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Abstract

We enumerate certain geometric equivalence classes of subgraphs induced by Hamil-

tonian paths and cycles in complete graphs. These classes are orbits under the action

of certain direct products of dihedral and cyclic groups on sets of strings representing

subgraphs. The orbits are enumerated using Burnside’s lemma. The technique used

also provides an alternative proof of the formulae found by Golomb and Welch, which

give the number of distinct n-gons on fixed, regularly spaced vertices up to rotation

and optionally reflection.

1 Introduction

All graphs are considered as their geometric realizations, which are defined as follows: if a
graph G has n vertices, its geometric realization is the figure obtained by first associating
its vertices with n regularly spaced points on a circle, then representing its edges as line
segments between said points. For example, the geometric realizations associated with the
complete graphs Kn for 3 ≤ n ≤ 6 are
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Recall that a Hamiltonian path is a path in a graph which visits every vertex exactly
once, and a Hamiltonian cycle is a Hamiltonian path which is a cycle. Any Hamiltonian
path or cycle in a graph induces a subgraph whose vertex set is the same as the original
graph, but whose edges consist of those traversed in the path or cycle; e.g.:

Our investigation begins with a natural observation regarding the shapes of subgraphs
induced by Hamiltonian paths in complete graphs. Consider the set of subgraphs of K4

induced by Hamiltonian paths which have an endpoint at the top left vertex:

Notice that these subgraphs form one of just three distinct shapes—that is, any subgraph
of K4 induced by a Hamiltonian path is obtainable as a rotation or reflection of one of the
following three graphs:

The analogous observation in the case of K5 yields eight of these shapes:

Furthermore, the analogous observations regarding subgraphs induced by Hamiltonian cycles

in K4 and K5 yield two and four of these shapes, respectively:

The natural inclination at this point is to ask whether there are formulae for enumerating
these distinct shapes. Answering this question in the affirmative is the focus of this paper,
and we begin by making its statement precise.

From now on, n denotes a natural number greater than or equal to 3.
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Definition 1. Let Pn and Cn denote the sets of subgraphs of the complete graph Kn which
are induced by Hamiltonian paths or cycles, respectively. Define two equivalence relations
on Pn and Cn as follows.

1. Two subgraphs G1, G2 are said to be equivalent, denoted by G1 ≡E G2, if they are
obtainable from one another by a rotation.

2. Two subgraphs G1, G2 are said to be similar, denoted by G1 ≡S G2, if they are ob-
tainable from one another by a rotation or reflection.

Example 2.

.

This allows us to state our problem as one of enumerating the equivalence classes of either
Pn or Cn under either ≡S or ≡E. That is, we seek the sizes of the sets

Pn/ ≡S, Pn/ ≡E, Cn/ ≡S, and Cn/ ≡E .

These are shown to be given by the formulae

|Pn/ ≡S | =
1

4

(

(n− 1)! +

{

(n
2
+ 1)(n− 2)!!, if n is even;

(n− 1)!!, if n is odd.

)

,

|Pn/ ≡E | =
1

2

(

(n− 1)! +

{

(n− 2)!!, if n is even;

0, if n is odd.

)

,

|Cn/ ≡S | =
1

4n2





∑

d|n

(

(

ϕ
(n

d

))2 (n

d

)d

d!

)

+

{

n!!n(n+6)
4

, if n is even;

n2(n− 1)!!, if n is odd.



 ,

|Cn/ ≡E | =
1

2n2





∑

d|n

(

(

ϕ
(n

d

))2 (n

d

)d

d!

)

+

{

n
2
n!!, if n is even;

0, if n is odd.



 ,

in Theorems 7, 8, 9, and 10, respectively, where n!! denotes the product of n with every
natural number less than n of the same parity as n, i.e.,

n!! =

{

n(n− 2) · · · (2), if n is even;

n(n− 2) · · · (3)(1), if n is odd.

