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Abstract

We develop a necessary and sufficient primality test for integers N such that N6−1

is divisible by a large power of 7, based on the properties of two linear recurrence

sequences of order 6. These two sequences are analogous to the well-known Lucas

sequences. In addition, we provide tables from which it is easy to compute the charac-

teristic polynomial of the sequences.

1 Introduction

Consider the sequence (Gn), where G0 = 0, G1 = 1 and Gn+1 = Gn−7Gn−1 for all n ≥ 1. In
Table 1 below we tabulate the first few terms of (Gn), together with their prime factorizations.
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n Gn n Gn

0 0 13 −93911
1 1 14 146329 = 41 · 43 · 83
2 1 15 803706 = 2 · 3 · 29 · 31 · 149
3 −6 = −2 · 3 16 −220597 = −13 · 71 · 239
4 −13 17 −5846539
5 29 18 −4302360 = −23 · 32 · 5 · 19 · 629
6 120 = 23 · 3 · 5 19 36623413 = 113 · 324101
7 −83 20 66739933 = 13 · 29 · 211 · 839
8 −923 = −13 · 71 21 −189623958 = −2 · 3 · 83 · 503 · 757
9 −342 = −2 · 32 · 19 22 −656803489 = −8513 · 77153
10 6119 = 29 · 211 23 670564217 = 139 · 4824203
11 8513 24 5268188640 = 25 · 3 · 5 · 11 · 13 · 23 · 47 · 71
12 −34320 = −24 · 3 · 5 · 11 · 13 25 574239121 = 29 · 449 · 44101

Table 1: First few values of the sequence (Gn) and their factorizations.

Notice that the terms with subscript divisible by 3 tend to have a lot of small prime factors
belonging to no particular residue classes, but the other terms seem only to be divisible by
primes that are congruent to ±1 modulo 14. In fact, it can be shown that this is always the
case for (Gn). This explains why terms with index a multiple of 3 will tend to be highly
composite; for all the primes 6≡ ±1 (mod 14), two thirds of them must wait until 3 divides
n in order to divide some Gn.

If we let q be a prime such that q ≡ 1 (mod 3), it is well known that there exist integers
x and y such that 4q = x2 + 27y2. See, for example, Ireland and Rosen [7, §6 of Chapter 9]
or Cox [5, Chapter 4]. Put Q = q and P = x and define the Lucas sequence (Un) by U0 = 0,
U1 = 1 and Un+1 = PUn − QUn−1 for n ≥ 0. By a special case (p = 3) of Williams [20,
Corollary 11.2.4] we have the following result:

Theorem 1. Let q be a prime such that q ≡ 1 (mod 3). Put P = x and Q = q, where
4q = x2 + 27y2. If r is a prime such that r ∤ 3qy, r | Un and 3 ∤ n, then r must be a cubic
residue of q.

We see, then, that for q = 7 (x = 1 and y = 1), it follows that (Un) = (Gn) and every
prime divisor r of Gn when 3 ∤ n must be a cubic residue of 7. Since the only cubic residues
of 7 are ±1, we must have r ≡ ±1 (mod 14).

The Lucas sequences are examples of linear recurrence sequences of order 2; the purpose
of this paper is to find extensions of Lucas’ sequences of order greater than 2, which possess
properties analogous to those that we have observed in (Gn). We then use these sequences
to develop primality tests for certain numbers of special form.
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2 The Lucas sequences and their extensions

Let P and Q be coprime integers and α, β be the roots of the quadratic polynomial f(x) =
x2 − Px + Q with δ = α − β and D = δ2 = P 2 − 4Q. We define the Lucas sequences (Un)
and (Vn) as follows:

Un = (αn − βn)/δ, Vn = αn + βn.

Since both Un and Vn are symmetric functions of the roots of a polynomial with integer
coefficients they must both be integers for all non-negative integral values of n. Also, both
(Un) and (Vn) satisfy the following second-order linear recurrence:

Xn+1 = PXn −QXn−1,

with U0 = 0, U1 = 1 and V0 = 2, V1 = P . The Lucas sequences have many interesting
properties that have been applied to many problems; some books that include one or sev-
eral sections devoted to these sequence, particularly as they apply to primality testing, are
Bressoud and Wagon [3], Crandall and Pomerance [6], Ribenboim [11] and Williams [20].

Lucas first applied these sequences to the problem of primality testing of Mersenne num-
bers; see [20, §5.1 and 5.4]. Indeed, he was actually able to prove the well-known Lucas-
Lehmer criterion for the primality ofMn = 2n−1. This test is both a necessary and sufficient
condition for Mn to be a prime number. Lucas also considered, for a fixed value of A, the
more general Nn = A2n − 1, and provided a sufficiency test for Nn to be a prime. For some
commentary on this work, see Roettger, Williams and Guy [15]. It was Lehmer [8] who
essentially proved the following result:

Theorem 2. Let Nn = A2n− 1, where n > 1, A is odd and A < 2n. If P and Q are selected
such that the Jacobi symbols (D/Nn) = (Q/Nn) = −1, then Nn is a prime if and only if
Nn | V(Nn+1)/2.

This result can be modified slightly, as follows.

Theorem 3. Let Nn = A2n − 1, where n > 1, A is odd and A < 2n. Let q be a prime such
that q ≡ 1 (mod 4) and the Legendre symbol (Nn/q) = −1. If x and y are integers such that
q = x2 + y2, put P = 2x, Q = q; then Nn is a prime if and only if Nn | V(Nn+1)/2.

In the case that Nn = A3n−1, results in Williams [19] can be used to prove the following
analogue of Theorem 3.

Theorem 4. Let Nn = A3n − 1, where n > 1, 3 ∤ A and A < 3n. Suppose q is a prime

congruent to 1 modulo 3 such that N
(q−1)/3
n 6≡ 1 (mod q) and 4q = x2 + 27y2. Put P = x

and Q = q. If gcd(Nn, qy) = 1, then Nn is a prime if and only if V2θ ≡ −Qθ (mod Nn),
where θ = (Nn + 1)/3.
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We say that a sequence of integers (Xn) is a divisibility sequence if whenever Xn 6= 0,
we have Xn | Xmn for all non-negative integers n and m. For example, (n) is trivially a
divisibility sequence, but so are (Gn) and the Mersenne sequence (Mn). Lucas made much
use of the fact that (Un) is always a divisibility sequence.

Let the sequence (Xn) be determined by an initial set of h integer values

X0, X1, X2, . . . , Xh−1 (1)

and the hth order linear recurrence

Xn+h = P1Xn+h−1 − P2Xn+h−2 + · · ·+ (−1)h−1PhXn, (2)

where P1, P2,. . . , Ph are given fixed integers. Notice that the values for Xn for all n ≥ 0 are
completely determined by (1) and (2). We define the characteristic polynomial f(x) of the
linear recurrence sequence (Xn) to be

f(x) = xh − P1x
h−1 + P2x

h−2 − · · ·+ (−1)hPh. (3)

Lucas speculated that his sequences might be extended to those that satisfy a linear recur-
rence sequence of order greater than 2. Indeed, it is argued in Roettger, Williams and Guy
[14] that the Lucas sequences are characterized by five basic properties:

(1) There are two sequences of integers (when n ≥ 0).

(2) Both sequences satisfy the same linear recurrence relation.

(3) One of the two sequences is a divisibility sequence.

(4) There are addition formulas for the terms of the sequences.

(5) There are multiplication formulas for the terms of the sequences.

Given what we know about Lucas’ unsuccessful attempt to generalize his sequences, it seems
that every sequence that he might have found acceptable as a proper generalization of (Un)
and (Vn) should possess these five properties.

