construction proves the first part of Theorem 1.

Further Lemma 4 algorithmically determines the tuple (c0, . . . , ck−1) and c is any element
of (ck−1−1, ck−1)∩K. Therefore we can determine fP (c) algorithmically. SinceM0 is part of
hypothesis the polynomial h is also algorithmically computable. To finish off proof we need
to show uniqueness. This part of assertion is a consequence of Lemma 10. Thus the proof
of Theorem 1 is complete, modulo Lemma 10. �

Corollary 2 is a special case of Theorem 1.

3.1.1 Proof of Corollary 2

Follows from Theorem 1 with K = Q, P (X) = Xk ∈ Q[X], and M0 = 0. �

3.2 Proof of Theorem 3

In this subsection we prove Theorem 3. Main idea behind the proof is to approximate the
rational function by appropriate polynomial.

Let P (X), Q(X) be two nonzero polynomials in K[X] so that degKP − degKQ = k ≥ 2

and sgnP = sgnQ = 1. Suppose that R(X) = P (X)
Q(X)

and M0 ∈ K with P (x), Q(x) > 0 for
all real x ≥M0 + 1.

Using the division algorithm, we construct polynomials A(X), B(X) ∈ K[X] such that

P (X) = A(X)Q(X) + B(X)

and degKB < degKQ. It is easy to see that A(X) is of degree k and sgnA = 1. Now

R(X) = A(X) +
B(X)

Q(X)
. (29)

Note that A(X) is determined by R(X) and does not depend on individual polynomials
P (X) and Q(X). It is the unique polynomial so that the difference R(X)−A(X) is either 0
or is given by a rational function whose denominator has degree strictly larger than degree
of numerator. Since degKB < degKQ,

B(X)
Q(X)

→ 0 as x → ∞ on real line. If B = 0 then

R(X) = A(X) and the result is already true by Theorem 1.

13



Let ǫ ∈ K ∩ (sgnB)R>0. If B = 0 then ǫ = 0. Note that Q(x) > 0 for x ≥ M0 + 1.
Hence there is a real number Mǫ ≥ M0 + 1 > 0 such that for all real x ≥ Mǫ we have
(sgnB)B(x) ≥ 0 and 0 ≤ |B(x)

Q(x)
| ≤ |ǫ|.

Define Aǫ(X) = A(X) + ǫ ∈ K[X]. It is easy to see that Aǫ(X) is a polynomial of degree
k with sgnAǫ = 1. Moreover, if sgnB ≥ 0 then

A(x) ≤ R(x) ≤ Aǫ(x) (x ≥Mǫ) (30)

and if sgnB = −1 then
Aǫ(x) ≤ R(x) ≤ A(x) (x ≥Mǫ). (31)

Consider the system of equation (19) in Lemma 4 for the polynomials A(X) and Aǫ(X).
By Corollary 5(ii) the same tuple (c0, . . . , ck−1) ∈ K× × Kk−1 is a solution to (19) for both
A(X) and Aǫ(X). Since sgnA = 1 we have c0 > 0. Let c ∈ (ck−1 − 1, ck−1)∩K and consider
fA(c,X) ∈ K[X] defined in Section 2. It is a good approximant of each of A(X) and Aǫ(X).
The coefficient of Xk−1 in both N

(

fA(c), A,X
)

and N
(

fA(c), Aǫ, X
)

is 2c0(ck−1 − c) > 0.
Similarly, the coefficient of Xk−1 in each of N(fA(c) + 1, A,X) and N(fA(c) + 1, Aǫ, X) is
2c0(ck−1 − c− 1) < 0.

Let M ′ ∈ R be such that A(x), Aǫ(x) > 0 for all real x ≥ M ′. Imitating the proof of
Theorem 1, we can find M ′

3, M
′
3,ǫ ≥M ′ so that

0 <
1

fA(c, n+M0) + 1
<

∞
∑

m=n

1

A(m+M0)
<

1

fA(c, n+M0)
,

0 <
1

fA(c, n+M0) + 1
<

∞
∑

m=n

1

Aǫ(m+M0)
<

1

fA(c, n+M0)

holds for all positive integers n ≥M ′
3 −M0 and n ≥M ′

3,ǫ −M0 respectively.
Let M4 = max{M ′

3,M
′
3,ǫ,Mǫ}. From inequalities (30), (31) and choice of M ′

3,M
′
3,ǫ it

follows that

0 <
1

fA(c, n+M0) + 1
<

∞
∑

m=n

1

R(m+M0)
<

1

fA(c, n+M0)

for all positive integers n ≥ M4 −M0. Set h(X) = fA(c,X +M0) and N0 = max{⌈M4 −
M0⌉, 1}. One easily sees that h(X) ∈ K[X]k−1 is a polynomial that satisfies the requirements
of the statement of the theorem for the prescribed choice of N0. Note that A,B are algo-
rithmically computable. Therefore, by reasoning similar to that in the proof of Theorem 1,
h is also algorithmically computable.

