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Abstract

We obtain a (p, ¢)-deformation of the recurrence formula for the Bell numbers, using
algebraic techniques. Specializing to the case p = 1 and the case p = ¢ = 1, respectively,
we recover the generalized recurrence formula for Bell numbers as obtained by Katriel
and Spivey, in related papers.

1 Introduction

The Bell numbers, denoted by B,,, are given by the following formula:
k=0

where S(n, k) are the Stirling numbers of the second kind, which appear as coefficients in

the expansion of
k
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The Stirling numbers of the second kind S(n, k) count the number of ways to partition a set
of size n into k nonempty subsets.
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The Bell numbers (1) satisfy the following recursive formula:

n

Busi =Y (Z) B. 2)

k=0

In 2008, Spivey [11] obtained the following generalization of the recurrence formula (2):

Bron = 3347 JSmk:() 3)
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using techniques from combinatorics. This formula is known in the literature as “Spivey’s
Bell number formula”. Subsequently, Katriel [6] proved a g-deformed version of Spivey’s Bell
number formula using algebraic techniques. The resulting formula can be written as follows:
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where

Sq(m, k) = qk_lsq(m —Lk—1)+ [k]qsq(m - Lk), (5)

are the ¢-Stirling numbers of the second kind with the initial value S,(0,0) = 1, and [k], =

1— k
L. Here,
—q

Q)= Sy(n, k) (6)

are the ¢-Bell numbers.

An alternative derivation of (4) was obtained by Mangontarum [7], using techniques
based on the analysis of the creation, annihilation and number operators in the ¢-Boson-
Fock space [1]. It is worthwhile to mention that, Eq. (1) has also been extended in several
ways by several authors, including various generalizations of Stirling and Bell numbers. We
refer the reader to [3, 5, 9, 12] for the details.

In the present paper, we follow the techniques by Katriel [6], and obtain a (p, ¢)-deformed
version of Spivey’s Bell number formula (3), using algebraic methods.

2 A (p,q)-deformation of Spivey’s Bell number formula

For 0 < ¢ < p <1, define the following operators:

1. The operator X of multiplication by the variable x:



2. The (p, q)-derivative operator:

f(pr) — flqx)
z(p—q)

Dp,qf(x) =

3. The Fibonacci operator [8]:
Npf(x) = f(pr).

These operators satisfy the (p, ¢)-commutation relation:

Dy X —qXDpy= Np. (7)
We can check easily that
N, X = pXN,, (8)
and
Dy gNp = pNpDp 4. (9)

Proposition 1. For any positive integer n, we have

Dy X" =q"X"Dyq + [n]p,anile (10)

where [nl,, = p;:gn.

Proof. The proof follows from an easy computation involving an induction on n, and using

Egs. (7) and (8). O
Corollary 2. One can rewrite (10) as follows:
(X Dpg) X" = Xn([n]p,qu + q”(Xan)). (11)

Proposition 3. Let n be a nonnegative integer, then the following relation holds:

(XDpo)" =Y Spg(n, k)X N} 7*DF | (12)
k=0
where
Sp#](”’ k) = pn_qu_lsp,q<” —1Lk—1)+ [k]p,qu,q(n -1, k‘), (13)

are the (p,q)-Stirling numbers of the second kind with the initial value S, 4(0,0) = 1, and
consequently the numbers

B (p, Q) = Z Sp,q(nu k), (14)

can be considered as the (p, q)-Bell numbers.

Proof. The proof follows by induction with respect to n, using Egs. (7), (9), and (11). O
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Remark 4. For p =1, Egs. (13) and (14) reduce to the ¢-Stirling numbers of the second kind
(5) and g-Bell numbers (6), respectively.