In [14] the authors proposed generalizing Lucas’ sequence to

Un = λn−1

k∏

i=1

(1− γni )/(1− γi) and Vn = λn
k∏

i=1

(1 + γni ), (4)

where λ and γ1, γ2, . . . , γk are simply constrained to be distinct non- zero algebraic numbers
such that V1 6= 0 and both (Un), (Vn) are sequences of integers for n ≥ 0. Notice that, just
as in the case of the Lucas sequences, we have Vn = U2n/Un.

Under the above constraints it is easy to prove that if k = 1, P = λ(γ1+1), Q = λ2γ1, then
both P and Q must be integers because V1 = λ(γ1+1), V2 = λ2(1+γ21), U3 = λ2(1+γ1+γ

2
1)
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are all integers. In this case, we see that in (4) Un = Un(P,Q), Vn = Vn(P,Q), where α = λ
and β = λγ1. Thus, (4) represents a generalization of the Lucas functions.

For a fixed value of k, conditions on λ and γ1, γ2, . . . , γk were derived in [14] to ensure
that both (Un) and (Vn) are sequences of integers that satisfy the same linear recurrence.
For example, one of these conditions is that Q = λ2γ1γ2 · · · γk be a rational integer. It is
also shown that under these same conditions (Un) is a divisibility sequence. In the case that
k = 2, we must have T1, T2 and Q integers, where

T1 = λ(1 + γ1)(1 + γ2), T2 = λ2(γ1 + γ2)(1 + γ1γ2) + 2λ2γ1γ2, Q = λ2γ1γ2.

Thus, if we put P1 = T1 and P2+2Q = T2, we must have P1, P2 and Q integers. In this case
we find that both (Un) and (Vn) satisfy the same fourth-order linear recurrence:

Xn+4 = P1Xn+3 − (P2 + 2Q)Xn+2 + P1QXn+1 −Q2Xn, (5)

with initial conditions U0 = 0, U1 = 1, U2 = P1, U3 = P 2
1 − P2 − 3Q, V0 = 4, V1 = P1,

V2 = P 2
1 − 2P2− 4Q, V3 = P1(P

2
1 − 3P2− 3Q). Indeed, it has been shown by Abrate et al. [1]

that if (Xn) is a linear recurrence sequence of order four that is nondegenerate (no quotient
of any two of the roots of the characteristic polynomial is a root of unity) and a divisibility
sequence, then (Xn) must satisfy a linear recurrence of the form (5) for some integers P1, P2

and Q.
The above sequences, denoted here by (Un) and (Vn), were discussed in some detail by

Williams and Guy in [21] and in greater detail in [15]. Suffice it to say here that they possess
the five properties of the Lucas sequences mentioned above; furthermore, they also enjoy
many of the arithmetic properties of the Lucas sequences. Thus, these are evidently the
fourth-order analogs of the Lucas sequences.

As in [15, §7], let q be a prime such that q ≡ 1 (mod 5) and define in (5)

P1 = P (1, 5, q), P2 = P (2, 5, q), Q = q3, (6)

where the rational integers P (i, 5, q) are defined in [20, (11.1.5)]. As indicated by the no-
tation, the values of P1, P2 and Q here depend only on the value of q. Notice that when
k = 2 in [20, §10.1], the functions denoted by symbols Cn and V1,n there are the same except
possibly for sign; also Un = V1,n = ±Cn. If we let D here denote the discriminant of the
characteristic polynomial of (Un), we have the following consequence of [20, Corollary 11.2.5]:

Theorem 5. Suppose P1, P2 and Q are given by (6). If r is a prime such that r ∤ 5qD,
r | Un and 5 ∤ n, then r must be a quintic residue of q.

This result is for the extended Lucas sequence (Un) above exactly analogous to the case
of the Lucas sequence of Theorem 1. In the case of q = 11, we have P1 = P (1, 5, q) = −89,
P2 = P (2, 5, q) = 1199. The prime factorizations of the values of the corresponding Un for
n = 0, 1, . . . , 30 are provided in [20, Table 11.2.1]. The behaviour of these factorizations

5



is similar to the corresponding case of (Gn), but more extreme because only two of the 10
nonzero residues of 11 are quintic resides of 11.

Let η = ±1. If a is an odd integer, define m(a) by m(a) = (a−η)/5 when a ≡ η (mod 5);
otherwise put m(a) = (a2 + 1)/5 . Also, as in [15], let γn(5) denote the odd solution x of
x2 + 1 ≡ 0 (mod 5n) such that 0 < x < 5n. Set

Nn = A5n + η or Nn = A5n + ηγn(5). (7)

By using the methods of [15, §7] it is possible to prove the following analogue of Theorem 4.

Theorem 6. Let Nn be given by (7), where A is even, γn(5) ∤ A, and A < 2 · 5n. Suppose

that q is a prime congruent to 1 modulo 5 such that N
(q−1)/5
n 6≡ 1 (mod q) and let P1, P2,

and Q be given by (6), ∆ = P 2
1 − 4P2, and m = m(Nn). If gcd(Nn, qD) = 1, then Nn is a

prime if and only if

Vm ≡ −Qm/2 (mod Nn) and ∆U2
m ≡ 5Qm (mod Nn).

3 Some sixth-order divisibility sequences

We say that a linear recurring sequence of order k that is also a divisibility sequence is a
linear divisibility sequence (LDS) of order k. We have already discussed some properties of
certain LDSs of order 2 and 4. In this section we discuss some sixth-order LDSs that can be
derived from (4). Much more concerning this can be found in [14].

When k = 3, the situation in (4) is somewhat more complicated than in the cases of
k = 1, 2 because the corresponding (Un) and (Vn) sequences satisfy a linear recurrence of
order 8, given in [14, Theorem 5.3]. A difficulty arises when we try to develop the addition
and multiplication formulas because it becomes necessary to introduce a third sequence in
order to do this; thus, the sequences when k = 3 cannot in general satisfy the five conditions
given earlier. This, of course is also likely the case for k > 3. Nevertheless, there is a special
case when k = 3 that does allow us to require only two sequences; this is the case when
γ1γ2γ3 = 1. Here we must have λ an integer, denoted by R, and the resulting sequences (Un)
and (Vn − 2Rn) satisfy the same linear recurrence of order 6:

Xn+6 = S1Xn+5 − (S2 + 3R2)Xn+4 + (S3 + 2R2S1)Xn+3 −R2(S2 + 3R2)Xn+2

+R4S1Xn+1 −R6Xn, (8)

where S1, S2, and S3 are integers such that

S3 = RS2
1 − 2RS2 − 4R3. (9)

Let G(x) be the characteristic polynomial of (8). In this case it turns out that ρ1, ρ2, ρ3,
where ρi = R(γi + γ−1

i ) (i = 1, 2, 3), are the roots of the cubic polynomial

g(x) = x3 − S1x
2 + S2x− S3.
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If we put Wn = Vn − 2Rn, it is shown in [14] that (Un) is a divisibility sequence and the two
sequences (Un), (Wn) also possess the five properties mentioned in the previous section and
we call them the extended Lucas sequences for k = 3.

We find that

U0 = 0, U1 = 1, U2 = S1 + 2R,U3 = S2
1 +RS1 − S2 − 3R2; (10)

W0 = 6,W1 = S1,W2 = S2
1 − 2S2 − 6R2;

W3 = S3
1 − 3S1S2 + 3RS2

1 − 6RS2 − 3R2S1 − 12R3.

Furthermore, for every integer n we have

U−n = −Un/R
2n and W−n = Wn/R

2n. (11)

Suppose we are given integral values for S1 ( 6= −2R), S2, and determine S3 by (9). We
know by [14, Theorem 7.2] that if (Un), (Wn) satisfy the linear recurrence (8) with initial
conditions given by (10) and subject to (11) for n = 1 and 2, then there must exist algebraic
numbers γ1, γ2, γ3 with γ1γ2γ3 = 1 such that Un and Vn = Wn + 2Rn are given by (4).