Illustrations of Pn/ ≡S and Cn/ ≡S for 3 ≤ n ≤ 6 may be found in Figures 4 and 5,
respectively; and Table 1 gives the size of each of these sets for 3 ≤ n ≤ 10.
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n |Pn/ ≡S | |Pn/ ≡E | |Cn/ ≡S | |Cn/ ≡E |
3 1 1 1 1
4 3 4 2 2
5 8 12 4 4
6 38 64 12 14
7 192 360 39 54
8 1320 2544 202 332
9 10176 20160 1219 2246
10 91296 181632 9468 18264

Table 1: Table of values for 3 ≤ n ≤ 10.

2 Setup

We obtain these answers by converting the original problem into one of enumerating the
orbits of a specific group action. These orbits are enumerated by way of Burnside’s lemma,
which is a standard tool in the theory of finite group actions.

Lemma 3 (Burnside’s lemma). Consider a group G acting on a set A. For each g ∈ G, let

fix(g) denote the set of elements of A which are fixed by g, i.e.,

fix(g) = {a ∈ A | g · a = a }.

Let A/G denote the set of orbits of this action. The number of orbits under the action of G
on A is given by

|A/G| =
1

|G|

∑

g∈G

|fix(g)|.

Definition 4. Fix a labelling of the vertices of Kn with the set n̄ = {0, 1, . . . , n − 1}, and
let Xn denote the set of n-length strings which are permutations of the elements of n̄, i.e.,

Xn = {x0x1 · · · xn−1 | xi ∈ n̄ and i 6= j ⇒ xi 6= xj} .

Note that Xn has n! elements.

Each string in Xn is associated with an interpretation as a graph in either Pn or Cn as
follows.

1. (Xn −→ Pn) Associate each string (x0x1 · · · xn−1) ∈ Xn with the subgraph of Kn in-
duced by the Hamiltonian path which traverses the vertices ofKn in the order indicated
by the string, i.e., the association is of the form

(x0x1 · · · xn−1) 7−→ 〈x0 → x1 → · · · → xn−1〉.

Notice that both a string and its reversal are mapped to the same subgraph in Pn.
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Figure 1: Interpretations of strings in Xn as graphs in Pn.

Figure 2: Interpretations of strings in Xn as graphs in Cn.

2. (Xn −→ Cn) Associate each string (x0x1 · · · xn−1) ∈ Xn with the subgraph of Kn

induced by the Hamiltonian cycle which traverses the vertices of Kn in the order
indicated by the string, i.e., the association is of the form

(x0x1 · · · xn−1) 7−→ 〈x0 → x1 → · · · → xn−1 → x0〉.

Notice that all cyclic permutations of a string as well as each of their reversals are
mapped to the same subgraph in Cn.

For each choice of Pn or Cn and ≡S or ≡E we define a group to act on Xn such that
the orbits of this action coincide with the desired equivalence classes. This group is a
direct product where the first coordinate acts purely on strings (i.e., an action of the first
coordinate may only send strings to strings which have the same interpretation), while the
second coordinate acts on a string’s interpretation as a graph.

Definition 5.

1. Define the following two groups which correspond to considering either Pn or Cn:

S(P, n) = 〈v | v2 = 1〉

and

S(C, n) = 〈v, c | cn = v2 = 1, vcv = c−1〉.

Note that S(P, n) is isomorphic to the cyclic group of order 2, and S(C, n) is isomorphic
to the dihedral group of order 2n.
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Figure 3: Geometric interpretation of the action of G(S, n) on strings in Xn.

2. Define the following two groups which correspond to considering either ≡S or ≡E:

G(≡S, n) = 〈r, s | rn = s2 = 1, srs = r−1〉

and

G(≡E, n) = 〈r | rn = 1〉.

Note that G(S, n) is isomorphic to the dihedral group of order 2n, and G(E, n) is
isomorphic to the cyclic group of order n.

3. Finally, given a choice of α = Pn, Cn and a choice of β =≡S,≡E, the acting group with
respect to these choices is given by

Γ(n, α, β) = S(α, n)× G(β, n).

For example, the acting group for Pn under ≡S is

Γ(n, P,≡S) = S(P, n)× G(≡S, n).