Proof of uniqueness is postponed to Lemma 10. �

3.2.1 Effectiveness of constants

Using Remark 9 we can determine effective choices for the constants MfP (c),M1,M2 appear-
ing in the proof of Theorem 1. Hence M ′

1,M
′
2,M3, and in particular, N0 are effective. These
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constants depend on choice of c. In the proof of Theorem 3, ǫ is any number in K∩(sgnB)R>0

and the inequalities (sgnB)B(x) ≥ 0, 0 ≤ |B(x)
Q(x)

| ≤ |ǫ| effectively determine Mǫ. Now one
can use Remark 9 to show that the constants appearing in the proof of Theorem 3 are also
effective. These numbers depend on choices of P , Q, c, and ǫ.

3.3 Admissible polynomials

This subsection studies all polynomials which approximate reciprocals of tail sums. First,
we prove a lemma which implies uniqueness part of Theorem 1 and 3. Recall that to retrieve
Theorem 1 from Theorem 3 one needs to substitute Q = 1. The notation is same as in the
statement of Theorem 3.

Lemma 10. Suppose that h1(X), h2(X) ∈ K[X] are two nonzero polynomials which satisfy

0 < hj(n) ≤
1

∑∞
m=n

1
R(m+M0)

< hj(n) + 1 (j = 1, 2)

for infinitely many n ∈ N. Then

(i) degKh1 = degKh2 = k − 1,

(ii) h1(X)− h2(X) ∈ K,

(iii) |h1 − h2| < 2,

(iv) if there is an infinite subset of N on which hypothesis of the lemma hold simultaneously
for h1 and h2, then |h1 − h2| < 1.

Proof. In what follows the statements hold for both j = 1, 2. By assumption

0 <
1

hj(n) + 1
<

∞
∑

m=n

1

R(m+M0)
≤

1

hj(n)
(32)

for infinitely many n ∈ N. These inequalities imply that hj is non-constant and sgnhj = 1.
Let h(X) be the polynomial constructed in the proof of Theorem 3. Comparing with

(32)

0 <
1

h(n) + 1
<

1

hj(n)
,

0 <
1

hj(n) + 1
<

1

h(n)

for infinitely many n ∈ N. Hence on an infinite subset of N

h(n)− 1 < hj(n) < h(n) + 1. (33)
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It follows that |h(n) − hj(n)| < 1 on an infinite subset. But this inequality forces the
difference to be constant.

The conclusion above proves both (i) and (ii). The proof of (iii) follows from (33).
Without loss of generality assume h1 − h2 = C ≥ 0. If C ≥ 1 then

0 <
1

h1(n)
≤

1

h2(n) + 1
(n≫ 1).

This contradicts the hypothesis of (iv). Hence (iv) is proved by way of contradiction.

3.3.1 Admissible polynomials

We introduce a terminology for convenience. A polynomial h(X) ∈ K[X] is admissible for
(R,M0) if

0 < h(n) ≤
1

∑∞
m=n

1
R(m+M0)

< h(n) + 1 (n≫ 1).

In rest of the section let (c0, . . . , ck−1) ∈ K××Kk−1 denote the unique solution to system
of equations (19) associated with A(X). The polynomial A depends only on R and is
determined by (29). Since sgnA = 1 it follows that c0 > 0. Moreover, the tuple does not
depend on the constant term of A (Corollary 5).

Lemma 10 implies that every admissible polynomial for (R,M0) is of degree k−1 and has
positive leading coefficient. Further if h1, h2 are two admissible polynomials then h1 − h2 is
constant and |h1−h2| < 1. We have shown in Section 3.2 that for each c ∈ (ck−1− 1, ck−1)∩
K the polynomial fA(c,X + M0) is admissible for (R,M0). In fact it satisfies a stronger
inequality, namely,

0 < fA(c, n+M0) <
1

∑∞
m=n

1
R(m+M0)

< fA(c, n+M0) + 1 (n ≥ N0).

Constant term of this polynomial is fA(c,M0). Now for all x, y ∈ K

fA(x,X)− fA(y,X) = x− y. (34)

Since c ∈ (ck−1− 1, ck−1)∩K is infinite, there are infinitely many distinct choices for c which
give rise to infinitely many admissible polynomials.

3.3.2 Effect of scaling

Let α ∈ K× be positive. Now αR(X) = αP (X)
Q(X)

. Therefore same constant M0 has desired

positivity properties and the quotient polynomial is Aα(X) := αA(X). By Corollary 7
c(Aα) = αc(A). Therefore if h(X) and hα(X) are admissible polynomials with respect to
(R,M0) and (αR,M0) resp., then hα(X)− αh(X) ∈ K.
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3.3.3 Choice of constant term

Let c ∈ (ck−1−1, ck−1)∩K. We have seen that fA(c,M0) is the constant term of a polynomial
admissible for (R,M0). Let C ∈ K be the constant term of some other admissible polynomial
H(X).

Lemma 11.

(i) There exists unique c ∈ [ck−1 − 1, ck−1] ∩K such that

C = fA(c,M0),

H(X) = fA(c,X +M0).

(ii) Both fA(ck−1 − 1, X +M0) and fA(ck−1, X +M0) cannot be admissible polynomials for
(R,M0).

Proof.

(i) For brevity write I = (ck−1 − 1, ck−1) ∩K.