Some examples of the sixth-order LDS (Un) can be found in the On-line Encyclopedia of
Integer Sequences (OEIS) [16]; in particular, we mention A180510 with S1 = −1, S2 = −5,
S3 = 7, R = 1, and A005120 with S1 = −3, S2 = 2, S3 = 1, R = 1. Others are A001351,
A001945 and A006235.

Many arithmetic properties of the extended Lucas sequences (Un), (Wn) when gcd(S1, S2, R) =
1 are provided in [14, 13]. These are very similar to corresponding results involving the stan-
dard Lucas sequences. If we put

∆ = R2(1− γ1)
2(1− γ2)

2(1− γ3)
2,

we find that ∆ is the discriminant of g(x) and we can write

∆ = S2
1 − 4S2 + 4RS1 − 12R2.

Also, if
Γ = R4(γ1 − γ2)

2(γ2 − γ3)
2(γ3 − γ1)

2, (12)

we have
Γ = S2

2 + 10RS1S2 − 4RS3
1 − 11R2S2

1 + 12R3S1 + 24R2S2 + 36R4.

Now assume that λi (i = 1, 2, . . . , 6) are distinct algebraic integers such that

λ1λ2 = λ3λ4 = λ5λ6 = R2, (13)

where R is a rational integer. Assume, in addition, that

λ1λ3 = Rλ6, λ1λ5 = Rλ4, λ2λ4 = Rλ5, (14)

λ2λ6 = Rλ3, λ3λ5 = Rλ2, λ4λ6 = Rλ1.
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Proposition 7. Suppose that λi (i = 1, 2, . . . , 6) satisfy the conditions (13) and (14). If
we put ρ1 = λ1 + λ2, ρ2 = λ3 + λ4, ρ3 = λ5 + λ6, then ρ1, ρ2, ρ3 are the roots of a
cubic g(x) = x3 − S1x

2 + S2x − S3 with integral coefficients satisfying (9) if and only if
µ = λ1 + λ3 + λ5, ν = λ2 + λ4 + λ6 are the roots of a quadratic polynomial x2 − T1x + T2
with integral coefficients.

Proof. Follows easily from the following identities:

ρ1 + ρ2 + ρ3 = µ+ ν, ρ1ρ2 + ρ2ρ3 + ρ3ρ1 = R(µ+ ν) + µν − 3R2

and ρ1ρ2ρ3 = R(µ+ ν)2 − 2R2(µ+ ν)− 2Rµν + 2R3.

The latter two of these can be easily verified by appealing to (13) and (14).

We note that under the above conditions each λi (i = 1, 2, . . . , 6) is a root of

G(x) = x6 − S1x
5 + (S2 + 3R2)x4 − (S3 + 2R2S1)x

3

+R2(S2 + 3R2)x2 −R4S1x+R6 = 0.

We next put µn = λn1 + λn3 + λn5 , νn = λn2 + λn4 + λn6 ; since by (13) and (14) we find that
λ1λ3λ5 = λ2λ4λ6 = R3,

(λn1 −Rn)(λn3 −Rn)(λn5 −Rn) = R2n(µn − νn), (15)

(λn2 −Rn)(λn4 −Rn)(λn6 −Rn) = −R2n(µn − νn).

Note that if we put δ = µ1 − ν1, then because the λi (i = 1, 2, . . . , 6) are all distinct, we
conclude from (15) and (13) that δ 6= 0. In fact, ∆ = δ2 is the discriminant of g(x) =
x3 − S1x

2 + S2x− S3. We now define

Un = (µn − νn)/(µ1 − ν1);

then

U0 = 0, U1 = 1, U2 = µ1 + ν1 + 2R = S1 + 2R,

U3 = (µ1 + ν1)
2 − µ1ν1 = S2

1 +RS1 − S2 − 3R2.

Also, it is easy to see from (13) that

λ−n
1 = λn2/R

2n, λ−n
3 = λn4/R

2n, λ−n
5 = λn6/R

2n;

hence, by (15) we get U−n = −Un/R
2n. It follows that (Un) must be a sixth-order LDS

with characteristic polynomial G(x). If we put γ1 = λ1/R, γ2 = λ3/R, γ3 = λ5/R, then
by (15) we get Un and Vn (= µn + νn + 2Rn) given by (4) with γ1γ2γ3 = 1. Thus, if
Wn = Vn − 2Rn = µn + νn, we see that (Un) and (Wn) are the extended Lucas sequences
when k = 3.
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We conclude this section with some number-theoretic properties of the k = 3 extended
Lucas sequence (Un). Let m be an integer. We define the ranks of apparition ψ1, ψ2,. . . of
m in (Un) as follows: let ψ1 (if it exists) be the least positive value of n such that m | Un.
For i = 1, 2, . . . define ψi+1 (if it exists) to be the least positive integer such that m | Un for
n = ψi+1 and ψj ∤ ψi+1 for all j such that 1 ≤ j ≤ i. From results in [14, §9] we have the
following theorems.

Theorem 8. Suppose that r is a prime such that r ∤ 6∆ΓR and let ǫ be the value of the
Legendre symbol (∆/r). If r has more than one rank of apparition in (Un), then these ranks
must all be divisors of r − ǫ. Furthermore, if r has a single rank of apparition in (Un), it
must be a divisor of either r − ǫ or r2 + ǫr + 1.

Theorem 9. Suppose that r is a prime such that r ∤ 6∆ΓR. If r is a divisor of some term
Un (n 6= 0) of the sequence (Un) then some rank of apparition of r in (Un) must divide n.

4 Some arithmetic properties of the k = 3 extended

Lucas sequences

For n ≥ 1, define Dn = gcd(Wn − 6Rn, Un); by [13, Theorem 4] we know that (Dn) is a
divisibility sequence. Let ω be the least positive value of n, if it exists, such that m divides
the term Dn of the sequence (Dn) we call ω the rank of apparition of m in (Dn). We next
present some additional arithmetic results concerning (Dn).

Theorem 10. ([13, Theorem 14]) If r is a prime such that r ∤ 2R, there exists a rank of
apparition ω of r in (Dn); furthermore, if r divides any term Dm of (Dn), then ω must divide
m.

Theorem 11. Suppose that r is a prime such that r ∤ 2R and let ǫ be the value of the
Legendre symbol (∆|r). The rank of apparition of r in (Dn) is either a divisor of r, r2 − 1
or of r2 + ǫr + 1.

Proof. Follows from the previous result and [13, Theorems 9 and 13].

We also have some results that can be applied to the problem of primality testing.

Lemma 12. Let N be a positive integer such that gcd(N, 2R) = 1 and n be a positive
integer such that gcd(N, n) = 1. If m is a positive integer such that N | Umn/Um, then
gcd(N,Dm) = 1.

Proof. By [13, Theorem 8] we know that gcd(Umn/Um, Dm) must be a divisor of 2n3. The
result now follows easily because
gcd(N, 2n) = 1.

We can now prove a theorem analogous to [15, Theorem 2.4].
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Theorem 13. Let N be a positive integer such that gcd(N, 2R) = 1. Suppose that n is
a positive integer such that gcd(N, n) = 1 and that for some positive integer m we have
N | Dmn and N | Umn/Um. If r is a prime divisor of N and ω(r) is its rank of apparition in
(Dn), then ω(r) | mn and ω(r) ∤ m.

Proof. Clearly, by Theorem 10 we must have ω(r) | mn, because r | Dmn. Also, by Lemma
12, we see that r cannot divide Dm; hence, ω(r) ∤ m.