Definition 6. The elements of Γ(n, α, β) act on strings in Xn as follows:

(c, 1) · (x0x1 · · · xn−1) = (x1 · · · xn−1x0),

(v, 1) · (x0x1 · · · xn−1) = (xn−1 · · · x1x0),

and

(1, r) · (x0x1 · · · xn−1) = (x0 + 1) (x1 + 1) · · · (xn−1 + 1),

(1, s) · (x0x1 · · · xn−1) = (−x0)(−x1) · · · (−xn−1),

where (xi + 1) denotes the sum (xi + 1) taken modulo n, and (−xi) denotes the (additive)
inverse of xi modulo n. The correct geometric interpretations of the actions of the second
component are illustrated in Figure 3.

This action has the following important properties:

1. Two strings in Xn have the same interpretation as graphs in Pn or Cn if and only if
they are contained in the same orbit under the action of S(P, n) or S(C, n) on Xn,
respectively.
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2. If two strings in Xn are contained in the same orbit under the action of G(≡S, n) or
G(≡E, n), then their interpretations as graphs are similar or equivalent, respectively.

Considering these properties in the context of Burnside’s lemma yields the observation that
the equivalence classes of Pn or Cn under ≡S or ≡E correspond bijectively to the orbits of
Xn under the appropriate acting group. In particular, we have the following:

|Pn/ ≡S | = |Xn/Γ(n, P,≡S)| =
1

4n

∑

g∈Γ(n,P,≡S)

|fix(g)|,

|Pn/ ≡E | = |Xn/Γ(n, P,≡E)| =
1

2n

∑

g∈Γ(n,P,≡E)

|fix(g)|,

|Cn/ ≡S | = |Xn/Γ(n,C,≡S)| =
1

4n2

∑

g∈Γ(n,C,≡S)

|fix(g)|,

|Cn/ ≡E | = |Xn/Γ(n,C,≡E)| =
1

2n2

∑

g∈Γ(n,C,≡E)

|fix(g)|.

3 The path cases

We begin by considering the cases involving Pn. We first enumerate the equivalence classes
of Pn under ≡S, and the size of Pn/ ≡E follows as corollary.

Theorem 7. Let n ≥ 3. The number of equivalence classes of Pn under ≡S is given by

|Pn/ ≡S | =
1

4

(

(n− 1)! +

{

(n
2
+ 1)(n− 2)!!, if n is even;

(n− 1)!!, if n is odd.

)

Proof. Notice that each element of Γ(n, P,≡S) may be expressed in exactly one of the forms

(1, rk), (1, srk), (v, rk), (v, srk)

for some integer 0 ≤ k ≤ n − 1. Considering this fact in the context of Burnside’s lemma
yields the observation that

|Xn/Γ(n, P,≡S)| =
1

4n
(A1 + A2 + A3 + A4),

where

A1 =
n−1
∑

k=0

|fix(1, rk)|, A2 =
n−1
∑

k=0

|fix(1, srk)|, A3 =
n−1
∑

k=0

|fix(v, rk)|, A4 =
n−1
∑

k=0

|fix(v, srk)|.
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1. Clearly (1, rk) fixes (x0x1 · · · xn−1) only when k = 0. Hence A1 = |fix(1, 1)| = n!.

2. For each 0 ≤ k ≤ n − 1, if the action of (1, srk) fixes the string (x0x1 · · · xn−1), then
we must have xi ≡ −xi − k (mod n) for all 0 ≤ i ≤ n− 1, and so 2xi + k ≡ 0 (mod n).
But since there is some xj such that xj = 0, it follows that k = 0 and so srk = s, which
clearly fixes no strings. Thus A2 = 0.

3. Notice that (v, rk) fixes (x0x2 · · · xn−1) if and only if xi ≡ x−(i+1) + k (mod n) and
x−(i+1) ≡ xi + k (mod n) for all 0 ≤ i ≤ n− 1. This implies that xi ≡ xi +2k (mod n)
and thus that 2k ≡ 0 (mod n). Hence n must be even and, since (v, 1) clearly fixes no
strings, we have k = n/2.

