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Abstract

A Horadam sequence is a sequence generated by the second-order linear homoge-
neous recurrence relation Wn = pWn−1 − qWn−2; W0 = a, W1 = b. The sequence
of Fibonacci numbers is a particular case of a Horadam sequence. For any fixed in-
tegers s, t, and k, we investigate the boundedness and periodicity of the sequence
(gcd(Wn + s, Wn+k + t)) in this paper.

1 Introduction

The general second-order linear homogeneous recurrence relation

Wn = pWn−1 − qWn−2; W0 = a, W1 = b, (1)

with arbitrary values a, b, p, and q generates the sequence W(a, b; p, q) = (Wn(a, b; p, q))n∈Z
which we call a Horadam sequence after the work of Horadam [5]. In general, we also call
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(Wn(a, b; p, q)) a second-order recurrence sequence. We usually omit the (a, b; p, q) if it does
not cause ambiguity. For any sequence (Wn), we define [5, Eq. (1.9)]

e(W ) := pab− qa2 − b2 = W0W2 −W 2
1 .

Let U(p, q) = (Un(p, q))n∈Z and V(p, q) = (Vn(p, q))n∈Z denote the Lucas sequence of the
first kind and the second kind respectively, which can be defined by

U(p, q) = W(0, 1; p, q) and V(p, q) = W(2, p; p, q).

Fibonacci numbers (Fn) = U(1,−1) and Lucas numbers (Ln) = V(1,−1) are the most fa-
mous particular cases of Lucas sequences. Conversely, the families of sequences W(a, b; p, q),
U(p, q), and V(p, q) can be seen as generalizations of Fibonacci numbers and Lucas numbers.

Horadam and Lucas sequences have several relations, such as the fact [5, Eq. (4.10)] that

Vn = U2n/Un, (2)

and the known expression [5, Eq. (2.14)]

Wn = bUn − aqUn−1. (3)

Also, for any integers n, m, and k, we have the identity [5, p. 171]

WnWm −Wn+1Wm−1 = qk(Wn−kWm−k −Wn−k+1Wm−k−1). (4)

The sequence (Wn) = W(a, b; p, q) can be defined in any number system, but it is
often considered in integers. Although (Wn) is usually considered with indices in natural
numbers, we can extend the indices to include negative integers by the relation Wn−2 =
pWn−1/q−Wn/q if q 6= 0. Note that if (Wn) takes integer values at non-negative indices and
|q| = 1, then the terms with negative index are also integers.

For any sequence (Wn) and any integer s, we consider a slightly different sequence
(Wn + s) which we call a shifted sequence. Chen [1] showed that the gcds of shifted Fi-
bonacci numbers gcd(Fn+ s, Fn+1+ s) are bounded if s 6= ±1. This case is not unique. Ray
and Pradhan [9] found that the gcds of shifted balancing numbers gcd(Bn−s, Bn+1−6s) with
(Bn) := U(6, 1) are also bounded when s 6= ±1. Additionally, for f(n) := Wn(a, b; p,−1),
Spilker [10] showed that ts(n) := gcd(f(n)+ s, f(n+1)+ s) divides an integer m depending
on a, b, p, and s. Spilker also proved that ts(n) is simply periodic if m 6= 0.

Motivated by those three results, we consider a more general case: the greatest common
divisor of two shifted sequences (Wn + s) and (Wn+k + t) with |q| = 1. Not only the Fi-
bonacci and the balancing numbers but also some famous sequences of numbers are under
the domain we considered. We list some of the sequences of numbers as follows.
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name a b p q OEIS number
Fibonacci numbers Fn 0 1 1 −1 A000045
Lucas numbers Ln 2 1 1 −1 A000032
Pell numbers Pn 0 1 2 −1 A000129
Pell-Lucas numbers Qn 2 2 2 −1 A002203
balancing numbers Bn 0 1 6 1 A001110
Lucas-balancing numbers Cn 1 3 6 1 A001541

Table 1: Some second-order recurrence sequences with |q| = 1.

In this paper, we settle down all the values of (gcd(Wn + s, Wn+k + t))n∈Z with |q| = 1
for any given s, t, and k. If (gcd(Wn + s, Wn+k + t)) is bounded, then it must be periodic. If
(gcd(Wn + s, Wn+k + t)) is unbounded, then we can give a method to justify its boundedness
and compute the values of the unbounded greatest common divisors gcd(Wn+ s, Wn+k + t).

Let JW K(s, t)n := gcd(Wn + s, Wn+1 + t) for any integers s, t, and any sequence (Wn).
In this paper, we study the values of JW K(s, t)n with |q| = 1 for any integer n. In Section 2,
we extend the methods inspired by Spilker [10] and use them to find a multiple and a period
of (JW K(s, t)n). The first theorem we proved in Section 2 is the following:

Theorem 1. For any integers s, t, and n,

JW(a, b; p, q)K(s, t)n divides qn e(W(a, b; p, q))− e(W(s, t; p, q)). (5)

For our convenience, let (Sn) = W(s, t; p, q) denote the sequence generated by the given
shift values s and t. Theorem 1 shows that if qn e(W ) − e(S) 6= 0 and |q| = 1, then the
terms of (JW K(s, t)n) are bounded by |qn e(W )− e(S)|. We can see how this result helps us
determine the value of each bounded term of (JW K(s, t)n) in Section 2.

In Section 3, we derive two theorems. The first theorem gives us a way to apply our
work to the general case gcd(Wn+ s, Wn+k + t) where n and k are any integers. The second
theorem, which provides a way to reduce problems into basic cases, is the following:

Theorem 2. For any integers n and k, if |q| = 1, then we have

JW K(S0, S1)n = JW K(Sk, Sk+1)n+k. (6)

In Sections 4 and 5, we use a method inspired by Chen’s work [1] and Conway’s topograph
[2, Lecture 1] to compute the values of unbounded (JW K(s, t)n) when qn e(W ) − e(S) = 0.
In Section 6, we show some examples of some famous sequences of numbers.

2 Boundedness and periodicity of (JW K(s, t)n)
Spilker’s work [10, p. 478] gave a way to find a multiple of JW(a, b; p,−1)K(s, s)n. In the
following proof, we generalize Spilker’s result into a more general case.