Let c = C − fA(0,M0) ∈ K. Substituting x = c, y = 0 and X = M0 in (34) we have
fA(c,M0) = C. Moreover, if x ∈ K satisfies fA(x,M0) = C then x = c. By Lemma 10
(iv), |C − fA(x,M0)| < 1 holds for each x ∈ I. Hence |c − x| < 1 for all x ∈ I.
Therefore c ∈ [ck−1 − 1, ck−1]. Now

H(X)− fA(c,X +M0) = H(X)− fA(x,X +M0) + fA(x,X +M0)− fA(c,X +M0)

for all x ∈ K. Letting x ∈ I and using admissibility of H we see that the right-
hand side is constant (Lemma 10). But the constant term of the left-hand side is 0.
Therefore H(X) = fA(c,X +M0).

(ii) Since fA(ck−1, X+M0)−fA(ck−1−1, X+M0) = 1 the assertion follows from Lemma 10
(iv).

Lemma 11 characterizes all admissible polynomials with possible exception at boundary
of the interval. Analysis of extremal situation is necessary for later development. We need
mild improvement over formalism of Section 2 to discuss admissibility of boundary points.

3.3.4 Approximate primitive for rational functions

Let K be a field of characteristic 0 and P (X), Q(X), f(X) ∈ K[X] − {0}. Suppose that
degKP − degKQ = k ≥ 2. Define

δ(f,R,X) :=
1

f(X)
−

1

f(X + 1)
−

1

R(X)
,

N(f,R,X) := P (X)
(

f(X + 1)− f(X)
)

−Q(X)f(X)f(X + 1)

17



where R = P
Q
. These expressions depend on P and Q. However if N(f,R,X) = 0 for one

presentation then it is 0 for all presentations. It is clear that

δ(f,R,X) =
N(f,R,X)

f(X)f(X + 1)P (X)
. (35)

Further δ(f,R,X) = 0 implies degKf = k − 1. Let A(X), B(X) ∈ K[X] be the polynomials
obtained by the division algorithm, i.e., P (X) = A(X)Q(X) + B(X) with degKA = k and
degKB < degKQ. Then

δ(f,R,X) = δ(f, A,X) +
B(X)

P (X)A(X)
,

i.e,

δ(f,R,X) =
N(f, A,X)

f(X)f(X + 1)A(X)
+

B(X)

P (X)A(X)
.

We have degKP (X)A(X) − degKB(X) > 2k. Suppose that f ∈ K[X]k−1. If N(f, A,X) ∈
K[X]k−1 then degKf(X)f(X+1)A(X)−degKN(f, A,X) = 2k−1. Here hypothesis amounts
to saying that f is a good approximant of A with constant term 6= ck−1. In such situation
behavior of δ(f,R,X) is dominated by δ(f, A,X). Now let f be an arbitrary element of
K[X]k−1. From expression above it follows that δ(f,R,X) = 0 if and only if

N(f, A,X)P (X) = −f(X)f(X + 1)B(X). (36)

If (36) holds then degKN(f, A,X) = k − 2 + degKB − degKQ < k − 2. Moreover, we have
N(f, A,X) = 0 if B(X) = 0.

Notation and assumptions are identical to Section 3.2. Since sgnP = sgnQ = 1 it is easy
to see that sgnN(f,R,X) depends only on R and is independent of presentation.

Lemma 12.

(i) Let N(fA(ck−1), R,X) = 0. Then fA(ck−1, X +M0) is admissible for (R,M0).

(ii) Now suppose N(fA(ck−1), R,X) 6= 0. If sgnN(fA(ck−1), R,X) = 1 then fA(ck−1, X +
M0) is admissible and if sgnN(fA(ck−1), R,X) = −1 then fA(ck−1 − 1, X + M0) is
admissible.

Proof. (i) By assumption N(fA(ck−1), R,X) = δ(fA(ck−1), R,X) = 0. Therefore

1

R(X)
=

1

fA(ck−1, X)
−

1

fA(ck−1, X + 1)
. (37)

By (37) the maximum of real zeroes of fA(ck−1, X) is < M0 + 1. Hence fA(ck−1, n +
M0) > 0 for all n ∈ N. Telescoping

∞
∑

m=n

1

R(m+M0)
=

1

fA(ck−1, n+M0)
(n ≥ 1). (38)
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The coefficient of Xk−1 in both N(fA(ck−1) + 1, A,X) and N(fA(ck−1) + 1, Aǫ, X) is
2c0(ck−1 − ck−1 − 1) = −2c0 < 0. Using (30) and (31) and imitating the proof of
Theorem 3, we can show

∞
∑

m=n

1

R(m+M0)
>

1

fA(ck−1, n+M0) + 1
(n≫ 1).

Therefore fA(ck−1, X +M0) is admissible.

(ii) Let N(fA(ck−1), R,X) 6= 0. Suppose that sgnN(fA(ck−1), R,X) = 1. Hence there is
M1 ∈ R such that N(fA(ck−1), R, x) > 0 for all real x ≥ M1. One can use (35) and
telescoping to deduce

∞
∑

m=n

1

R(m+M0)
<

1

fA(ck−1, n+M0)
(n≫ 1).

The coefficient of Xk−1 in each of N
(

fA(ck−1) + 1, A,X
)

and N
(

fA(ck−1) + 1, Aǫ, X
)

is 2c0(ck−1 − ck−1 − 1) = −2c0 < 0. We can repeat the arguments from the proof of
Theorem 3 to conclude (see part (i))

∞
∑

m=n

1

R(m+M0)
>

1

fA(ck−1, n+M0) + 1
(n≫ 1).