We next examine some values for N to which these results can be applied. Let p be an
odd prime such that p ≡ 1 (mod 3) and let λn(p) be the least value of x such that

x2 + x+ 1 ≡ 0 (mod pn) and 1 < x < pn.

If we let Yn(p) denote the set of all six distinct solutions of

x6 − 1 = (x2 − 1)(x2 + x+ 1)(x2 − x+ 1) ≡ 0 (mod pn), (16)

it is easy to see that if y = λn(p), then Yn(p) ≡ {±1,±y,±y2} (mod pn); thus,

Γn(p) = {1, pn − 1, λn(p), p
n − 1− λn(p), p

n − λn(p), 1 + λn(p)}

is the set of all six solutions x of (16) such that 1 ≤ x < pn. Also, Yn(p) is a group under
the operation of multiplication modulo pn. Let γn(p) ∈ Γn(p) and put

Nn = Apn + γn(p) (17)

for some fixed positive integer A and n > 1. In what follows we will develop a technique
that is sufficient for determining whether Nn is a prime.

We first observe that there are only two elements of Γn(p) that are both bigger than 1
and odd; denote them by βn(p) and β

∗

n(p) and note that βn(p) + β∗

n(p) = pn ± 1. If either
βn(p) or β

∗

n(p) is a divisor of Nn, then since both exceed 1 and are less than pn (< Nn), Nn

cannot be a prime. We now establish the lemma below.

Lemma 14. Let odd Nn be given by (17), where n > 1, A < 2pn, and βn(p), β
∗

n(p) do
not divide Nn, and Nn is not a perfect square. If Nn has at least one prime divisor t ≡ γ
(mod pn), where γ ∈ Γn(p), then Nn must be a prime.

Proof. If Nn is composite, then Nn = tT , where T > 1. We have γT ≡ γn(p) (mod pn);
hence, T ≡ γ∗ (mod pn), where γ∗ ∈ Γn(p). Thus, there exist integers m1 and m2 such that

Apn + γn(p) = Nn = (m1p
n + γ)(m2p

n + γ∗). (18)

Since both t and T exceed 1 and neither γ nor γ∗ divides Nn, we could only have m1

or m2 = 0 whenever the corresponding γ or γ∗ is even, but this is impossible because
both t and T are odd. It follows that m1m2 ≥ 1. If m1m2 ≥ 2, then by (18) we have
Nn ≥ (pn + 1)(2pn + 1) > 2p2n + γn(p), which means that A > 2pn, a contradiction. Thus,
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we can only have m1 = m2 = 1. In this event both γ and γ∗ must be even. If γ = γ∗,
we see that Nn a perfect integral square, which is not permitted. If γ and γ∗ are distinct,
then because γ, γ∗ ∈ Γn(p) and are both even, we have γ + γ∗ ≥ pn − 1 and therefore one
of γ or γ∗ must exceed or equal (pn − 1)/2. Also, since pn cannot divide 26, we observe that
2 6∈ Γn(p); thus, both γ and γ∗ must be at least 4. We then have γγ∗ ≥ 2(pn − 1) > γn(p).
By (18) we get Apn > p2n + pn(pn − 1) = 2p2n − pn, and consequently A > 2pn − 1, which is
also a contradiction.

In general, the determination of whether or not a given integer is a perfect square can
be done quite easily, but in the above case it is even easier because if Nn is a perfect square,
then Nn = (pn + γ)2, where γ ∈ Γn(p) and 2 | γ. As we must have γ2 ≡ γn(p) (mod pn)
and 2 | γ, we can only have γ = pn − 1 when γn(p) = 1. However, in this case we find
that Nn = (2pn − 1)2, which since A < 2pn, is impossible. Now it is easy to show that if
γ ∈ Γn(p) and γ

2 6≡ 1 (mod pn), then γ2 ≡ λn(p) or γ
2 ≡ pn − λn(p) − 1 (mod pn). Thus,

the only remaining possibilities for γn(p) are either λn(p) or p
n−λn(p)−1 and in either case

γn(p)
2 + γn(p) + 1 ≡ 0 (mod pn). Also, for each of these possibilities the corresponding γ is

either γn(p) + 1 or pn − γn(p) − 1. If we put κn(p) = (γn(p)
2 + γn(p) + 1)/pn, we see that

Nn = (pn + γ)2 only if A = pn + 2(γn(p) + 1) + κn(p) or A = 4pn − 4(γn(p) + 1) + κn(p).
Thus, we can exclude the possibility that Nn is a perfect square in Lemma 14 if we assert
that

A 6= pn + 2(γn(p) + 1) + κn(p) when 2 | A or (19)

A 6= 4pn − 4(γn(p) + 1) + κn(p) when 2 | A.

Notice that if

A = pn + 2(γn(p) + 1) + κn(p) or

A = 4pn − 4(γn(p) + 1) + κn(p),

then Nn is a perfect square and therefore cannot be a prime.
With the above results we can now devise a sufficiency test for the primality of Nn.

Theorem 15. Let odd Nn be given by (17), where n > 1, A < 2pn, A satisfies (19), and
βn(p), β

∗

n(p) do not divide Nn. Suppose gcd(Nn, R) = 1 and m is some positive integer such
that pn−1 | m. If Nn | Dmp and Nn | Ump/Um, then Nn is a prime.

Proof. Let r be a prime divisor of Nn, and let ω(r) denote its rank of apparition in (Dn). By
Theorem 13, we must have ω(r) | mp and ω(r) ∤ m; hence, pn | ω(r). Since gcd(p,Nn) = 1,
we see that p 6= r. Thus, by Theorem 11, we must have t ≡ γ (mod pn), where γ ∈ Γn(p);
it follows by Lemma 14 that Nn is a prime.

In order for Theorem 15 to be practical, we need to study how to compute Wmn and
Umn/Um modulo N for a positive integer N such that gcd(N,R) = 1. Let ei(x1, x2, . . . , x6)
denote the ith elementary symmetric polynomial of x1, x2,. . . , x6 and put

Ai = ei(λ
n
1 , λ

n
2 , λ

n
3 , . . . , λ

n
6 )
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for i = 1, 2, . . . , 6. If µn = λn1 + λn3 + λn5 , νn = λn2 + λn4 + λn6 and (13) and (14) hold, it is not
difficult to show that

A1 = µn + νn = Wn, A2 = Rn(µn + νn) + µnνn,

A3 = Rn(µn + νn)
2 − 2Rnµnνn + 2R3n

and A4 = R2nA2, A5 = R4nA1, A6 = R6n. Also, since

µn + νn = Wn and µn − νn = δUn,

we find that µnνn = (W 2
n −∆U2

n)/4; hence,

A2 = RnWn + (W 2
n −∆U2

n)/4.

In addition to this we note that since

µ2n + ν2n = (µn + νn)
2 − 2µnνn − 2Rn(µn + νn)

we get W2n = W 2
n − 2µnνn − 2RnWn and 2µnνn = W 2

n −W2n − 2RnWn. If we substitute this
latter formula into the formulas for A3 above, we get

A3 = Rn(W2n + 2RnWn + 2R2n).

Since λni (i = 1, 2, . . . , 6) are the roots of x6 − A1x
5 + A2X

4 − A3x
3 + A4x

2 − A5x+ A6, we
see that for a fixed n both (Wh) and (Uh) satisfy the linear recurrence

Zmn+6n = A1Zmn+5n − A2Zm+4n + A3Zmn+3n

−R2nA2Zmn+2n +R4nA1Zmn+n −R6nZnm, (20)

a generalization of (8).
Suppose that a given N is such that gcd(N, 2R) = 1. For positive integers n and m define

Xn ≡ Wn/(2R
n), D̃n ≡ ∆U2

n/(4R
2n),

Yn,m ≡ Umn/(UmR
mn−m) (mod N).