3

https://oeis.org/A000045
https://oeis.org/A000032
https://oeis.org/A000129
https://oeis.org/A002203
https://oeis.org/A001110
https://oeis.org/A001541


Proof of Theorem 1. By (4), we get

Wn−1Wn+1 −W 2
n = qn−1(W0W2 −W 2

1 ) = qn−1 e(W ).

Let d be the gcd of Wn + s and Wn+1 + t, that is, d = JW K(s, t)n. Then we have

qWn−1Wn+1 − qW 2
n = (pWn −Wn+1)Wn+1 − qW 2

n

≡ pst− t2 − qs2 = e(S) (mod d).

Consequently, we have JW K(s, t)n divides qn e(W )− e(S).

We see that the multiple m = qn e(W )−e(S) could be getting bigger for large n if |q| > 1.
However, when |q| = 1, m become some constants as a function of n (depending only on
(Wn), (Sn), and the parity of n). Moreover, if the multiple m is a nonzero constant, then
the terms of (JW K(s, t)n) are bounded by |m|. We let (W⊕

n ) and (W⊖

n ) denote the cases that
q = 1 and q = −1 respectively for any sequence (Wn).

Corollary 3. For any integers s, t, and n,

q
W⊕

y
(s, t)n divides e(W⊕)− e(S⊕).

Corollary 4. For any integers s, t, and n,

1. JW⊖K(s, t)2n−1 divides e(W⊖) + e(S⊖);

2. JW⊖K(s, t)2n divides e(W⊖)− e(S⊖).

Example 5 ([9, Thm. 3.6, 3.7]). Let
(
GB

n

)
= W(a, b; 6, 1) be the generalized balancing-like

sequences. For any integers s and n, if a2 + b2 − 6ab− s2 6= 0, then we have

q
GB

y
(−s, −6s)n ≤ |a2 + b2 − 6ab− s2|.

Proof. Since q = 1, (S⊕

n ) = W(−s,−6s; 6, 1). Then by Corollary 3, for any n,

q
GB

y
(−s, −6s)n divides e(GB)− e(S⊕)

= (6ab− a2 − b2)− (6(−s)(−6s)− (−s)2 − (−6s)2) = 6ab− a2 − b2 + s2.

As we mentioned before, if the common multiple 6ab − a2 − b2 + s2 is not zero, then the
terms of

(q
GB

y
(−s, −6s)n

)
are bounded by |6ab− a2 − b2 + s2|.

Example 6 ([1, Thm. 1, 2]). Let
(
GF

n

)
= W(a, b; 1,−1) be the generalized Fibonacci

sequences (in Chen’s paper [1], Gn+1 = GF
n ). For any integers s and n,

1. if a2 − b2 + ab+ s2 6= 0, then we have
q
GF

y
(s, s)2n−1 ≤ |a2 − b2 + ab+ s2|;

2. if a2 − b2 + ab− s2 6= 0, then we have
q
GF

y
(s, s)2n ≤ |a2 − b2 + ab− s2|.
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Proof. Since q = −1, (S⊖

n ) = W(s, s; 1,−1). Then by Corollary 4, for any n,

q
GF

y
(s, s)2n−1 divides e(GF ) + e(S⊖)

= (ab+ a2 − b2) + (s2 + s2 − s2) = ab+ a2 − b2 + s2;
q
GF

y
(s, s)2n divides e(GF )− e(S⊖)

= (ab+ a2 − b2)− (s2 + s2 − s2) = ab+ a2 − b2 − s2.

As we mentioned before, on the one hand, if the common multiple ab + a2 − b2 + s2 is not
zero, then the terms of

(q
GF

y
(s, s)2n−1

)
are bounded by |a2 − b2 + ab + s2|. On the other

hand, if the common multiple ab+ a2 − b2 − s2 is not zero, then the terms of
(q
GF

y
(s, s)2n

)

are bounded by |a2 − b2 + ab− s2|.

By using the method inspired by Spilker [10, p. 478], we can find a period of the function
n 7→ JW K(s, t)n. The period can help us determine the values of (JW K(s, t)n), that is, we
only need to compute the values of one period.

Theorem 7. For any linear integer function φ(n), if JW K(s, t)φ(n) divides a nonzero integer
constant m for all integers n, then the function n 7→ JW K(s, t)φ(n) is simply periodic. That
is to say, there exists an integer ω ≤ m2 such that JW K(s, t)φ(n) = JW K(s, t)φ(n+ω) for all n.

Proof. Since the vector-valued mapping

n 7→

(
Wn mod m
Wn+1 mod m

)

has only finitely many values, there are integers ω1 and ω2 such that 0 ≤ ω1 < ω2 ≤ m2 and

Wω1
≡ Wω2

(mod m), Wω1+1 ≡ Wω2+1 (mod m).

By the recurrence relation (1), we get Wω1+n ≡ Wω2+n (mod m) for all integer n; together
with ω := ω2 − ω1 ≤ m2, we obtain

Wn+ω ≡ Wn (mod m) ∀n ∈ Z.

Suppose that φ(n) = cn+ k where c and k are integers. Since JW K(s, t)φ(n) divides m for all
integers n, we finally get

JW K(s, t)φ(n) = gcd(Wφ(n) + s, Wφ(n)+1 + t, m)

= gcd(Wφ(n)+cω + s, Wφ(n)+cω+1 + t, m) = JW K(s, t)φ(n+ω)

This result may not give a way to find the smallest period. Nevertheless, analogously to
Spilker’s work, a period ω ≤ m2 can be chosen by

Wω ≡ W0 = a (mod m), Wω+1 ≡ W1 = b (mod m).
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3 Transformations

Although our principal work is about JW K(s, t)n = gcd(Wn + s, Wn+1 + t) in this paper, we
can still apply our results to gcd(Wn + s, Wn+k + t) for any integer k. The crucial part is
the following lemma, which lets us be able to transform the problems about (Wn,Wn+k) into
problems about (Wn,Wn+1). That is, we can just study the (Wn,Wn+1)-cases and deal with
the demands for (Wn,Wn+k)-cases. Kiliç and Stănică [6, Lem. 1] have proved the following
lemma. However, we give a self-contained proof below.