Definition 5. The (p, ¢)-exponential function is defined by the formula:

epq(T) 1= ZP(@ [nT:q |

n

where [n],,! = H[z’]p,q, and [0],,! = 1.

i=1

Sadjang [10] showed that the (p,¢)-exponential function e, ,(z) satisfies the following
differential equation:

D? epg(w) = pEe, ("), (15)

where D7 is the nth (p, ¢)-derivative.
Applying the (p, g)-exponential function e, (x) to both sides of Eq. (12), and dividing
by e, q(p"x), we arrive at the identity:

1
——(XD,4)"e S (n,k)x D, q;T), 16
) X Dra) el Z y Bulp.q:7) (16)

where S, (n, k) = p(g)Sp,q(n, k) can be considered as new versions of the (p,q)-Stirling
numbers of the second kind, with B, (p,q;x) being the associated (p,q)-Bell polynomials,
which give for # = 1 the new version of the (p, ¢)-Bell numbers B, (p, ¢;1) = Y reo gp,q(n, k).
Moreover, putting # = —1 in the Equation (16), we obtain (p, ¢)-Rényi numbers R, (p, q) =
Y orol— ) Spq(n, k) which reduce to the usual ¢-Rényi number [4] for p = 1.

3 Main result

We are now in a position to prove the main result of this paper.

Theorem 6. Let m and n be nonnegative integers. Then we have the following (p,q)-
deformation of Spivey’s Bell number formula:

Bron(p.a: 1 ZZ() o, B By (p, g5 ). (17)
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Proof. Using Eqgs. (12) and (11), we obtain
(XDPH)”—HTL = Z Sp,q(ma k)(XDp,q)”Xka_kDﬁ,q

= Spa(m )X* (KN, +¢"(XDy))" Ny Dy,

k=0
m n n . .

- Z <j)5p,q(ma k)[k]pq qijkN ](Xqu>jN kDfl;q’
k=0 j=0

where in the last equality, we have used the binomial expansion. Applying the above identity
to the (p, ¢)-exponential function e, ,(x), and using Egs. (15) and (16), we get the following:

ik n
(XD, epe) =3 (.)Sp,q<m7 )K= XE N (X D,y NI DE e (2)

k=0 j=0 ‘7
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]

Remark 7. For p =1, Eq. (17) reduces to the g-deformation of Spivey’s Bell number formula
(4), and for p = g = 1, it reduces to Spivey’s Bell number formula (3).

Proposition 8 (Dobinski formula). The (p, q)-Bell polynomials B, (p,q;z), satisfy the fol-

lowing identity:

Bu(p, q; Zp (18)

e ”x
palp k:O



Consequently, the (p,q)-Bell numbers B, (p, q; 1), are gz’ven by:

epq Zp

Proof. Since (XD, ,)x™ = [m], 2™, it follows that
(XDpg)"a™ = [m]p 2™

pq ’

B.(p,g; 1

and

(XD, q)"epql Zp

Multiplying both sides of Eq. (19) with m and takmg into account Eq. (16) proves the
desired result. ’ O

(19)

Remark 9. When p = 1, Eq. (18) reduces to the Dobinski formula for ¢-Bell polynomials
given by Katriel [6]. Furthermore, when p = ¢ = 1, we obtain the Dobinski formula for the

ordinary Bell polynomials:

1 k
Bp(x) = - ka

(&
k>0

Therefore, we can think of Eq. (18) as the Dobinski formula for (p,q)-Bell polynomials
By (p, q; ).

4 Final remarks

It seems likely that following the techniques due to Mangontarum [7], one can obtain an
alternative proof of (17), using the creation, annihilation and number operators in the (p, q)-
Fock space [2]. Our speculation stems from the following observation:

Let [?(N) be a Hilbert space with the standard orthonormal basis (8,,)2,. We define the
creation, annihilation and number operators as follows:

1. The creation operator a® defined by
at 0, =1/In+1pg Onp1, n>0.
2. The annihilation operator (adjoint of a™) a~ defined by
a do=0, a 0,=1/[n]pg:0n-1, n>1L

3. The number operator a° defined by
a0, =p"6,, n>0.
It follows by an easy computation that these operators satisfy the (p, ¢)-commutation relation

a at —qata =a’.
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