If we refer back to Theorem 15, we see that N | Dmp and N | Ump/Um if and only if Xmp ≡ 3
(mod N) and Yp,m ≡ 0 (mod N).

In view of (20) we can use the arguments made by Roettger and Williams in [12, §3], to
compute remote terms of both (Un) and (Wn) modulo N . Indeed, there exist polynomials
Fm, Gm ∈ Z[x, y] such that

Xmn = Fm(Xn, D̃n) and Ym,n = Gm(Xn, D̃n).

We have F0(x, y) = 3, F1(x, y) = x, F2(x, y) = x2+y−2x, F3(x, y) = x3+3xy+3y−3x2+3
and G0(x, y) = 0, G1(x, y) = 1, G2(x, y) = 2x+ 2, G3(x, y) = 3x2 + y. Also, if we define the
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sextet Sm = {Fm, Fm+1, Fm+2, Gm, Gm+1, Gm+2}, then given Sm, we can compute S2m+1 or
S2m in 12 multiplications by using the formulas given in [12]. We remark here that there are
some misprints in [12, formulas (14) and (15)]. For our case they should read

F2m+3 = Fm+1(Fm+2 − x) + yGm+1(Gm+2 + 1) + Fm,

G2m+3 = Fm+1(Gm+2 − 1) +Gm+1(Fm+2 + x)−Gm,

respectively. If we put x ≡ Xn and y ≡ D̃n (mod N), this allows us to compute Xmn ≡
Fm(x, y), Ym,n ≡ Gm(x, y) (mod N) in 12k modular multiplications modulo N , where k =
⌈logN⌉.

5 Some results concerning Gaussian and Jacobi sums

In this section we will review some of the properties of some special sums that will be of
importance in the sequel. We first consider two distinct odd primes p, q, where q ≡ 1
(mod p). Let χ denote a primitive Dirichlet character of order p. If t is a primitive root of
q, we can define χ by χ(tj) = ζjp , where ζp is a fixed primitive pth root of unity. It is well
known, see, for example, Williams [20, Chapter 11] or Berndt et al. [2], that if τ(χ) denotes
the Gauss sum

τ(χ) =

q−1∑

j=1

χ(j)ζjq ,

where ζq is a primitive qth root of unity, then

τ(χ)τ(χ−1) = q. (21)

We also know that (τ(χ))p/q can be written as the sum
∑p−1

i=0 biζ
j
p , where bi ∈ Z for i =

0, 1, 2, . . . , p− 1. In fact, we can write

(τ(χj))p/q =

p−1∑

i=0

biζ
ij
p , (j = 1, 2, . . . , p− 1). (22)

This is a consequence of the fact that if χ1χ2 6= χ0, the primitive Dirichlet character, then

τ(χ1)τ(χ2) = J(χ1, χ2)τ(χ1χ2), (23)

where J(χ1, χ2) is the Jacobi sum. For much more information on Gaussian and Jacobi
sums, see [2]. From (23) and (21), we easily deduce that

J(χm, χn)J(χ−m, χ−n) = q (24)

and by [2, Theorem 2.1.5] we have

J(χn, χm) = J(χm, χn) = J(χ−m−n, χm) = J(χ−m−n, χn). (25)
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In [20, §11.1] one method of computing non-negative integers B(i, j) (0 ≤ i, j ≤ p− 1) such
that

J(χ, χj) =

p−1∑

i=0

B(i, j)ζ ip (26)

is discussed. There are other methods for computing the B(j, 1); for example, Whiteman
[18, (5.8)] has given a general method that involves computing Jacobsthal sums.

In the case of p = 7, several properties of these Dickson-Hurwitz sums B(i, j) are provided
in Leonard and Williams [9, 10]. This will be discussed further in §7 below.

By using (24) and

(τ(χ))p = q

p−2∏

i=1

J(χ, χi), (27)

a consequence of (21) and (23), we see that all p values of the integers bi in (22) can be
computed in O(p3) arithmetic operations, once the p2 values of B(i, j) (0 ≤ i, j ≤ p − 1)
have been calculated. Notice that the values of all of these integers depend only on the
preselected values of p and q.

Let K = Q(ζp) be the cyclotomic field formed by adjoining ζp to the rationals. These
fields have been the objects of much study (see, for example, Washington [17]), but we will
only require a few simple results concerning them here. For j not divisible by p, we define
the automorphism σj on K by σj(ζp) = ζjp . Note that σj(J(χ

m, χn)) = J(χjm, χjn). Let q be
a prime ideal lying over the principal ideal (q) in the ring O (= Z[ζp]) of algebraic integers
in K. Since q ≡ 1 (mod p), we can write [2, p. 65]

qO = q1q2q3 · · · qp−1,

where the qj (j = 1, 2, . . . , p− 1) are distinct prime ideals lying over q in O and qj = σj(q).
With this information, we can use [2, Theorem 2.1.14] to find the prime ideal decomposition
of J(χn, χm) in K.

In the sequel we assume p = 7 and denote ζ7 by ζ . For fixed j such that 7 ∤ j define

ξ(χj) = τ(χj)7τ(χ5j)7. (28)

By (27) and (25) we get

τ(χj)7 = qJ(χj, χj)2J(χj, χ2j)2J(χj, χ3j) and

τ(χ5j)7 = qJ(χ5j, χ5j)2J(χ5j, χ3j)2J(χ5j, χj).

Also, by (25) we have

J(χ−j, χ−2j) = J(χ3j, χ−2j) = J(χ3j, χ5j);

hence, by (24) we get

ξ(χj) = q4J(χj, χj)2J(χ5j, χ5j)2J(χj, χ3j)J(χ5j, χj),
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which since J(χ5j, χj) = J(χj, χj), J(χj, χ3j) = J(χ3j, χ3j) ( by (25)) means that we can
write

ξ(χj) = q4J(χj, χj)3J(χ5j, χ5j)2J(χ3j, χ3j). (29)

Thus, by (26) there must exist, independent of j, rational integers C0, C1, C2, . . . , C6 such
that if h(x) = C0 + C1x+ C2x

2 + · · ·+ C6x
6, then

ξ(χj)/q4 = J(χj, χj)3(σ5(J(χ
j, χj)))2σ3(J(χ

j, χj)) = h(ζj) (30)

for j such that 7 ∤ j.

6 Some special extended Lucas sequences

We now put λ1 = h(ζj), λ3 = h(ζ2j), λ5 = h(ζ4j), λ2 = h(ζ6j), λ4 = h(ζ5j), λ6 = h(ζ3j). We
observe by (21) and (28) that if we put R = q3, then

λ1λ2 = λ3λ4 = λ5λ6 = R2.

Since λ1 = h(ζj) and λ3 = h(ζ2j), we see by (21) and (28) that

q8λ1λ3 = ξ(χj)ξ(χ2j) = τ(χj)7τ(χ5j)7τ(χ2j)7τ(χ3j)7

= q7τ(χj)7τ(χ3j)7 = q7ξ(χ3j) = q11h(ζ3j) = q11λ6,

and therefore λ1λ3 = Rλ6. Similarly, we find that

λ1λ5 = Rλ4, λ2λ4 = Rλ5, λ2λ6 = Rλ3, λ3λ5 = Rλ2, λ4λ6 = Rλ1.

Thus, we see that λ1, λ2, λ3, λ4, λ5, λ6 satisfy (13) and (14). We also have

µ = λ1 + λ3 + λ5 = 3C0 +M1κ+M2κ
∗

ν = λ2 + λ4 + λ6 = 3C0 +M1κ
∗ +M2κ,

where

κ = ζj + ζ2j + ζ4j ,

κ∗ = ζ3j + ζ5j + ζ6j ,

M1 = C1 + C2 + C4, and

M2 = C3 + C5 + C6.