Lemma 8. For any sequence (Wn), a subsequence (Jn) = (Wkn+t)n∈Z with indices in an
arithmetic sequence is again a second-order recurrence sequence; moreover,

(Wkn+t) = (Jn) = W(Wt,Wk+t; Vk, q
k). (7)

Proof. Let γ = Wkn−k+t, and γ+ = Wkn−k+t+1. By shifting the indices, we have

Jn−1 = γ = W0(γ, γ
+; p, q), Jn = Wk(γ, γ

+; p, q), and Jn+1 = W2k(γ, γ
+; p, q).

By (3), we get Jn = γ+Uk − γqUk−1, so that γ+ = (1/Uk)Jn + γq(Uk−1/Uk). Then by (2)
and (3), we obtain

Jn+1 = γ+U2k − γqU2k−1

=
U2k

Uk

Jn − γq

(

U2k−1 −
Uk−1

Uk

U2k

)

= VkJn − q

(
U2k−1Uk − U2kUk−1

Uk

)

Jn−1.

Applying (4) with k − 1, since U0 = 0 and U1 = 1, we have

Jn+1 = VkJn − qk
(
UkU1 − Uk+1U0

Uk

)

Jn−1 = VkJn − qkJn−1,

which form a recurrence relation (1) for any n. In conclusion, Wkn+t = Jn = Wn(A,B; P,Q)
where A = J0 = Wt, B = J1 = Wk+t, P = Vk, and Q = qk.

Example 9. By Lemma 8, we get Ukn = Wk(0, Un; Vn, q
n) = Un · Uk(Vn, q

n). Then we can
conclude that

U2n

Un

= U2(Vn, q
n) = Vn,

U3n

Un

= U3(Vn, q
n) = V 2

n − qn.

Theorem 10. For any integers s, t, n, and k, if there exist integers m and r such that
n = km+ r, then we have

gcd(Wn + s, Wn+k + t) =
q
W(Wr,Wk+r; Vk, q

k)
y
(s, t)m. (8)

Proof. By Lemma 8, Wkm+r = Jm = Wm(Wr,Wk+r; Vk, q
k) for any integer n, so that

gcd(Wn + s, Wn+k + t) = gcd(Jm + s, Jm+1 + t).
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Theorem 10 shows that we can focus only on the gcds with indices in (n, n+1) and deal
with the demands for the gcds with indices in (n, n+ k). Note that if |q| = 1, then |qk| = 1.

Theorem 1 shows that if (Sn) = W(s, t; p, q), then JW K(s, t)n divides qn e(W ) − e(S).
Moreover, by (4), we get SkSk+2 − S2

k+1 = qk(S0S2 − S2
1) for any integer k. Therefore, we

can conclude that
JW K(Sk, Sk+1)n divides qn e(W )− qk e(S),

which can be seen as a generalization of Theorem 1. However, when |q| = 1, we have a
stronger result.

Proof of Theorem 2. Since Wn+2 = pWn+1 − qWn, Sn+2 = pSn+1 − qSn, and |q| = 1, we
obtain

JW K(S0, S1)n = gcd(Wn + S0, Wn+1 + S1)

= gcd(−qWn − qS0, Wn+1 + S1)

= gcd(Wn+2 + S2, Wn+1 + S1) = JW K(S1, S2)n+1.

Continuing in this manner gives the result.

Theorem 2 gives us a new perspective on the shift values, which is to regard the shift
values as the k-th and (k+1)-th terms of a recurrence sequence (Sn) = W(s, t; p, q) for some
s, t, and k. It also makes the result of Theorem 1 more reasonable. By Theorem 2, we can
reduce the shift values to some small numbers. Conversely, we can also apply the results of
small shifts to big numbers.

Example 11. Let (Fn) = U(1,−1) be the Fibonacci numbers, we have, for any n,

gcd(F2n + 2, F2n+2 + 4) = JW(0, 1; 3, 1)K(2, 2)n−1;

gcd(F2n+1 + 2, F2n+3 + 4) = JW(1, 2; 3, 1)K(2, 2)n−1.

Proof. By Theorem 10 with V2(1,−1) = L2 = 3 and (−1)2 = 1, we have

gcd(F2n+r + 2, F2n+r+2 + 4) = JW(Fr, Fr+2; 3, 1)K(2, 4)n.

Then by Theorem 2 with (Sn) = W(2, 2; 3, 1) = (2, 2, 4, 10, 26, . . .), we get

JW(Fr, Fr+2; 3, 1)K(2, 4)n = JW(Fr, Fr+2; 3, 1)K(2, 2)n−1.

Since (Fn) = (0, 1, 1, 2, 3, 5, 8, . . .), we can conclude the result.

The result of Example 11 shows that we can get the values of (gcd(F2n + 2, F2n+2 + 4))
and (gcd(F2n+1 + 2, F2n+3 + 4)) by only computing the values of (JW(0, 1; 3, 1)K(2, 2)n) and
(JW(1, 2; 3, 1)K(2, 2)n).
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4 Computing methods and unbounded cases

4.1 Chen’s method

The following lemma and theorem are inspired by Chen’s work [1, p. 3], which is to turn
the shift values (s, t) into a sequence (Tn) and then change the indices of (Tn) and (Wn) into
some adjacent integers. The following lemma use a fact [5, Eq. (2.17)] that

U−n = −q−nUn. (9)

Lemma 12. For any integers a, b, p, q, and n,

W−n(a, b; p, q) = q−(n+1)Wn+1(b, qa; p, q). (10)

Proof. By (3) and (9), we get

W−n(a, b; p, q) = bU−n − aqU−n−1

= −q−nbUn + q−naUn+1

= q−(n+1)(qaUn+1 − bqUn).

Using (3) again, we obtain

q−(n+1)(qaUn+1 − bqUn) = q−(n+1)Wn+1(b, qa; p, q).

Next, we let (Tn) = W(t, qs; p, q) denote the sequence generated by t and qs, where s
and t are the given shift values. By Lemma 12, we have

S−n = q−(n+1)Tn+1.

Theorem 13. For any integers s, t, n, and k,

JW K(s, t)n =







gcd(Wn−k + Tk+1, Wn−k+1 + Tk), if q = 1;

gcd(Wn−k + Tk+1, Wn−k+1 − Tk), if q = −1, k odd;

gcd(Wn−k − Tk+1, Wn−k+1 + Tk), if q = −1, k even,

(11)

where (Tn) = W(t, qs; p, q).