Now, xi ≡ x−(i+1) + n/2 (mod n) implies that xi − x−(i+1) ≡ n/2 (mod n). Hence, for
each of the (n/2)! bijections between the sets of compatible pairs of indices {i,−(i+ 1)}
and compatible pairs of labels

{

xi, x−(i+1)

}

:

Pind =
{

{0, n− 1} , {1, n− 2} , . . . ,
{n

2
− 1,

n

2

}}

l

Plab =
{{

0,
n

2

}

,
{

1,
n

2
+ 1
}

, . . . ,
{n

2
− 1, n− 1

}}

;

we obtain 2n/2 strings, for 2n/2 · (n/2)! = n!! fixed strings in total; that is, we have

A3 =

{

n!!, if n is even;

0, if n is odd.

4. Notice that (v, srk) fixes (x0x1 · · · xn−1) if and only if xi ≡ −(x−(i+1) + k) (mod n) for
all 0 ≤ i ≤ n− 1.

First note that if k is even, then there is some entry xj such that xj ≡ −k/2 (mod n).
Hence

xj ≡ −k/2 ≡ −x−(j+1) − k (mod n),

which implies that xj ≡ x−(j+1) (mod n), and thus that n must be odd.

We must consider the following cases.

(a) If n is even and k is odd, then for each of n/2 possible values of k and each of
the (n/2)! bijections between the sets of pairs of compatible indices and pairs of
compatible labels:

Pind =
{

{0, n− 1} , {1, n− 2} , . . . ,
{n

2
− 1,

n

2

}}

l

P
(k)
lab

=

{{

n−
k − 1

2
, n−

k + 1

2

}

, . . . , {n− 1, n− k + 1}

}

;

we have 2n/2 fixed strings, for a total of (n/2)n!! fixed strings for this case.
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(b) If n is odd and k is even, we have 2xn−1

2

≡ −k (mod n), and thus xn−1

2

= n− k
2
.

Hence our set of pairs of compatible indices is a pairing of the set n̄−
{

n−1
2

}

, and
our set of pairs of compatible labels is a pairing of the set n̄−

{

n− k
2

}

.

So for each even value of k and each of the (n−1
2
)! bijections between

Pind =

{

{0, n− 1} , {1, n− 2} , . . . ,

{

n− 3

2
,
n+ 1

2

}}

l

P
(k)
lab

=

{

{0, n− k} , . . . ,

{

n− k − 1

2
,
n− k + 1

2

}

, {n− k + 1, n− 1} ,

. . . ,

{

n− 1−
k

2
, n+ 1−

k

2

}}

,

we have 2
n−1

2 fixed strings, yielding (n− 1)!! fixed strings in total for this case.

(c) If n and k are both odd, as above we have 2xn−1

2

≡ −k (mod n), and thus

xn−1

2

= n−k
2
. Hence our set of pairs of compatible indices is again a pairing of the

set n̄ −
{

n−1
2

}

, and our set of pairs of compatible labels is a pairing of the set
n̄−

{

n−k
2

}

.

So, as above, for each odd value of k and each of the (n−1
2
)! bijections between

Pind =

{

{0, n− 1} , {1, n− 2} , . . . ,

{

n− 3

2
,
n+ 1

2

}}

l

P
(k)
lab

=

{

{0, n− k} , . . . ,

{

n− k

2
− 1,

n− k

2
+ 1

}

, {n− k + 1, n− 1} ,

. . . ,

{

n−
k − 1

2
, n−

k + 1

2

}}

,

we have 2
n−1

2 fixed strings, again yielding (n − 1)!! fixed strings in total for this
case. Hence over all n possible values of k we have a total of n(n − 1)!! fixed
odd-length strings.

Thus we obtain

A4 =

{

(n
2
)n!!, if n is even;

n(n− 1)!!, if n is odd.

Having evaluated each of these sums, the desired theorem now follows.

Since Γ(n, P,≡E) is a subgroup of Γ(n, P,≡S), the number of equivalence classes of Pn

under ≡E follows as an easy corollary.
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Theorem 8. Let n ≥ 3. The number of equivalence classes of Pn under ≡E is given by

|Pn/ ≡E | =
1

2

(

(n− 1)! +

{

(n− 2)!!, if n is even;

0, if n is odd.