Since κ+κ∗ = −1 and κκ∗ = 2, we deduce that T1 = µ+ν and T2 = µν are rational integers.
Thus, by Proposition 7, we find that if we put, S1 = T1, S2 = RT1 + T2 − 3R2, and S3 is
given by (9), the corresponding sequences (Un), (Wn) are particular instances of the k = 3
extended Lucas sequences. By [2, Theorem 2.1.4], we find that

J(χ, χ)O = q1q4q5, J(χ5, χ5)O = q4q5q6, J(χ3, χ3)O = q1q3q5; (31)

15



however, in this case (p = 7) the cyclotomic field K has class number one and is therefore a
unique factorization domain; it follows that we can put qj = πjO (j = 1, 2, . . . , p− 1), where
πj is some prime divisor of q in O. Thus, we can write

J(χ, χ) = π1π4π5, J(χ5, χ5) = π4π5π6, J(χ3, χ3) = π1π3π5,

where πj = σj(π1).
It follows from (29) and (30) that h(ζ) is π4

1π3π
5
4π

6
5π

2
6. Suppose that gcd(S1, S2, R) > 1;

then q | S1 and q | S2. Now since h(ζ) must be one of the six roots of (15), we find that q
must divide h(ζ)6, which means that π2 must divide h(ζ), an impossibility. Thus, we must
have gcd(S1, S2, R) = 1 here. In what follows we will develop some properties of these special
extended Lucas sequences that result for the values of S1, S2 and R given above.

We first observe that δ = µ− ν = (M1 −M2)(κ− κ∗); hence, since

(κ− κ∗)2 = (κ+ κ∗)2 − 4κκ∗ = −7,

we get ∆ = −7(M1 − M2)
2. Thus, if r is a prime such that r ∤ ∆, then ǫ = (∆/r) =

(−7/r) = (r/7). Suppose r ≡ η (mod 7), where η = ±1; in this case we have ǫ = η and we
put m(r) = (r − ǫ)/7. If r 6≡ ±1 (mod 7), then we have 7 | r2 + ǫr + 1, and in this case we
put m(r) = (r2 + ǫr + 1)/7.

Now let q be a fixed prime such q ≡ 1 (mod 7) and r be an odd prime such that r 6= 7, q.
Also, let Ft denote the finite field containing t = rn elements, where n = 3(q − 1). Since F∗

t

is a cyclic group with generator γ, say, we can put ζ = γ(t−1)/7 and ζq = γ(t−1)/q and repeat
the arguments in the previous section concerning the Gauss and Jacobi sums in Ft. We find
that all the numbered results in that section hold in Ft. Suppose we let g denote a fixed
primitive root of q and put ι = indg r. Notice that 7 ∤ ι if and only if r(q−1)/7 6≡ 1 (mod q).

We will now conduct our calculations in Ft. We observe that by (26) we have

J(χj, χsj)r = J(χrj, χrsj), (32)

for s such that 7 ∤ s. Also, from the definition of τ(χj), we get

τ(χj)r =

q−1∑

i=0

χrj(i)ζri7 = ζ ιrjτ(χrj). (33)

If m = (r − ǫ)/7, then by (33) and (21) we get

τ(χj)7m = ζ ιrjτ(χj)−ǫτ(χrj) = ζ ιrjτ(χj)−ǫτ(χǫj) = ζ ιrjq(1−ǫ)/2. (34)

It follows that since q4mλm1 = τ(χj)7mτ(χ5j)7m, we can conclude from (34) that

λm1 = ζ6ιrjq1−ǫ−4m = ζ6ιrjq1−r+3m = ζ6ιrjRm. (35)
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We also find that

λm2 = ζ ιrjRm, λm3 = ζ5ιrjRm, λm4 = ζ2ιrjRm, (36)

λm5 = ζ3ιrjRm, λm6 = ζ4ιrjRm.

If m = (r2 + ǫr + 1)/7, we find by repeated application of (33) that

τ(χj)7m = ζ ι(1−r)jτ(χj)τ(χrj)ǫτ(χsj),

where s = r2. Since by (21) we have τ(χrj)ǫ = q(ǫ−1)/2τ(χrǫj), we get

τ(χj)7m = ζ ι(1−r)jq(ǫ−1)/2τ(χj)τ(χrǫj)τ(χsj).

Now by (23), we have

τ(χj)τ(χsj) = J(χj, χsj)τ(χsj+j) = J(χj, χsj)τ(χ−ǫrj);

hence, by (21) we find that

τ(χj)7m = ζ ι(1−r)jq(ǫ+1)/2J(χj, χsj).

By the reasoning used in the case where m = (r − ǫ)/7, we discover that

λm1 = ζ6ι(1−r)jqǫ+1−4mJ(χj, χsj)J(χ5j, χ5sj).

We observe that s = r2 ≡ 2 or 4 (mod 7). By (25) and (24) we find that in either case, we
get

J(χj, χsj)J(χ5j, χ5sj) = q.

Thus, since ǫ+ 2− 7m = (1− r)(1 + r + ǫ) we get

λm1 = ζ6ι(1−r)jqǫ+2−4m = ζ6ι(1−r)jqǫ+2−7mq3m = ζ6ι(1−r)jRm, (37)

and we also have

λm2 = ζ ι(1−r)jRm, λm3 = ζ5ι(1−r)jRm, λm4 = ζ2ι(1−r)jRm, (38)

λm5 = ζ3ι(1−r)jRm, λm6 = ζ4ι(1−r)jRm.

Thus, in either case when m = m(r), we have µ7m = ν7m = 3R7m. Also, if r ≡ ±1 (mod 7)
and 7 ∤ ι , then by (35) and (36) we have µm = KRm and νm = K∗Rm, where K, K∗ ∈ Ft,
K + K∗ = −1 and KK∗ = 2. If r 6≡ ±1 (mod 7) and 7 ∤ ι, we also have µm = KRm and
νm = K∗Rm, where K, K∗ ∈ Ft, K +K∗ = −1 and KK∗ = 2. Since (K −K∗)2 = −7, we
must have µm 6= νm for r 6= 7, whenever 7 ∤ ι. Of course, if 7 | ι, then µm = νm.

We are now able to prove the following important result concerning these special extended
Lucas sequences.
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Theorem 16. Let r be a prime such that r ∤ q∆ and let m = m(r) be defined as above. If
the sequences (Un), (Wn) are the special extended Lucas sequences defined in this section,
then r | D7m and r | Um if and only if r(q−1)/7 ≡ 1 (mod q).

Proof. This result follows easily from δUn = µn − νn, Wn = µn + νn and our above remarks.

We are now able to present one of the main results of this paper. This result is the
analogue of Theorems 1 and 5 above.

Theorem 17. Let r be a prime such that r ∤ 6q∆. If 7 ∤ n and r | Un, then r(q−1)/7 ≡ 1
(mod q).

Proof. If r | Γ where Γ is given by equation (12), we know by results in [14, §9] that r has
a single rank of apparition ψ in (Un) and ψ | r ± 1. Furthermore, it is easy to see from
these results that if r | Un, then ψ | n. If r ∤ Γ, by Theorem 9 we know that some rank
of apparition ψ of r in (Un) must divide n. Hence, in either case, we have 7 ∤ ψ. Also, if
r(q−1)/7 6≡ 1 (mod q), then by Theorem 16 we have r ∤ Um and r | U7m, where m = m(r). If
r has a single rank of apparition in (Un), then it must be ψ and also a divisor of 7m, but
since 7 ∤ ψ, we must have ψ | m, which is impossible because (Un) is a divisibility sequence
and r ∤ Um. Thus, if r has more than one rank of apparition in (Un), by Theorem 8 we can
only have ψ | r− ǫ, where ǫ = (r/7). If r ≡ ±1 (mod 7), then m = (r− ǫ)/7 and since 7 ∤ ψ
and ψ | 7m, we must have ψ | m, which we have already seen is a contradiction. If r 6≡ ±1
(mod 7), thenm = (r2+ǫr+1)/7. By Theorems 9 and 8, this means that there must be some
rank of apparition φ of r in (Un) such that φ | 7m and φ | r − ǫ. Since 7m = (r − ǫ)2 + 3ǫr,
this means that φ can only be 1 or 3. The former case is impossible because U1 = 1. Thus,
φ must be 3, but since 3 | m, this is also impossible because r ∤ Um.