Hence fA(ck−1, X +M0) is an admissible polynomial.

Now assume that sgnN(fA(ck−1), R,X) = −1. As before, we can use (35) and tele-
scoping to conclude

∞
∑

m=n

1

R(m+M0)
>

1

fA(ck−1, n+M0)
(n≫ 1).

Note that fA(ck−1)−1 is a good approximant of A and Aǫ. Further coefficient ofXk−1 in
both N

(

fA(ck−1)−1, A,X
)

and N
(

fA(ck−1)−1, Aǫ, X
)

is 2c0(ck−1−ck−1+1) = 2c0 > 0.
Therefore

∞
∑

m=n

1

R(m+M0)
<

1

fA(ck−1, n+M0)− 1
(n≫ 1).

Hence fA(ck−1 − 1, X +M0) is an admissible polynomial in this case.

3.3.5 Summation by telescoping

If there is f(X) ∈ K[X]−{0} so that 1
R(X)

= 1
f(X)

− 1
f(X+1)

then N(f,R,X) = 0. By (35) and

(36) we have degKf = k − 1, degKN(f, A,X) < k − 2. Now (15) and Lemma 4 implies that
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fA(ck−1) is the only polynomial which can possibly satisfy these two conditions. Therefore
− 1

R(X)
has an exact difference primitive if and only if N(fA(ck−1), R,X) = 0. Whenever this

criterion holds, we can compute the exact value of the sum by telescoping. (Cf. Corollary 6.)

Remark 13. One can use Remark 9 to calculate effective lower bounds on n for inequalities
of Lemma 12 to hold. Computations are analogous to Section 3.2 and we omit the details.

4 Explicit calculations

4.1 Reciprocal sequence

This subsection is devoted to explicit calculation of reciprocal sequence. We begin with an
elementary observation. The situation is same as Theorem 3.

Remark 14. Let h be a polynomial given by Theorem 3 and N0 be the corresponding integer.
Suppose that (an)n≥1 is reciprocal sequence of the sequence (xm)m≥1 given by xm = 1

R(m+M0)
.

Then from (6) it follows that, for all n ≥ N0,

(i) an is either ⌊h(n)⌋ or ⌊h(n)⌋+ 1;

(ii) if h(n) is an integer for some n, then an = h(n).

Let P,Q ∈ Q[X] be polynomials so that degQP −degQQ = k ≥ 2 and sgnP = sgnQ = 1.
Suppose that P (x), Q(x) > 0 for all real x ≥ 1, i.e., 0 is a legitimate choice for M0. One can

always ensure this property by shifting the polynomials in hypothesis. Set R(X) = P (X)
Q(X)

∈

Q(X) and consider the sequence (xm)m≥1 given by

xm =
1

R(m)
(m ≥ 1). (39)

Subsequent paragraphs contain an algorithmic determination of (an)n≥1, the reciprocal se-
quence of (xm)m≥1.

4.1.1 Algorithm for reciprocal sequence

Let A(X) and B(X) be the polynomials in Q[X] obtained by the division algorithm, i.e,
P (X) = A(X)Q(X)+B(X) and degQB < degQQ. Suppose that (c0, . . . , ck−1) ∈ Q××Qk−1

is the unique tuple which is solution to the system of equations (19) corresponding to A(X).
Write ci =

pi
qi

where pi, qi are integers with qi > 0 and gcd(pi, qi) = 1 for each 0 ≤ i ≤ k − 1.

Note that if pi = 0 then qi = 1. Let L = lcm(q0, . . . , qk−2). Put

H(X) = c0X
k−1 + · · ·+ ck−2X,

HL(X) = LH(X).
(40)
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It is clear that HL(X) ∈ Z[X]. We determine a family of polynomial in Q[X] parameterized
by residue classes modulo L such that for sufficiently large n value of an is obtained by
evaluating one of these polynomials at n, and this polynomial depends only on residue class
of n modulo L.

4.1.2 Case I: qk−1 ∤ L

Under this assumption qk−1 6= 1. Write ck−1 = ⌊ck−1⌋ + rk−1

qk−1
where rk−1 is a positive

integer ≤ qk−1 − 1. Since gcd(pk−1, qk−1) = 1 it follows that gcd(rk−1, qk−1) = 1. Therefore
rk−1

qk−1
/∈ {n

L
| n ∈ Z}.

Suppose that r ∈ {1, . . . , L}. By the argument above, there is a unique integer l(r) that
satisfies l(r)− r

L
< ck−1 < l(r) + 1− r

L
. Now let c(r) = l(r)− r

L
and hr(X) = H(X) + c(r).

Since c(r) ∈ (ck−1 − 1, ck−1) there is an integer N(r) so that

hr(n) ≤
1

∑∞
m=n

1
R(m)

< hr(n) + 1 (n ≥ N(r)).