Proof. By Theorem 2, we have

JW K(s, t)n = JW K(S−k, S−k+1)n−k = gcd(Wn−k + S−k, Wn−k+1 + S−k+1).

Since S−n = q−(n+1)Tn+1, we get

gcd(Wn−k + S−k, Wn−k+1 + S−k+1)

= gcd(Wn−k + q−(k+1)Tk+1, Wn−k+1 + q−kTk)

=







gcd(Wn−k + Tk+1, Wn−k+1 + Tk), if q = 1;

gcd(Wn−k + Tk+1, Wn−k+1 − Tk), if q = −1, k odd;

gcd(Wn−k − Tk+1, Wn−k+1 + Tk), if q = −1, k even.

Theorem 13 is useful for computing the values of JW K(s, t)n if we can somehow turn
(Wn) and (Tn) into the same sequence or some related sequences.
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4.2 Conway’s topograph

If a sequence of numbers have a nonzero common multiple m, then the sequence is bounded
by |m|. Therefore, we see from Corollary 3 that (JW⊕K(s, t)n) is bounded if e(W⊕)−e(S⊕) 6=
0. And we see from Corollary 4 that (JW⊖K(s, t)2n−1) and (JW⊖K(s, t)2n) are bounded if
e(W⊖) + e(S⊖) 6= 0 and e(W⊖)− e(S⊖) 6= 0, respectively.

We define the quadratic forms depending on q = ±1:

f⊕

p (x, y) = x2 − pxy + y2, and f⊖

p (x, y) = x2 + pxy − y2.

We see that f⊕

p (s, t) = − e(S⊕) and f⊖

p (s, t) = e(S⊖). Thus, the sequence (JW K(s, t)n) is
unbounded only when (s, t) is a solution to the following equations:







f⊕

p (x, y) = − e(W⊕), for (JW⊕K(s, t)n);
f⊖

p (x, y) = e(W⊖), for the even part of (JW⊖K(s, t)n);
f⊖

p (x, y) = − e(W⊖), for the odd part of (JW⊖K(s, t)n).
(12)

Conway [2, Lecture 1] gave an algorithmic way to find all the values of any given quadratic
form, which is by using the tree-like topograph [2, p. 6] to show the values of a quadratic
form f . The topograph starts from two linearly independent primitive vectors e1 and e2 (we
usually choose e1 =

(
0
1

)
and e2 =

(
1
0

)
). Each region in the topograph corresponds to a lax

vector ±v and the value of f(v). (Since f(v) = f(−v) for any vector v, we consider the
pair ±v as the same vector, which we call a lax vector [2, p. 5].)

e1

e2

e1 − e2

2e1 − e2

3e1 − e2

3e1 − 2e2

e1 − 2e2

e1 − 3e2

2e1 − 3e2

e1 + e2

2e1 + e2

3e1 + e2

3e1 + 2e2

e1 + 2e2

e1 + 3e2

2e1 + 3e2

Figure 1: The topograph which start from vectors e1 and e2.

Since the fact that f(v1 + v2) + f(v1 − v2) = 2(f(v1) + f(v2)) for any two vectors v1

and v2, the value of each region is easy to compute. Conway also showed that the positive
regions and the negative regions are separated by a connected path which we thicken in the
topograph and call the river [2, p. 18]. Moreover, for integer-valued forms, the surroundings
of the river repeat periodically [2, p. 20]. In each topograph picture of this paper, we mark
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off one period with two red dots on the river, and write out the corresponding lax vector
±
(
x
y

)
and the value of f(x, y) for each region. Figures 2 and 3 show Conway’s topograph for

the quadratic form f⊕

p (x, y) and f⊖

p (x, y), respectively.

(
1
0

)

1

(
0
1

)

1

(
1
p

)

1
(
1
δ

)

2− |p|
(
1
2δ

)

5− 2|p|

(
1
3δ

)

10− 3|p|
· · ·

(
1

p−2δ

)

5− 2|p|

(
1

p−δ

)

2− |p|

Figure 2: Conway’s topograph for f⊕

p (x, y), where |p| > 2, δ = sgn(p).

(
p+δ
−1

)

|p|
(
1
0

)

1

(
1
δ

)

|p|

(
1
2δ

)

2|p| − 3
· · ·

(
1

p−δ

)

|p|
(
1
p

)

1( p
−1

)

−1
(
p−δ
−1

)

−|p|
· · ·

(
2δ
−1

)

3− 2|p|

(
δ
−1

)

−|p|

(
0
1

)

−1
(

1
p+δ

)

−|p|

Figure 3: Conway’s topograph for f⊖

p (x, y), where p 6= 0, δ = sgn(p).

By Conway’s topograph, we can find the solutions (s, t) to the equations (12). Moreover,
if e(W ) is not a square-free integer, that is, there is an integer c such that e(W )/(c2) is again
an integer, then (cs′, ct′) is also a solution to (12) where (s′, t′) is a solution to fp(x, y) =
± e(W )/(c2).

We see from Figures 2 and 3 that the sequence of vectors (E0,E1,E2,E3, . . .) which
contains

(
0
1

)
and

(
1
0

)
in Figure 4 form a recurrence sequence W(E0,E1; p,±1). Since An =

En−1±mEn for any n, the sequence (An) is also a recurrence sequence, and so are (Bn) and
(Cn) = (An ±Bn). Therefore, for q = 1, all we need to find is the regions in just one period
of the topograph. For q = −1, we only need to find the regions in the positive half of one
period. That is, if (s, t) is a solution we found in one (half-)period, then the corresponding
solution in other (half-)periods must be one of ±(Sk, Sk+1).
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E0 E1 E2 E3

· · ·
︸︷︷︸

m−2

A2

C2

B2 · · ·· · ·
︸︷︷︸

m−2

A1

C1

B1 · · ·

E1

m−1
︷︸︸︷
· · · A2

C2

B2 · · ·
E3

E0 · · ·
︸︷︷︸

m−1

A1

C1

B1 · · · E2

Figure 4: Conway’s topographs for f⊕

p (x, y) (left) and f⊖

p (x, y) (right).

In the following example, we present how to find all (s, t) such that (JW K(s, t)n) may be
unbounded.