We next turn to the problem of finding an analogue to Theorems 3 and 4. This is provided
by the next results; however, we must first impose some conditions on

Nn = A7n + γn(7) (n > 1), (39)

the number whose primality we wish to establish. By our results in §4, we may insist that

(i) βn(7) ∤ Nn and β∗

n(7) ∤ Nn;

(ii) A 6= 7n + 2(γn(7) + 1) + κn(7) when 2 | A or
A 6= 4 · 7n − 4(γn(7) + 1) + κn(7) when 2 ∤ A;

otherwise, Nn cannot be a prime.
Let ǫ(Nn) be the value of the Legendre symbol (Nn/7) = (γn(7)/7). If γn(7) ≡ ±1

(mod 7), then γn(7) ≡ ǫ(Nn) (mod 7) and we put m(Nn) = (Nn − γn(7))/7. Since N3
n ≡

ǫ(Nn) (mod 7), we see that 7 | (N2
n + ǫ(Nn)Nn + 1) when γn(7) 6≡ ±1 (mod 7), and we put

m(Nn) = (N2
n + ǫ(Nn)Nn + 1)/7. In either case m(Nn) is an integer. Furthermore, when
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γn(7) 6≡ ±1 (mod 7), we must by definition of γn(7) have N
2
n + sNn +1 ≡ γn(7)

2 + sγn(7) +
1 ≡ 0 (mod 7n) for some s ∈ {1,−1}; it follows that s can only be ǫ(Nn), and therefore
7n | 7m(Nn).

Theorem 18. Let Nn be given by (39) such that gcd(Nn, 2q∆) = 1. Suppose further that Nn

satisfies the conditions (i) and (ii). If A < 2 · 7n, m = m(Nn), and N
(q−1)/7
n 6≡ 1 (mod q),

then Nn is a prime if and only if Nn | D7m and Nn | U7m/Um.

Proof. We have seen by Theorem 15 that if Nn | D7m and Nn | U7m/Um, then Nn is a
prime. Also, by Theorem 16, we see that if Nn is a prime, then Nn ∤ Um, Nn | U7m and
Nn | W7n − 6R7n. It follows that Nn | D7m and Nn | U7m/Um.

Theorem 19. Let Nn be given by (39) such that gcd(Nn, 2q∆) = 1. Suppose further that Nn

satisfies the conditions (i) and (ii). If A < 2 · 7n, m = m(Nn), and N
(q−1)/7
n 6≡ 1 (mod q),

then Nn is a prime if and only if

Wm ≡ −Rm and ∆U2
m ≡ −7R2m (mod Nn).

Proof. Since Wm = µm + νm and δUm = µm − νm, we see by our remarks following (38) that
if Nn is a prime, then Wm ≡ −Rm (mod Nn) and ∆U2

m ≡ −7R2m (mod Nn). If Wm ≡ −Rm

(mod Nn) and ∆U2
m ≡ −7R2m (mod Nn), then because

F7(−1/2,−7/4) = 3 and G7(−1/2,−7/4) = 0,

we must have W7m ≡ 6R7m (mod Nn) and Nn | U7m/Um by our results at the conclusion of
§4 above. It follows from Theorem 18 that Nn must be a prime.

7 Computation and an example

We will now discuss how to compute, given q, values for S1 and S2 for the special extended
Lucas sequences introduced in the previous section. Since µ = λ1 + λ3 + λ5 = 3C0 +M1κ+
M2κ

∗ and ν = λ2 + λ4 + λ6 = 3C0 +M1κ
∗ +M2κ, where κ + κ∗ = −1 and κκ∗ = 2, we see

that µ + ν = 6C0 −M1 −M2 and µν = 9C2
0 − 3C0(M1 +M2) + 2(M1 +M2)

2 − 7M1M2. It
follows that

S1 = 6C0 −M1 −M2, (40)

S2 = (3C0 +R)2 − (3C0 +R)(M1 +M2) + 2(M1 +M2)
2 − 7M1M2 − 4R2.

Since M1 = C1 + C2 + C4 and M2 = C3 + C5 + C6, where

h(ζj) = C0 + C1ζ
j + C2ζ

2j + · · ·+ C6ζ
6j

and by (30)
h(ζj) = J(χj, χj)3(σ5(J(χ

j, χj)))2σ3(J(χ
j, χj)), (41)
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we see that we need to determine B(i, 1) (0 ≤ i ≤ 6), where

J(χj, χj) =
6∑

i=0

B(i, 1)ζ ij ,

and then use (41) to compute the coefficients Ci (i = 0, 1, 2, . . . , 6).
We have already mentioned one method for computing B(i, 1) (0 ≤ i ≤ 6), but in the

case of p = 7 we know by results of Leonard and Williams [9, 10] that there exist integers
x1, x2, . . . , x6, such that

x1 ≡ 1 (mod 7), (42)

72q = 2x21 + 42(x22 + x23 + x24) + 343(x25 + 3x26), (43)

12x22 − 12x24 + 147x25 − 441x26 + 56x1x6 + 24x2x3 − 24x2x4 + 48x3x4 + 98x5x6 = 0, (44)

12x23 − 12x24 + 49x25 − 147x26 + 28x1x5 + 28x1x6 + 48x2x3

+ 24x2x4 + 24x3x4 + 490x5x6 = 0. (45)

Also, if there is a nontrivial (x5 and x6 not both zero) solution to (42)-(45), we can put
B(0, 1) = (q − 2 + x1)/7 and B(i, 1) = ai +B(0, 1), where

12a1 = −2x1 + 6x2 + 7x5 + 21x6, 12a2 = −2x1 + 6x3 + 7x5 − 21x6,

12a3 = −2x1 + 6x4 − 14x5, 12a4 = −2x1 − 6x4 − 14x5,

12a5 = −2x1 − 6x3 + 7x5 − 21x6, 12a6 = −2x1 − 6x2 + 7x5 + 21x6.

A table of nontrivial solutions of (42)-(45) for all q ≡ 1 (mod 7) and q < 1000 appears in
Williams [22]. For example, if q = 29 this table lists x1 = 1, x2 = −2, x3 = −3, x4 = −2,
x5 = −1, x6 = 1 and we find that a1 = 0, a2 = −4, a3 = 0, a4 = 2, a5 = −1, a6 = 2. Thus,
in this case, we get

B(0, 1) = 4, B(1, 1) = 4, B(2, 1) = 0, B(3, 1) = 4,

B(4, 1) = 6, B(5, 1) = 3, B(6, 1) = 6.

Williams’s technique for tabulating solutions of (42)-(45) requires that we first have
some prime factor λ of q in O. From this is easy to find some associate π1 of λ such that
J(χ, χ) = π1π4π5, and we can then compute the values of B(i, 1) (0 ≤ i ≤ 6). The main
problem here is that of finding some λ (Williams used an old table of Kummer), but since
O here is norm-Euclidean, we have an efficient algorithm for computing λ as the greatest
common divisor of q and ζ − gh, where h = (q − 1)/7. This is all explained in great detail
in the Master’s thesis of Caranay [4].