Fix choice of N(r) for each r ∈ {1, . . . , L}. Put N = max {N(1), . . . , N(L)}. Let n ≥ N .
Now r(n) be the unique element in {1, . . . , L} with HL(n) ≡ r(n) (mod L). Evidently r(n)
depends only on residue class n mod L. Note that

hr(n)(n) =
HL(n)

L
+ l

(

r(n)
)

−
r(n)

L
∈ Z (n ≥ N).

Remark 14 (ii) implies an = hr(n)(n).
Therefore in this case we have a closed form formula for an depending on equivalence

class of n modulo L whenever n ≥ N .

4.1.3 Case II: qk−1 | L

Let r ∈ {1, . . . , L}. If r
L

6= 1 + ⌊ck−1⌋ − ck−1 then there is a unique integer l(r) with
l(r)− r

L
< ck−1 < l(r)+1− r

L
. For these residue classes define c(r) = l(r)− r

L
∈ (ck−1−1, ck−1).

Now let r ∈ {1, . . . , L} with r
L

= 1 + ⌊ck−1⌋ − ck−1. Such residue class exists and is
unique. Set l(r) = 1 + ⌊ck−1⌋. Note that ck−1 = l(r)− r

L
. For this residue class define

c(r) =

{

ck−1, if sgnN(fA(ck−1), P,X) ≥ 0;

ck−1 − 1, if sgnN(fA(ck−1), P,X) = −1.

Let hr(X) = H(X) + c(r). By the proof of Theorem 3 and Lemma 12 it follows that for
each r there is an integer N(r) so that

hr(n) ≤
1

∑∞
m=n

1
R(m)

< hr(n) + 1 (n ≥ N(r)).
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Suppose that N = max{N(1), . . . , N(L)}. Let n ≥ N and r(n) be the unique element in
{1, . . . , L} such that HL(n) ≡ r(n) (mod L). It follows that there is a positive integer N so
that an = hr(n)(n) whenever n ≥ N .

The discussion above can be summarized as follows:

Theorem 15. Let (xm)m≥1 be the sequence defined by (39). There exist a positive integer
L, algorithmically computable polynomials hr,L(X) ∈ Q[X] parameterized by residue classes
modulo L, a polynomial HL(X) ∈ Z[X] of degree k − 1 with constant term 0, and natural
number N so that

(i) HL(X)− Lhr,L(X) ∈ Z for all residue classes r,

(ii) an = hr,L(n) if HL(n) ≡ r (mod L) for all n ≥ N .

Proof. The statement holds with L = lcm(q0, . . . , qk−2), HL given by (40), polynomials
(hr(X))r mod L and the number N constructed above. The tuple (c0, . . . , ck−1) is algorithmi-
cally constructible and once we have this datum, construction of (hr(X))r mod L is already
given in two possible cases.

Remark 16. The choice of L in the proof of the theorem is algorithmically computable.
Moreover, one can choose N effectively since by Section 3.2 and Remark 13 each of N(r) is
effective.

Theorem 15 is an analogue of Theorem 3 in context of reciprocal sequence. The modulus
in the statement of the theorem adds an arithmetic aspect to the theory.

4.1.4 Choice of modulus

Let m be a natural number and φ(X) ∈ Z[X]. A residue class r modulo m is nontrivial with
respect to φ if there exists one (and hence infinitely many) integer n such that φ(n) ≡ r (mod
m). Nontrivial residue classes are exactly residue classes of {φ(j) | 1 ≤ j ≤ m}. Observe
that we need hr,L(X) only for the residue classes modulo L which are nontrivial with respect
to HL. For other residue classes, the constant term of hr,L(X) can be chosen arbitrarily.
Let L1 be another positive integer so that there exists HL1

(X) ∈ Z[X] and polynomials
{hr,L1

(X) | r mod L1} ⊆ Q[X] satisfying conditions (i) and (ii) in the statement of theorem.
Using condition (i) and Lemma 10

H(X) =
HL1

(X)

L1

=
HL(X)

L
.

Since L = lcm(q0, . . . , qk−2) we have L|L1 and HL1
(X) = L1

L
HL(X). Non-constant part of the

polynomials {hr,L1
(X) | r mod L1} are same and equals H(X). Now HL(n1) ≡ HL(n2) (mod

L) if and only if HL1
(n1) ≡ HL1

(n2) (mod L1) for all n1, n2 ∈ Z. Hence HL(n) → HL1
(n) is a

bijection between residue classes modulo L nontrivial with respect to HL and residue classes
modulo L1 nontrivial with respect to HL1

. Let r, r1 be two nontrivial residue classes modulo
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L, L1 respectively. By condition (ii) of the theorem, hr,L(X) = hr1,L1
(X) if r corresponds to

r1 under the bijection mentioned above.
This phenomenon shows that the modulus in Theorem 15 is essentially unique.

4.2 Asymptotic of summation

In this subsection we write down the asymptotic form of Theorem 3. For this purpose one
requires a familiar technique from complex analysis.

Lemma 17. Let φ(z) = a0z
d+a1z

d−1+· · ·+ad ∈ C[z] be a polynomial of degree d ≥ 1. There
exists M(φ) > 0 (depending on φ) so that on an open set containing the region |z| ≥M(φ)

1

φ(z)
=

∑

j≥d

Aj

zj

where the right-hand side converges absolutely on the open set. Moreover, there are com-
putable polynomials Fj ∈ Z[x1, . . . , xd], j ≥ d, which depend only on the integer d so that

(i) Aj = a−1
0 Fj(

a1
a0
, . . . , ad

a0
),

(ii) Fd is identically 1 and for d + 1 ≤ j ≤ 2d − 1 the set of variables appearing in Fj is
{x1, . . . , xj−d}.