Example 14. Let (Wn) = W(1, 3; 4,−1). Thus, e(W ) = 4 and the corresponding quadratic
form is f(x, y) = x2 + 4xy − y2. We use Conway’s topograph to get Figure 5:

(
5
−1

)

4
(
1
0

)

1

(
1
1

)

4

(
1
2

)

5

(
1
3

)

4
(
1
4

)

1(
4
−1

)

−1
(

3
−1

)

−4

(
2
−1

)

−5

(
1
−1

)

−4

(
0
1

)

−1
(
1
5

)

−4

Figure 5: Conway’s topograph for f(x, y) = x2 + 4xy − y2.

Since e(W ) = 4 = 22, we need to find all the vectors with the values of f(x, y) being ±1
and ±4. So in Figure 5, the corresponding vectors in one half-period are (1, 0), (1, 1), (1, 3).
We have to multiply 2 back to the vector (1, 0) such that the value of f(x, y) being ±4.
These give three sequences: W(2, 0; 4,−1), W(1, 1; 4,−1), W(1, 3; 4,−1). The sequence
(JW K(s, t)n) is unbounded only when (s, t) = ±(Sk, Sk+1) for some k where (Sn) is any one
of these three sequences.

4.3 Trivial unbounded cases

According to Theorem 2, we do not really need to compute the whole solution set of (s, t).
Instead, we can only consider some (Sn, Sn+1) which are easier to compute. Moreover, if
(s, t) is a solution of fp(x, y), then we can easily to prove that the only other solution with
the same first term s is (s, sp− t).

However, if (S⊕

n ) = W(s, sp− t; p, 1), then S⊕

−1 = t. Applying Theorem 2, we have

q
W⊕

y
(s, sp− t)n =

q
W⊕

y
(S⊕

0 , S
⊕

1 )n =
q
W⊕

y
(S⊕

−1, S
⊕

0 )n−1 =
q
W⊕

y
(t, s)n−1.

Thus, we can compute (JW⊕K(±t, ±s)n) instead of computing (JW⊕K(±s, ±(sp− t))n).
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Similarly, we have JW⊖K(s, sp − t)2n = JW⊖K(−t, s)2n−1 and JW⊖K(t, s + tp)2n−1 =
JW⊖K(s, t)2n−2. Thus, we can compute (JW⊖K(∓t, ±s)2n−1) and (JW⊖K(±s, ±t)2n) instead
of computing (JW⊖K(±s, ±(sp− t))2n) and (JW⊖K(±t, ±(s+ tp))2n−1), respectively.

Now we combine all the above results together. We indicate the trivial unbounded
situations for the following three cases:

1. Since f⊕

p (a, b) = − e(W⊕), there are two trivial solutions (a, b) and (a, ap − b) to the
equation f⊕

p (x, y) = − e(W⊕). We compute JW⊕K(±a, ±b)n and JW⊕K(±b, ±a)n to
tell that these values are unbounded.

2. Since f⊖

p (a, b) = e(W⊖), there are two trivial solutions (a, b) and (a, ap − b) to the
equation f⊖

p (x, y) = e(W⊖). We compute JW⊖K(±a, ±b)2n and JW⊖K(∓b, ±a)2n−1 to
tell that these values are unbounded.

3. Since f⊖

p (b,−a) = − e(W⊖), there are two trivial solutions (b,−a) and (b, a+bp) to the
equation f⊖

p (x, y) = − e(W⊖). We compute JW⊖K(±b, ∓a)2n−1 and JW⊖K(±a, ±b)2n
to tell that these values are unbounded.

5 Computations for trivial unbounded cases

In the following propositions, we use Theorem 13 to compute the actual values of (JW K(s, t)n)
where (s, t) is one of the above pairs (±a,±b), (±b,±a), and (∓b,±a). As a result, these
values are all unbounded.

Proposition 15. For any integer n,

q
W⊕

y
(a, b)n =

{

gcd(a+ b, pa− 2b)
∣
∣U⊕

m − U⊕

m−1

∣
∣ , if n = 2m− 1;

gcd(a, b) |V ⊕

m | , if n = 2m.
(13)

q
W⊕

y
(−a, −b)n =

{

gcd(a− b, 2a− pb)
∣
∣U⊕

m + U⊕

m−1

∣
∣ , if n = 2m− 1;

gcd(2b− pa, pb− 2a) |U⊕

m| , if n = 2m.
(14)

Proof. By (3) and (11) with q = 1, (T⊕

n ) = W(b, a; p, 1), and k = n, we get
q
W⊕

y
(a, b)2n−1 = gcd(W⊕

n−1 + T⊕

n+1, W⊕

n + T⊕

n )

= gcd(bU⊕

n−1 − aU⊕

n−2 + aU⊕

n+1 − bU⊕

n , bU⊕

n − aU⊕

n−1 + aU⊕

n − bU⊕

n−1)

= gcd((a+ pa− b)(U⊕

n − U⊕

n−1), (a+ b)(U⊕

n − U⊕

n−1))

= gcd(a+ b, pa− 2b)
∣
∣U⊕

n − U⊕

n−1

∣
∣ ,q

W⊕
y
(a, b)2n = gcd(W⊕

n + T⊕

n+1, W⊕

n+1 + T⊕

n )

= gcd(bU⊕

n − aU⊕

n−1 + aU⊕

n+1 − bU⊕

n , bU⊕

n+1 − aU⊕

n + aU⊕

n − bU⊕

n−1)

= gcd(a(pU⊕

n − 2U⊕

n−1), b(pU⊕

n − 2U⊕

n−1))

= gcd(a, b)
∣
∣V ⊕

n

∣
∣ .
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By (3) and (11) with q = 1, (T⊕

n ) = W(−b,−a; p, 1), and k = n, we get

q
W⊕

y
(−a, −b)2n−1 = gcd(W⊕

n−1 + T⊕

n+1, W⊕

n + T⊕

n )

= gcd(bU⊕

n−1 − aU⊕

n−2 − aU⊕

n+1 + bU⊕

n , bU⊕

n − aU⊕

n−1 − aU⊕

n + bU⊕

n−1)

= gcd((a− pa+ b)(U⊕

n + U⊕

n−1), (−a+ b)(U⊕

n + U⊕

n−1)),

= gcd(a− b, 2a− pb)
∣
∣U⊕

n + U⊕

n−1

∣
∣ ,q

W⊕
y
(−a, −b)2n = gcd(W⊕

n + T⊕

n+1, W⊕

n+1 + T⊕

n )

= gcd(bU⊕

n − aU⊕

n−1 − aU⊕

n+1 + bU⊕

n , bU⊕

n+1 − aU⊕

n − aU⊕

n + bU⊕

n−1)

= gcd((2b− pa)U⊕

n , (pb− 2a)U⊕

n )

= gcd(2b− pa, pb− 2a)
∣
∣U⊕

n

∣
∣ .