)

4 The cycle cases

As before, we begin by enumerating Cn/ ≡S, and the enumeration of Cn/ ≡E follows as
corollary.

Theorem 9. Let n ≥ 3. The number of equivalence classes of Cn under ≡S is given by

|Cn/ ≡S | =
1

4n2





∑

d|n

(

(

ϕ
(n

d

))2 (n

d

)d

d!

)

+

{

n!!n(n+6)
4

, if n is even;

n2(n− 1)!!, if n is odd.





Proof. Notice that each element of Γ(n,C,≡S) may be expressed in exactly one of the forms

(cm, rk), (cm, srk), (cmv, rk), (cmv, srk)

for some integers 0 ≤ k,m ≤ n−1. Considering this fact in the context of Burnside’s lemma
yields the observation that

|Xn/Γ(n,C,≡S)| =
1

4n2
(B1 +B2 +B3 + B4),

where

B1 =
n−1
∑

k,m=0

|fix(cm, rk)|, B2 =
n−1
∑

k,m=0

|fix(cm, srk)|,

B3 =
n−1
∑

k,m=0

|fix(cmv, rk)|, B4 =
n−1
∑

k,m=0

|fix(cmv, srk)|.

As before, we proceed to evaluate each of these sums.

1. Notice that (cm, rk) fixes (x0x1 . . . xn−1) if and only if xi ≡ xi+m + k (mod n) for all
0 ≤ i ≤ n− 1, and so xi ≡ xi+ℓm + ℓk (mod n) for all 0 ≤ i ≤ n− 1 and all ℓ ≥ 0.

In particular, for ℓ = n
gcd(n,m)

, we must have that n | ℓm and so xi = xi+ℓm. Hence

xi ≡ xi + ℓk (mod n) and ℓk ≡ 0 (mod n); that is, n | ℓk and thus gcd(n,m) | k.
Consequently, we have gcd(n,m) | gcd(n, k). Similarly, for ℓ = n

gcd(n,k)
, we have n | ℓm,

implying that gcd(n, k) | m and hence gcd(n, k) | gcd(n,m).
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Figure 4: Representatives from each class of Pn/ ≡S for 3 ≤ n ≤ 6.
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Figure 5: Representatives from each class of Cn/ ≡S for 3 ≤ n ≤ 6.

We conclude that gcd(n, k) = gcd(n,m) = d for some divisor d of n, and therefore
∑

0≤k,m<n

|fix(cm, rk)| =
∑

d|n

∑

gcd(k,n)=d
gcd(m,n)=d

|fix(cm, rk)|. (1)

Now, fix some particular k,m, d with d = gcd(n, k) = gcd(n,m). We seek to determine
the size of fix(cm, rk). Both of rk and cm have order n/d, and hence, if (cm, rk) fixes
(x0x1 . . . xn−1), then

xi ≡ xi+ℓm + ℓk (mod n) for all 0 ≤ i ≤ n− 1 and 0 ≤ ℓ ≤
n

d
− 1.

Hence, each choice of label xi determines the labels of all positions of the form xi+ℓm

for 0 ≤ ℓ ≤ n
d
− 1.

Note that, for t ∈ {0, 1, . . . , n− 1} with gcd(t, n) = d and α ∈ {0, . . . , d− 1}, the
elements of the set

F (t)
α =

{

α + ℓt | 0 ≤ ℓ ≤
n

d
− 1
}

are all congruent to α modulo d yet are all distinct modulo n [3]. Setting t = k,m, we
see that the set {0, 1, . . . , n− 1} may be partitioned in two different ways via Πm and
Πk, where

Πm =
{{

0,m, . . . ,
(n

d
− 1
)

m
}

, . . . ,
{

d− 1, d− 1 +m, . . . , 1 + d−
(n

d
− 1
)

m
}}

,

and

Πk =
{{

0, k, . . . ,
(n

d
− 1
)

k
}

, . . . ,
{

d− 1, d− 1 + k, . . . , 1 + d−
(n

d
− 1
)

k
}}

.
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Consequently, the label of xi determines all labels with indices in the set F (m)
i such

that all such labels are contained within a unique F (k)
α . In fact, we see that the labels

of the initial substring (x0x1 . . . xd−1) completely determine the labelling of the rest of
the string.