Proof. We have

φ(z)−1 = a−1
0 z−d(1 +

a1
a0z

+ · · ·+
ad
a0zd

)−1.

Write Φ(z) = −(a1
a0
z + · · · + ad

a0
zd). It is easy to see that |Φ(1

z
)| ≤ d

d+1
whenever |z| ≥ M =

max{1,
(d+1)|aj |

|a0|
| 1 ≤ j ≤ d}. Let M(φ) = 1 +M and the open set be {z ∈ C | |z| > M}.

Observe that φ(z) has no zeroes in region |z| ≥ M . One obtains the first part of assertion
by expanding (1− Φ(1

z
))−1 in a geometric series for |z| > M .

For any p ≥ 0, coefficient of z−p in (1−Φ(1
z
))−1 is the coefficient of z−p in the finite sum

∑p

r=0 Φ(
1
z
)r. Hence, the second part of the assertion is a consequence of the multinomial

theorem.

4.2.1 Asymptotic form of Theorem 3

With the notation of Theorem 3 we have degKh(X) = k − 1 ≥ 1 and leading coefficient of
h(X) of is c0 > 0. Further h(n) > 0 for n ≥ N0. The inequality (6) is equivalent to

0 <
1

h(n) + 1
<

∞
∑

m=n

1

R(m+M0)
≤

1

h(n)
(n ≥ N0). (41)
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Now 1
h(X)

− 1
h(X)+1

= 1
h(X)(h(X)+1)

, and the first term in Taylor series of 1
h(z)(h(z)+1)

is

c−2
0 z−2(k−1). Therefore 1

h(n)(h(n)+1)
= O(n−2k+2) and

∞
∑

m=n

1

R(m+M0)
=

1

h(n)
+O(n−2k+2) (n ≥ N0). (42)

Lemma 17 implies that for each n ≥ max{M(h),M(h+ 1), N0}

0 <
1

h(n)
=

∑

j≥k−1

A
(1)
j

nj
,

0 <
1

h(n) + 1
=

∑

j≥k−1

A
(2)
j

nj
.

By the second part of the lemma, we have A
(1)
j , A

(2)
j ∈ K for all j ≥ k − 1. Since leading

term in expansion of 1
h(z)(h(z)+1)

is c−2
0 z−2k+2 we have

A
(1)
j = A

(2)
j (= say, Aj) (k − 1 ≤ j ≤ 2k − 3),

A
(1)
2k−2 = A

(2)
2k−2 + c−2

0 > A
(2)
2k−2.

These statements also follow from lemma above. Moreover, from absolute convergence en-
sured by the lemma, it is easy to see that

1

h(n)
=

2k−3
∑

j=k−1

Aj

nj
+Oh(n

−2k+2),

1

h(n) + 1
=

2k−3
∑

j=k−1

Aj

nj
+Oh+1(n

−2k+2) (n≫ 1).

From (41) one deduces

∣

∣

∣

∞
∑

m=n

1

R(m+M0)
−

2k−3
∑

j=k−1

Aj

nj

∣

∣

∣

≤ max
{

∣

∣

∣

1

h(n)
−

2k−3
∑

j=k−1

Aj

nj

∣

∣

∣
,
∣

∣

∣

1

h(n) + 1
−

2k−3
∑

j=k−1

Aj

nj

∣

∣

∣

}

(n ≥ N0).

Hence
∞
∑

m=n

1

R(m+M0)
=

2k−3
∑

j=k−1

Aj

nj
+O(n−2k+2) (n≫ 1). (43)
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Thus we have calculated the first k− 1 terms in the asymptotic expansion of the sum in the
left-hand side in the traditional sense. (Compare (42) and (43).)

The constants M and M(φ) appearing in Lemma 17 are effective. Let |z| ≥ M . Then
|Φ(1

z
)| ≤ d

d+1
and

1

φ(z)
= a−1

0 z−d
(

p
∑

r=0

Φ(
1

z
)r +

∑

r≥p+1

Φ(
1

z
)r
)

(p ≥ 0).

Now suppose j ≥ d and p = j − d. It is clear that the terms
∑j

r=d
Ar

zr
in expansion of

the lemma appear from the first summation, namely, a−1
0 z−d

∑j−d

r=0 Φ(
1
z
)r. This summation

contributes only finitely many terms in orders higher than (1
z
)j. To estimate the second

summation, note that in the region under consideration |Φ(1
z
)| ≤ α

|z|
where α = |a1

a0
| + d−1

d+1
.

Thus, if |z| ≥ α+1 then |
∑

r≥p+1 Φ(
1
z
)r| ≤ αp+1(α+1)

|z|p+1 . Hence for fixed ǫ > 0 one can effectively
determine Mφ,j,ǫ > 0 such that

∣

∣

∣

∣

∣

∑

r≥j+1

Ar

zr

∣

∣

∣

∣

∣

≤ ǫ|z|−j (|z| ≥Mφ,j,ǫ).