Proposition 16. For any integer n,

q
W⊕

y
(b, a)n =

{

gcd(2, p) |W⊕

m | , if n = 2m− 1;
∣
∣W⊕

m +W⊕

m−1

∣
∣ , if n = 2m− 2.

(15)

q
W⊕

y
(−b, −a)n =

{∣
∣pW⊕

m − 2W⊕

m−1

∣
∣ , if n = 2m− 1;

∣
∣W⊕

m −W⊕

m−1

∣
∣ , if n = 2m− 2.

(16)

Proof. By (11) with q = 1, (T⊕

n ) = W(a, b; p, 1) = (W⊕

n ), and k = n, we get

q
W⊕

y
(b, a)2n−1 = gcd(W⊕

n−1 + T⊕

n+1, W⊕

n + T⊕

n )

= gcd(pW⊕

n , 2W⊕

n ) = gcd(2, p)
∣
∣W⊕

n

∣
∣ ,q

W⊕
y
(b, a)2n−2 = gcd(W⊕

n−2 + T⊕

n+1, W⊕

n−1 + T⊕

n )

= gcd(0, W⊕

n +W⊕

n−1) =
∣
∣W⊕

n +W⊕

n−1

∣
∣ .

By (11) with q = 1, (T⊕

n ) = W(−a,−b; p, 1) = (−W⊕

n ), and k = n, we get

q
W⊕

y
(−b, −a)2n−1 = gcd(W⊕

n−1 + T⊕

n+1, W⊕

n + T⊕

n )

= gcd(−pW⊕

n + 2W⊕

n−1, 0) =
∣
∣pW⊕

n − 2W⊕

n−1

∣
∣ ,q

W⊕
y
(−b, −a)2n−2 = gcd(W⊕

n−2 + T⊕

n+1, W⊕

n−1 + T⊕

n )

= gcd(0, W⊕

n −W⊕

n−1) =
∣
∣W⊕

n −W⊕

n−1

∣
∣ .

Example 17 ([9, Thm. 3.1]). Let (Bn) = U(6, 1) = (0, 1, 6, 35, 204, . . .) be the balancing
numbers. We see that e(B) − e(S) = 0 where (Sn) = W(−1,−6; 6, 1). By Theorem 2 and
(14), we have

JBK(−1, −6)n = JBK(0, −1)n−1 =

{

Bm + Bm−1, if n = 2m;

2Bm, if n = 2m+ 1.
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Proposition 18. For any integer n,

q
W⊖

y
(a, b)2n =

{

gcd(2a+ pb, pa− 2b) |U⊖

n | , if n odd;

gcd(a, b) |V ⊖

n | , if n even.
(17)

q
W⊖

y
(−a, −b)2n =

{

gcd(a, b) |V ⊖

n | , if n odd;

gcd(2a+ pb, pa− 2b) |U⊖

n | , if n even.
(18)

Proof. By (3) and (11) with q = −1, (T⊖

n ) = W(b,−a; p,−1), and k = n, we get

q
W⊖

y
(a, b)4n−2 = gcd(W⊖

2n−2 − T⊖

2n+1, W⊖

2n−1 + T⊖

2n)

= gcd(bU⊖

2n−2 + aU⊖

2n−3 + aU⊖

2n+1 − bU⊖

2n, bU⊖

2n−1 + aU⊖

2n−2 − aU⊖

2n + bU⊖

2n−1)

= gcd((p2a+ 2a− pb)U⊖

2n−1, (−pa+ 2b)U⊖

2n−1)

= gcd(2a+ pb, pa− 2b)
∣
∣U⊖

2n−1

∣
∣ ,q

W⊖
y
(a, b)4n = gcd(W⊖

2n − T⊖

2n+1, W⊖

2n+1 + T⊖

2n)

= gcd(bU⊖

2n + aU⊖

2n−1 + aU⊖

2n+1 − bU⊖

2n, bU⊖

2n+1 + aU⊖

2n − aU⊖

2n + bU⊖

2n−1)

= gcd(a(pU⊖

2n + 2U⊖

2n−1), b(pU⊖

2n + 2U⊖

2n−1))

= gcd(a, b)
∣
∣V ⊖

2n

∣
∣ .

By (3) and (11) with q = −1, (T⊖

n ) = W(−b, a; p,−1), and k = n, we get

q
W⊖

y
(−a, −b)4n−2 = gcd(W⊖

2n−2 − T⊖

2n+1, W⊖

2n−1 + T⊖

2n)

= gcd(bU⊖

2n−2 + aU⊖

2n−3 − aU⊖

2n+1 + bU⊖

2n, bU⊖

2n−1 + aU⊖

2n−2 + aU⊖

2n − bU⊖

2n−1)

= gcd((−pa+ b)(pU2n−1 + 2U2n−2), a(pU2n−1 + 2U2n−2)),

= gcd(a, b)
∣
∣V ⊖

2n−1

∣
∣ ,q

W⊖
y
(−a, −b)4n = gcd(W⊖

2n − T⊖

2n+1, W⊖

2n+1 + T⊖

2n)

= gcd(bU⊖

2n + aU⊖

2n−1 − aU⊖

2n+1 + bU⊖

2n, bU⊖

2n+1 + aU⊖

2n + aU⊖

2n − bU⊖

2n−1)

= gcd((−pa+ 2b)U⊖

2n, (2a+ pb)U⊖

2n)

= gcd(2a+ pb, pa− 2b)
∣
∣U⊖

2n

∣
∣ .

Proposition 19. For any integer n,

q
W⊖

y
(−b, a)2n−1 =

{

gcd(2, p) |W⊖

n | , if n even;
∣
∣pW⊖

n + 2W⊖

n−1

∣
∣ , if n odd.