Hence, for each of the d! bijections between Πm and Πk, each of the (n/d)d possible

sets of choices of labelling i 7→ xi ∈ F (k)
i determines a unique fixed string. That is, for

each particular valid k,m, d, we have

|fix(cm, rk)| =
(n

d

)d

d!.

Combining this with (1), we obtain

B1 =
n−1
∑

k,m=1

|fix(cm, rk)| =
∑

d|n

∑

gcd(k,n)=d
gcd(m,n)=d

|fix(cm, rk),

=
∑

d|n

(n

d

)d

d!
∑

gcd(k,n)=d

∑

gcd(m,n)=d

1,

=
∑

d|n

(

ϕ
(n

d

)

· ϕ
(n

d

)

·
(n

d

)d

· d!

)

,

where ϕ denotes Euler’s totient function.

2. Notice that (cm, srk) fixes (x0x1 . . . xn−1) if and only if −xi+m − k ≡ xi (mod n) for
all 0 ≤ i ≤ n − 1. Thus we have xi+m + xi ≡ −k (mod n), and so xi+2m + xi+m ≡
−k (mod n), which implies that xi ≡ xi+m (mod n) for all 0 ≤ i ≤ n − 1, and hence
m = 0 or m = n/2. But if m = 0, then from the evaluation of A2 above, no strings are
fixed, and so we must have m = n/2 and n must be even.

Hence we have that xi + xi+n

2
≡ −k (mod n). Note that k cannot be even, since, as

n is even, −k would also be even, and so we would have xi = −k/2 = xi+n

2
, which

cannot be the case since c
n

2 fixes no points.

Thus k must be odd, and so for all n/2 odd choices of k we have (n/2)! bijections

Pind =
{{

0,
n

2

}

,
{

1,
n

2
+ 1
}

, . . . ,
{n

2
− 2, n− 2

}

,
{n

2
− 1, n− 1

}}

l

P
(k)
lab

=

{

{0,−k} , {1,−(k + 1)} , . . . ,

{

k − 1

2
,
k + 1

2

}}

,

each of which affords 2(n/2) fixed strings. Therefore we obtain

B2 =

{

n
2
n!!, if n is even;

0, if n is odd.
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3. Notice that (cmv, rk) fixes (x0x1 . . . xn−1) if and only if x−(i+1)+m + k ≡ xi (mod n) for
all 0 ≤ i ≤ n− 1, which is the case if and only if x−(i+1) + k ≡ xi−m (mod n) for all xi.
There are three cases.

(a) If n is odd, then for all values of m there exists a unique 0 ≤ a ≤ n− 1 such that
−(a + 1) ≡ a −m (mod n), and hence x−(a+1) = xa−m and consequently k = 0.
But, since all other entries of the string are moved, it follows that no odd-length
strings are fixed by (cmv, rk).

(b) If n is even and m is odd, then there exist exactly two indices 0 ≤ a, b ≤ n − 1
such that −(a+ 1) ≡ a−m (mod n) and −(b + 1) ≡ b−m (mod n), and hence
x−(a+1) = xa−m and x−(b+1) = xb−m. Then, just as above, we have k = 0 and thus
no strings are fixed.

(c) If both n and m are even, then, since there must be some xi = 0, each of n/2
choices of m fully determines the value of k. Hence, in the same manner as before,
for each m we consider the (n/2)! bijections between

P
(m)
ind

=
{

{0, n− 1 +m} , {1, n− 2 +m} , . . . ,
{n

2
− 1,

n

2
+m

}}

l

P
(m)
lab

=
{

{0,−k} , {1, 1− k} , . . . ,
{n

2
− 1,

n

2
− 1− k

}}

;

each of which, as before, yields 2
n

2 fixed strings, for a total of n!! fixed strings for
each value of m.