From this argument, we conclude that the constant and range appearing in Oh, Oh+1, and
(43) are effective.

4.3 The example: P (X) = Xk

Let k ≥ 2 and P (X) = Xk, Q(X) = 1 ∈ Q[X]. With the notation of Section 3, R(X) =
P (X) = A(X) = Xk, B(X) = 0 and we are in the situtation of Theorem 1. The objective
of this section is to write down the first few coefficients of the admissible polynomial fP (X)
as a function of k.

We introduce formal binomial coefficients for convenience. Let X be a formal variable
and r ∈ Z≥0. Define

(

X

r

)

to be an element of Q[X] given by the expression

(

X

r

)

=

{

X(X−1)···(X−r+1)
r!

, if r ≥ 1;

1, if r = 0.

With the notation of Section 2 suppose that g(X) = Xk. For this polynomial

ar =

{

1, if r = 0;

0, if 1 ≤ r ≤ k.

By (14)

vl(x, X
k) = yl+1(x)

=

(

k − l − 1

1

)

xl +

(

k − l

2

)

xl−1 + · · ·+

(

k − 1

l + 1

)

x0 (44)
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for all 0 ≤ l ≤ k − 1. If l = k − 1 then one observes that (44) holds with formal binomial
coefficients.

Substituting (12) into (13) we obtain

uj(x) =

j
∑

r=0

xj−rxr +

j
∑

r=1

r
∑

s=1

(

k − s

r − s+ 1

)

xj−rxs−1 (0 ≤ j ≤ k − 1). (45)

Now one can proceed to solve the system of equations

ui(x) = vi(x, X
k) (0 ≤ i ≤ k − 1)

following the algorithm of Lemma 4. The first few solutions are as follows:

c0(k) = k − 1,

c1(k) = −
(k − 1)2

2
,

c2(k) =
(k − 1)2(2k − 3)

12
(k ≥ 3),

c3(k) = −
(k − 1)3(k − 3)

24
(k ≥ 4),

c4(k) =
(k − 1)2

720
(6k3 − 47k2 + 92k − 45) (k ≥ 5).

(46)

In general one can use (44), (45), and recursion argument of Lemma 7 to conclude that
cr(k) is a rational function of k whenever k ≥ r + 1.

4.3.1 Asymptotic expansion of polygamma [1, p. 260]

Let k ≥ 1. The polygamma function of order k is a holomorphic function on C−{0,−1,−2, . . .}
defined by the series

ψ(k)(z) = (−1)k+1k!
∞
∑

n=0

(z + n)−k−1.

Let 0 < θ < π
2
and Sθ = {z ∈ C | z 6= 0, | arg z| ≤ π− θ}. Finite order asymptotic expansion

of polygamma function on Sθ is

ψ(k)(z) = (−1)k+1
((k − 1)!

zk
+

k!

2zk+1
+

p
∑

n=1

B2n
(2n+ k − 1)!

(2n)!z2n+k
+Op,θ(

1

zk+2p+1
)
)

where p is any positive integer. Hence on Sθ

1
∑∞

n=0(z + n)−k−1

= kzk
(

1 +
k

2z
+ k

p
∑

n=1

B2n

2n

(

k + 2n− 1

2n− 1

)

z−2n +Op,θ(
1

z2p+1
)
)−1

. (47)
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As z → ∞ on the sector one can expand the right-hand side to get asymptotic expansion
up to arbitrary high order by choosing a large p. One can put p = ⌈k

2
⌉ to retrieve the first

k terms in the asymptotic expansion of 1∑
∞

n=0
(z+n)−k−1 . These formulas give an alternate

gateway to results of this subsection as mentioned in introduction.

4.3.2 Numerical formula

Let k ≥ 2. Consider the sequence defined by xm = m−k, m ≥ 1. We explicitly determine
the reciprocal sequences associated with (xm)m≥1 for small values of k. Set up is same as
beginning of this section, i.e., R(X) = P (X) = A(X) = Xk, Q(X) = 1 and B(X) = 0.
Notation and arguments from the proof of Theorem 1 and Section 4.1 are frequently used in
the discussion below. Here M0 = 0, which is compatible with theory in Section 4.1.

4.3.3 k = 2

(Xin [6]) Using (46) we have (c0, c1) = (1,−1
2
). Hence L = 1 and one needs to use Case I. It

is clear that c(1) = −1. From explicit expression of fP (−1, X) and numerator polynomials
it follows that 2 is a legitimate choice for N . Hence

an = n− 1 (n ≥ 2).

4.3.4 k = 3

(Xin [6]) By (46) one concludes (c0, c1, c2) = (2,−2, 1). Here L = 1 and we are in the
situation of Case II. Therefore, the constant term has to be ck−1 or ck−1 − 1. Note that
N(fP (ck−1), P,X) is a degree 0 polynomial with negative leading coefficient. Hence c(1) =
ck−1 − 1 = 0. It is easy to see that N = 2 is a legitimate choice. Thus

an = 2n(n− 1) (n ≥ 2).

4.3.5 k = 4

(Xu [7]) From (46) it follows that (c0, c1, c2, c3) = (3,−9
2
, 15

4
,−9

8
). Here L = 4 and Case I

holds. All residue classes are nontrivial and c(1) = −5
4
, c(2) = −3

2
, c(3) = −7

4
, c(4) = −2.