(19)

q
W⊖

y
(b, −a)2n−1 =

{∣
∣pW⊖

n + 2W⊖

n−1

∣
∣ , if n even;

gcd(2, p) |W⊖

n | , if n odd.
(20)
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Proof. By (11) with q = −1, (T⊖

n ) = Wn(a, b; p,−1) = (W⊖

n ), and k = n, we get

q
W⊖

y
(−b, a)4n−1 = gcd(W⊖

2n−1 − T⊖

2n+1, W⊖

2n + T⊖

2n)

= gcd(−pW⊖

2n, 2W⊖

2n) = gcd(2, p)
∣
∣W⊖

2n

∣
∣ ,q

W⊖
y
(−b, a)4n+1 = gcd(W⊖

2n+1 − T⊖

2n+1, W⊖

2n+2 + T⊖

2n)

= gcd(0, pW⊖

2n+1 + 2W⊖

2n) =
∣
∣pW⊖

2n+1 + 2W⊖

2n

∣
∣ .

By (11) with q = −1, (T⊖

n ) = W(−a,−b; p,−1) = (−W⊖

n ), and k = n, we get

q
W⊖

y
(b, −a)4n−1 = gcd(W⊖

2n−1 − T⊖

2n+1, W⊖

2n + T⊖

2n)

= gcd(pW⊖

2n + 2W⊖

2n−1, 0) =
∣
∣pW⊖

2n + 2W⊖

2n−1

∣
∣ ,q

W⊖
y
(b, −a)4n+1 = gcd(W⊖

2n+1 − T⊖

2n+1, W⊖

2n+2 + T⊖

2n)

= gcd(2W⊖

2n+1, pW⊖

2n+1) = gcd(2, p)
∣
∣W⊖

2n+1

∣
∣ .

Example 20 ([1, Thm. 3]). Let (Fn) = U(1,−1) be the Fibonacci numbers, and let (Ln) =
V(1,−1) be the Lucas numbers. We see that e(F ) + e(S) = 0 where (Sn) = W(1, 1; 1,−1).
By Theorem 2 and (17), we have

JF K(1, 1)2n−1 = JF K(0, 1)2n−2 =

{

F2m−1, if n = 2m;

L2m, if n = 2m+ 1.

6 Examples

There are some results for some well-known sequences of numbers, such as the results of
shifted Fibonacci numbers provided by Chen [1], Dudley and Tucker [3], Rahn and Kreh
[8], the results of shifted Pell numbers provided by Koken and Arslan [7], and the results of
shifted balancing numbers provided by Ray and Pradhan [9]. We list those gcds and their
periods ωeven and ωodd for the even and odd part respectively below if they are bounded.
(That is, for any integer n, JW K(s, t)n = JW K(s, t)n+2ω.)
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JW K(s, t)n p q e(W ) e(S) ωodd ωeven references
JF K(1, −1)n 1 −1 −1 −1 3 - [3]
JF K(±1, ±1)n 1 −1 −1 1 - 3 [3] and [1, Thm. 3, 5]
JF K(±2, ±2)n 1 −1 −1 4 4 10 [1, Thm. 4, 6]
JF K(±3, ±3)n 1 −1 −1 9 6 30 [8, Thm. 1, 2]
JLK(1, 1)n 1 −1 5 1 12 3 [1, Thm. 7]
JP K(±2, ∓1)n 2 −1 −1 −1 1 - [7, Thm. 1, 4]
JP K(±1, ∓2)n 2 −1 −1 −7 2 4 [7, Thm. 1, 4]
JQK(±6, ∓2)n 2 −1 8 8 1 - [7, Thm. 7, 9]
JQK(±2, ∓6)n 2 −1 8 56 4 2 [7, Thm. 7, 9]
JBK(±1, ±6)n 6 1 −1 −1 - - [9, Thm. 3.1, 3.3]
JBK(±2, ±12)n 6 1 −1 −4 2 1 [9, Thm. 3.2, 3.4]
JCK(1, 3)n 6 1 8 8 - - [9, Thm. 3.5]

Table 2: Some known results for JW K(s, t)n.

In the following, we show some examples using our results. In the first example, we
present the process in detail.

Example 21. We let (Fn) denote the Fibonacci numbers, and let (Ln) denote the Lucas
numbers. For any integer n,

JLK(2, 1)n =







5Fn/2, if n ≡ 2 (mod 4);

Ln/2, if n ≡ 0 (mod 4);

2, if n ≡ 3 (mod 6);

1, otherwise.

JLK(−2, −1)n =







Ln/2, if n ≡ 2 (mod 4);

5Fn/2, if n ≡ 0 (mod 4);

2, if n ≡ 3 (mod 6);

1, otherwise.

Proof. Since (Sn) = ±W(2, 1; 1,−1) = (±Ln), by Corollary 4 with e(L) = e(S) = 5, we get
JLK(±2, ±1)2n−1 divides e(L) + e(S) = 10 6= 0. Thus, by Theorem 7, since L12 ≡ 2, L13 ≡ 1
(mod 10), we can choose the period ω = 12.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Ln 2 1 3 4 7 11 18 29 47 76 123 199 322 521
Ln mod 10 2 1 3 4 7 1 8 9 7 6 3 9 2 1

Then we get the values of (JLK(±2, ±1)n) for all odd n while they are bounded.

n 1 3 5 7 9 11 13
JLK(2, 1)n 1 2 1 1 2 1 1
JLK(−2, −1)n 1 2 1 1 2 1 1

On the other hand, e(L)− e(S) = 0. By Proposition 18, (JLK(±2, ±1)2n) is unbounded, and

JLK(2, 1)2n =

{

gcd(5, 0)Fn, if n odd;

gcd(2, 1)Ln, if n even.
JLK(−2, −1)2n =

{

gcd(2, 1)Ln, if n odd;

gcd(5, 0)Fn, if n even.
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Thus, we get the values of (JLK(±2, ±1)n) for all even n while they are unbounded.

n 0 2 4 6 8 10 12
JLK(2, 1)n 2 5 3 10 7 25 18
JLK(−2, −1)n 0 1 5 4 15 11 40

n 0 2 4 6 8 10 12
5Fn/2 0 5 5 10 15 25 40
Ln/2 2 1 3 4 7 11 18

We can use Theorem 7 and Proposition 19 to get the values of (JLK(∓1, ±2)n) for both
bounded and unbounded parts. However, we can also use Theorem 2 to get the values since
L−1 = −1, for example, (in fact [5, Eq. (2.16)], V−n = q−nVn)

JLK(−1, 2)n = JLK(2, 1)n+1, JLK(1, −2)n = JLK(−2, −1)n+1.