Hence we obtain

B3 =

{

n
2
n!!, if n is even;

0, if n is odd.

4. Notice that (cmv, srk) fixes (x0x1 . . . xn−1) if and only if −(x−(i+1)+m+k) ≡ xi (mod n)
for all 0 ≤ i ≤ n− 1. There are three cases.

(a) If n is odd, then it is tedious but not difficult to see that an analogous argument
to the evaluation of A4 in the proof of Theorem 7 applies for all n values of m,
yielding a total of n2(n− 1)!! fixed strings.

(b) If n,m are both even, then it is again not difficult to see that an analogous
argument to the evaluation of A4 in the proof of Theorem 7 applies for all n/2
even values of m. That is, each even choice of m allows for n/2 odd values of k,
each of which affords n!! fixed strings.

(c) If n is even and m is odd, then there are exactly two indices 0 ≤ a, b ≤ n − 1
such that 2a ≡ 2b ≡ m+ 1 (mod n). It follows that m− a− 1 ≡ a (mod n) and
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m− b− 1 ≡ b (mod n), and so −xa− k ≡ xa (mod n) and −xb− k ≡ xb (mod n).
Hence 2xa ≡ 2xb ≡ −k (mod n), and so k must be even.

Now, for particular values of m, a, b, there are n/2 possible even values of k. Each
choice of k fixes the values of {xa, xb}, which may be ordered in two ways; and, by
the same methods as before, both choices of ordering afford (n−2)!! fixed strings.
Hence, in this case we have (n/2) · (n/2) · 2 · (n− 2)!! = (n/2)n!! fixed strings in
total.

Thus we obtain

B4 =

{

(n
2
+ 1)n

2
n!!, if n is even;

n2(n− 1)!!, if n is odd.

Having evaluated each of these sums, the desired theorem now follows.

As before, since Γ(n,C,≡E) is a subgroup of Γ(n,C,≡S), the number of equivalence
classes of Cn under ≡E follows as an easy corollary.

Theorem 10. Let n ≥ 3. The number of equivalence classes of Cn under ≡E is given by

|Cn/ ≡E | =
1

2n2





∑

d|n

(

(

ϕ
(n

d

))2 (n

d

)d

d!

)

+

{

n
2
n!!, if n is even;

0, if n is odd.





Finally, it is worth noting a small corollary to the above theorems. Since ϕ(p) = (p− 1)
for any prime p, we have the following.

Corollary 11. Let p be an odd prime. Then

|Cp/ ≡S | =
1

4p

(

(p− 1)2 + p(p− 1)!! + (p− 1)!
)

,

and

|Cp/ ≡E | =
1

2p

(

(p− 1)2 + (p− 1)!
)

.

5 Further remarks

Here we note some interesting connections which the authors noticed over the course of
writing this paper. After completing the enumeration of Pn/ ≡S, we discovered that there
are exactly as many of them as there are tone rows in n-tone music—the enumeration of
which may be found in a paper of Reiner [2]. The corresponding sequence in the On-Line

Encylopedia of Integer Sequences (OEIS) is A099030—which, as has been noted, is identical
to the sequence A089066. The number of equivalence classes of Pn under ≡E is the given by
the sequence A275527.
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Further, for reasons which should be clear, there are exactly as many classes in Cn/ ≡S

as there are classes of similar n-gons (that is, classes of n-gons which are equivalent up to
rotations and reflections). These classes—as well as the analogous case of n-gons equivalent
up to rotations only—were enumerated in a 1960 paper of Golomb and Welch [1]. As such,
this paper provides an alternative proof of their result. The corresponding OEIS sequences
are A000940 and A000939, respectively. It should also be noted that the evaluation of B1

in the proof of Theorem 9 is in large part an adaptation of an argument of Moser [3]. In
particular, the sum of Euler ϕ terms which makes an appearance in this paper as well as in
the paper of Golomb and Welch [1] is the same as that which appears in the case of a = 1
in Moser’s paper [3]. This connection is (as far as the authors are aware) not yet noted
anywhere.
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