The choice of constants MfP (c) = 1, M1 = M2 = 1 works for c = c(2), c(3), c(4). If the
constant term is c(1), then a legitimate choice is MfP (c) = M2 = 0, M1 = 5. Therefore
N(2), N(3), N(4) = 1 and N(1) = 5 is a legitimate choice of constants. Hence N = 5 and
for all n ≥ 5

an =



















3n3 − 9
2
n2 + 15

4
n− 5

4
, if n ≡ 1 (mod 4);

3n3 − 9
2
n2 + 15

4
n− 3

2
, if n ≡ 2 (mod 4);

3n3 − 9
2
n2 + 15

4
n− 7

4
, if n ≡ 3 (mod 4);

3n3 − 9
2
n2 + 15

4
n− 2, if n ≡ 4 (mod 4).
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4.4 k = 5

(Xu [7]) Using (46) we see that (c0, c1, c2, c3, c4) = (4,−8, 28
3
,−16

3
,−2

9
). Hence L = 3 and

Case I holds. Nontrivial residue classes modulo L with respect to HL(X) are {2, 3} and
c(2) = −2

3
, c(3) = −1. The choice of constants MfP (c) = 2, M1 = 1, M2 = 5 works for

c ∈ {c(2), c(3)}. Therefore N = 5 and for all n ≥ 5

an =











4n4 − 8n3 + 28
3
n2 − 16

3
n− 1, if n ≡ 1 (mod 3);

4n4 − 8n3 + 28
3
n2 − 16

3
n− 2

3
, if n ≡ 2 (mod 3);

4n4 − 8n3 + 28
3
n2 − 16

3
n− 1, if n ≡ 3 (mod 3).

Remark 18. The results for k = 4, 5 answer questions of Kotesovec [5]. Theorem 15 provides
an algorithmically computable answer to the problem of determining reciprocal sequence for
a large class.

5 Complements: Sequence of polynomials

The discussion in Section 4.3 leads to new kind of formalism. Let K be a field of characteristic
0 and (Pk(X))k≥1 be sequence of polynomials in K[X] such that dk = degKPk ≥ 2 for all
k ≥ 1 and dk → ∞ as k → ∞. For r ∈ Z≥0 define

mr = min{k0 ∈ N | k ≥ k0 =⇒ dk ≥ r + 1}.

Write Ir = {k ∈ N | k ≥ mr}. By Lemma 4 one has a well defined function cr : Ir → K
given by cr(k) = cr(Pk). Since the system equations

ui(X) = vi(X, Pk) X = (X0, . . . , Xr), (0 ≤ i ≤ r ≤ dk − 1)

determines cr(k), it depends only on coefficients of Xdk , . . . , Xdk−r in Pk(X). These coeffi-
cients are denoted by a0(k), . . . , ar(k) respectively.

We can study behavior of this function for different sequences. The subsequent remark
summarizes some examples of interest.

Example 19.

(i) Let Pk(X) = Xk+1 ∈ Q[X]. Note that

ar(k) =

{

1, r = 0;

0, r ≥ 1.

One uses recursion argument of Lemma 4 to conclude that there is a rational function
Cr(X) ∈ Q(X) so that cr(k) = Cr(X) for all k ∈ Ir (cf. Section 4.3). For r ≥ 1
these rational functions are divisible by X2. Moreover, the asymptotic expansion in
(47) implies that these rational functions are actually polynomials.
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(ii) Let a ∈ K, and P (X) ∈ K[X] be a non-constant polynomial. Suppose that Pk(X) =
P (X)(X + a)k ∈ K[X]. For this sequence a0(k) = a0(P ). Suppose that k ≥ r. Then
ar(k) is K-linear combination of elements of the form

{

(

k

j

)

aj | 0 ≤ j ≤ r
}

with coefficients independent of k. By recursion argument there exists a rational func-
tion Cr(X) ∈ K(X) such that cr(k) = Cr(k) for k ≫ 1.

(iii) Let P (X), Q(X) ∈ K[X] be so that degKP, degKQ ≥ 1. Construct a sequence by
Pk(X) = P (X)Q(X)k. Assume leading coefficient of P (X) is a0(P ) and

Q(X) = Xd + A1X
d−1 + · · ·+ Ad ∈ K[X]

with d ≥ 1. Therefore a0(k) = a0(P ). Using multinomial theorem we deduce that if
k ≥ dr then ar(k) is a K-linear combination of elements

{

(

k

j

)

Aj | j = (j0, . . . , jd) ∈ Zd+1
≥0 ,

d
∑

s=0

js = k, 0 ≤
d

∑

s=0

sjs ≤ r
}

whose coefficients are independent of k. Observe that constraints on j imply that
j0 ≥ k − rd and js ≤ r for all 1 ≤ s ≤ r. For k ≥ dr all possible choices for j appear
and these depend only on d, r. Then each of these multinomial terms is a polynomial
in k of degree ≤ dr. Using recursion, we can construct Cr(X) ∈ K(X) such that
cr(k) = Cr(X) for k ≫ 1.

In special cases one can use recursion to find finer properties of these functions which
indicate possibility of richer structure.
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