We let (Pn) denote the Pell numbers defined by (Pn) = U(2,−1) = W(0, 1; 2,−1), and
let (Qn) denote the Pell-Lucas numbers defined by (Qn) = V(2,−1) = W(2, 2; 2,−1).

Example 22 ([7, Thm. 1, 4]). For any integer n,

JP K(0, 1)n =







2Pn/2, if n ≡ 2 (mod 4);

Qn/2, if n ≡ 0 (mod 4);

1, otherwise.

JP K(0, −1)n =







Qn/2, if n ≡ 2 (mod 4);

2Pn/2, if n ≡ 0 (mod 4);

1, otherwise.

Proof. Since (Sn) = ±W(0, 1; 2,−1) = (±Pn), by Corollary 4 with e(P ) = e(S) = −1, we
get JP K(0, ±1)2n−1 divides e(P )+e(S) = 2. Thus, by Theorem 7, since P2 ≡ 0, P3 ≡ 1 (mod
2), we choose the period ω = 2. Then we can get the values of (JP K(0, ±1)n) for all odd n
while they are bounded.

n 0 1 2 3 4 5
Pn mod 2 0 1 0 1 0 1
JP K(0, 1)n 1 1 1
JP K(0, −1)n 1 1 1

n 0 2 4 6 8
JP K(0, 1)n 2 2 6 10 34
JP K(0, −1)n 0 2 4 14 24
2Pn/2 0 2 4 10 24
Qn/2 2 2 6 14 34

And by Proposition 18, we get the values of the unbounded part of (JP K(0, ±1)n).

We can use Theorem 2 to get the values of JP K(±1, 0)n since P−1 = 1, for example, (in
fact [5, Eq. (2.17)], U−n = −q−nUn)

JP K(1, 0)n = JP K(0, 1)n+1, JP K(−1, 0)n = JP K(0, −1)n+1.

Example 23. For any integer n,

JP K(1, 1)n =

{

3, if n ≡ 2 (mod 8);

1, otherwise.
JP K(−1, −1)n =

{

3, if n ≡ 6 (mod 8);

1, otherwise.
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Proof. Since (Sn) = ±W(1, 1; 2,−1), by Corollary 4 with e(P ) = −1 and e(S) = 2, we get
JP K(±1, ±1)2n−1 divides e(P ) + e(S) = 1 and JP K(±1, ±1)2n divides e(P ) − e(S) = 3, so
that JP K(±1, ±1)n divides 3. Thus, by Theorem 7, since P8 ≡ 0, P9 ≡ 1 (mod 3), we choose
the period ω = 8. Then we can get the results.

n 0 1 2 3 4 5 6 7 8 9
Pn mod 3 0 1 2 2 0 2 1 1 0 1
JP K(1, 1)n 1 1 3 1 1 1 1 1 1 1
JP K(−1, −1)n 1 1 1 1 1 1 3 1 1 1

Example 24. For any integer n,

JQK(1, 1)n =







5, if n ≡ 3 (mod 12);

3, if n ≡ 0 (mod 8);

1, otherwise.

JQK(−1, −1)n =







5, if n ≡ 9 (mod 12);

3, if n ≡ 4 (mod 8);

1, otherwise.

Proof. Since (Sn) = ±W(1, 1; 2,−1), by Corollary 4 with e(Q) = 8 and e(S) = 2, we get
JQK(±1, ±1)2n−1 divides e(Q) + e(S) = 10 and JQK(±1, ±1)2n divides e(Q) − e(S) = 6, so
that JQK(±1, ±1)n divides 30. Thus, by Theorem 7, since Q24 ≡ 2, Q25 ≡ 2 (mod 30), we
choose the period ω = 24. Then we can get the results.

n 0 1 2 3 4 5 6 7 8 9 10 11
Qn mod 30 2 2 6 14 4 22 18 28 14 26 6 8
JQK(1, 1)n 3 1 1 5 1 1 1 1 3 1 1 1
JQK(−1, −1)n 1 1 1 1 3 1 1 1 1 5 1 1

n 12 13 14 15 16 17 18 19 20 21 22 23
Qn mod 30 22 22 6 4 14 2 18 8 4 16 6 28
JQK(1, 1)n 1 1 1 5 3 1 1 1 1 1 1 1
JQK(−1, −1)n 3 1 1 1 1 1 1 1 3 5 1 1

24 25
2 2
3 1
1 1

Example 25 ([7, Thm. 7, 9]). For any integer n,

JQK(2, 2)n =







8Pn/2, if n ≡ 2 (mod 4);

2Qn/2, if n ≡ 0 (mod 4);

4, otherwise.

JQK(−2, −2)n =







2Qn/2, if n ≡ 2 (mod 4);

8Pn/2, if n ≡ 0 (mod 4);

4, otherwise.

Proof. Since (Sn) = ±W(2, 2; 2,−1) = (±Qn), By Corollary 4 with e(Q) = e(S) = 8, we
get JQK(±2, ±2)2n−1 divides e(Q) + e(S) = 16. Thus, by Theorem 7, since Q4 ≡ 2, Q5 ≡ 2
(mod 16), we choose the period ω = 4. Then we can get the values of (JQK(±2, ±2)n) for
all odd n while they are bounded.

n 0 1 2 3 4 5
Qn mod 16 2 2 6 14 2 2
JQK(2, 2)n 4 4 4
JQK(−2, −2)n 4 4 4

n 0 2 4 6 8
JQK(2, 2)n 4 8 12 40 68
JQK(−2, −2)n 0 4 16 28 96
8Pn/2 0 8 16 40 96
Qn/2 4 4 12 28 68
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And by Proposition 18, we get the values of the unbounded part of (JQK(±2, ±2)n).

We can use Theorem 2 to get the values of JQK(∓2, ±2)n since Q−1 = −2, for example,

JQK(−2, 2)n = JQK(2, 2)n+1, JQK(2, −2)n = JQK(−2, −2)n+1.
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