As mentioned earlier [22, Table 2] provides solutions to the quadratic partition described
by equations (42)-(45) for all primes q < 1000 such that q ≡ 1 (mod 7). By use of this table
and methods mentioned above we used a computer to calculate the values of S1 and S2 for
each value of q < 1000. The values for S1 and S2 for each q are given in the table below.
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q S1 S2

29 14965 −1017406826
43 272957 21858615700
71 −1040033 326748793138
113 2975587 731201875780
127 3699863 −97933301720
197 −4964135 −144000965801744
211 −26590621 179982347982148
239 −40502099 526271548075978
281 29450665 −606639016188536
337 −80516773 −201075257844008
379 −107119195 −5558958106936166
421 206278211 10161855131659180
449 213162529 6646761776500900
463 111923783 −13852858246492778
491 95772025 −25034062770947666
547 918783725 281059458133383676
617 −548612555 40672461475028416
631 485050586 4945779937081660
659 −498921389 −313908392056365122
673 89928278 −145075204278786308
701 −386848421 −422179587542810582
743 918668743 100597296170580172
757 −848906535 −647877968552066604
827 −762742499 −1133671841709810608
883 −1331064561 −1555728581709172068
911 1688430505 401503472607970444
953 95807830 −2154081956136898244
967 −2183072893 −504443123489474738

Table 2: Values of S1 and S2 for each value of q < 1000

We next tabulate S3 = RS2
1 − RS2 − 4R3, where R = q3 and the factorization of the

corresponding ∆, as this is useful in applying the theorems in the previous section.

q S3 ∆
29 −2939567318323 −77 · 412

43 437514319995271 −711

71 −30146872474620481 −77 · 19872

113 −1350685445842116019 −77 · 15112

127 −5937522515922653501 −77 · 26892
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197 602743276360621183481 −77 · 832 · 2112

211 −55305165497468656769 −77 · 501472

239 −2151851544923374759681 −77 · 772372

281 2471371627931491315493 −711

337 39263510618353883256277 −77 · 1657192

379 584554850719077350566147 −77 · 1748592

421 −3333118453246404690503 −77 · 136 · 292

449 −57018536315736139357387 −77 · 712 · 7432

463 82195167713946458240623 −77 · 842112

491 378058321944546499176803 −77 · 842112

547 28624865948434380013954111 −73 · 2336172

617 −247393375351235843201779 −77 · 1132 · 99412

631 −6809300717975886628419368 −26 · 77 · 321592

659 157152662797406306447103779 −77 · 412 · 432 · 1392

673 −22381922654581541570716952 −26 · 77 · 292 · 30672

701 178907359849478481497829701 −77 · 132 · 291912

743 −12390466262878082841792637 −77 · 1272 · 22972

757 548179848685234385157559841 −36 · 77 · 292 · 9112

827 887703610865697016843379663 −77 · 2512 · 29392

883 2056619378829343807794316247 −36 · 77 · 1132 · 4212

911 −180474348382301748119990917 −77 · 7857792

953 1143201683997473973148592744 −26 · 77 · 712 · 3492

967 2264337669042185334071959087 −77 · 412 · 2112 · 4212

Table 3: Values of S3 and ∆

The following two tables provide the values of the first 26 terms of (Un) when q = 29 and
display how (Un) is analogous to the (Gn) given in Table 1. Notice for (Un) the terms with
subscripts divisible by 7 tend to have many small factors belonging to no particular residue
class, while the other terms satisfy Theorem 17.

n Un

0 0
1 1
2 63743
3 −178130527
4 −7682842247401
5 866655108578870099
6 −7573915228698089372963
7 −683990034828872027465015352
8 −2397639392414777704627533089857
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9 −22408683611098412939809100875710563
10 998749219544949068374614639693399640597
11 86083430660651144394984616218844903262150707
12 −744603639251416281181958726630900817210441654623
13 79150400226551999271197866188077762985564696853513043
14 29653983243922868455568386718402751132322685325618307

67808
15 −56676326670255388502887663794303837738540570772571178

015273923
16 −13610155256109531810220048395596475833684665289317389

49569426882481
17 900974591404181669530727185663463044965078113607329644

8298340027827709
18 −44081029228187672762622309308338538206556842394109679

6845879096253052642797
19 −88341509291730841034147800488133592750487607564356661

92525146740054105545398437
20 366474365369871419422551402809377272895434714580280084

50692950563198615258480194601
21 138353761716273184823923842079896157272158666142471016

8014981086555139364346950488151000
22 3965553744824580859985495851105644891184644442145565571

25010278958585288647718193415730375899
23 5218445524433921420812498124122521433963031486363152233

362945200754150357516907879932060934212437
24 −176249448788214627969811858494667349579382590158574984

2201032900330349269812604886510037926577766168223
25 67573954867428616031053487528800010803524068434362518

8770153722669664064432521414254825560912252408993951

Table 4: Un values for q = 29

n Un

0 0
1 1
2 63743
3 412 · 105967
4 −63743 · 120528407
5 18080861 · 47932181359
6 −412 · 1217 · 63743 · 105967 · 548099
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7 −23 · 33 · 73 · 13 · 83 · 113 · 127 · 181 · 4327 · 22637 · 33629
8 −63743 · 2023951 · 120528407 · 154192040407
9 −412 · 105967 · 352043 · 8608823 · 41508639603521
10 63743 · 199289 · 18080861 · 47932181359 · 90718179089
11 307 · 190553764987279 · 1471511488046122134363179119
12 −412 · 1217 · 1931 · 63743 · 105967 · 528611 · 548099 · 120528407

·799092083
13 911 · 86882985978652029935453201084607862772299337929213
14 26 · 33 · 73 · 133 · 43 · 83 · 113 · 127 · 181 · 461 · 827 · 1093 · 4327

·7043 · 8807 · 22637 · 33629 · 45263 · 63743
15 −412 · 1259 · 4409 · 10499 · 33391 · 105967 · 18080861

·47932181359 · 188657402425248539369
16 −63743 · 2023951 · 3655681 · 120528407 · 154192040407

·270791233327 · 573424602581099359
17 13124329444423469738970728321

·686491904382212805092780937851068123618429
18 −412 · 1217 · 63743 · 105967 · 352043 · 548099 · 8608823

·41508639603521 · 462650775088987947659434651
19 −3191 · 290737 · 19018201 · 500689256569970800812621056

004942512904540952190695696247656811
20 63743 · 199289 · 18080861 · 120528407 · 47932181359

·90718179089 · 304437209057964355560522708661126019
21 23 · 36 · 53 · 73 · 13 · 412 · 43 · 83 · 113 · 127 · 181 · 379 · 4409

·4327 · 11801 · 12263 · 22637 · 33629 · 46831 · 85639 · 105967
·116423 · 887492677 · 780831241

22 3073 · 190553764987279 · 1471511488046122134363179119
·63743 · 97789 · 7841244907646133326488341710420059

23 25179078774401811394677769123622574703 · 207253234766
445419497519285309564717099931568281243272800379

24 −412 · 1217 · 1931 · 3191 · 63743 · 105967 · 528611 · 548099
·2023951 · 2425751 · 120528407 · 799092083 · 154192040407

·97986814723666418151903673
25 3493 · 2801 · 18080861 · 47932181359 · 617499370923509368494901

·10604913411071362611895961734179080975557912513809901

Table 5: Un values factored for q = 29

Note that in this example each prime divisor r of Un when 7 ∤ n is such that r ≡ ±1,
±17 (mod 58). This is because ±1 and ±17 are the only values of x (mod 29) such that
x4 = x(29−1)/7 ≡ 1 (mod 29).
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