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Abstract

We define circle and ellipse chains tangent to the branches of a hyperbola and the

terms of the chains are mutually tangent to each other. Our goal is to derive recur-

rence relations for the parameters of chains elements and to establish some connections

between integer sequences and chains.
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1 Introduction

Let us consider the hyperbola H with the canonical equation

x2

a2
− y2

b2
= 1, (1)

and foci (±c, 0), where a and b are positive real numbers and c2 = a2+b2. Lucca [3] examined
a tangential chain of circles inside the branch x > 0 of the hyperbola so that the n-th circle
with center (xn, 0) and radius rn are tangent to the hyperbola and mutually tangent to each
other. He showed that for certain a and b, the sequences (xn/x0)

∞
n=0 and (rn/r0)

∞
n=0 are

integers. Belbachir et al. [2] extended the circle chains to ellipse chains inside the branch of
hyperbola when the ratio of the minor and major axes is fixed. They described the recurrence
relations for the ellipses’ parameters and determined a connection between the parameters
of the ellipse chains and integer sequences.

In the present paper, we give an extension of the papers [2, 3]. We examine special chains
of circles and ellipses between the branches of hyperbola H (or outside H), such that the
circles (ellipses) are tangent to the hyperbola H and mutually tangent to each other. Fur-
thermore, we give the recurrence relations for the tangential points. We define a tangential
chain of ellipses between the branches of H where the centers of the ellipses coincide with
the centers of the circles. We give recurrence relations for the ellipses’ parameters.

Our other main purpose is to give integer sequences that describe the parameters of
our chains. We find more than fifty such integer sequences that appear in the On-Line
Encyclopedia of Integer Sequences (OEIS) [4], and in this way, our investigation gives them
geometrical interpretations. In what follows, we define t := a/b, s := b/a, λ := 2t2 + 1, and
µ := t2 + 1.

2 Circle chains between the branches of hyperbola

Let us define a chain of circles with the following properties.
The canonical equation of the n-th circle centered at point (0, yn), (n ≥ 0, yn ≥ 0) is

x2 + (y − yn)
2 = r2n, (2)

where the center of each circle lies on the y-axis, and rn > 0 is the radius (Figure 1).
The circles (2) are tangent to the hyperbola (1) and are mutually tangent, i.e.,

yn − yn−1 = rn + rn−1 (n ≥ 1).

Let (x̂n, ŷn) be the tangential point of the branch x > 0 of hyperbola H and the n-th circle
of the chain, given by ŷn = s2/(1 + s2) yn and x̂2

n = 1/(t2 + s2 + 2) y2n + a2. Moreover

x̂2

n = t2 ŷ2n + a2. (3)

The sequences (yn)n≥0, (rn)n≥0, (x̂n)n≥0 , and (ŷn)n≥0 satisfy the following recurrence rela-
tions:
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Theorem 1. The sequences (yn)n≥0, (rn)n≥0, and (ŷn)n≥0 are second-order linear homoge-
neous recurrence sequences

ℓn = 2λℓn−1 − ℓn−2 (n ≥ 2), (4)

and the sequence (x̂2
n)n≥0 is a third-order linear homogeneous recurrence sequence

x̂2

n = (4λ2 − 1) x̂2

n−1 − (4λ2 − 1) x̂2

n−2 + x̂2

n−3 (n ≥ 3), (5)

and the initial values are y0 = 0, r0 = a, x̂2
0 = a2, ŷ0 = 0, y1 = 2aµ, r1 = aλ, x̂2

1 = a2(4t2+1),
ŷ1 = 2a, and x̂2

2 = a2(16t2λ2 + 1).

Proof. The system composed of the equations (1) and (2) gives

{

yn = λ yn−1 + 2µ rn−1,
rn = 2t2 yn−1 + λ rn−1.

Then (yn)n≥0 and (rn)n≥0 satisfy (4) and this is also the case for (ŷn)n≥0, as yn = µ ŷn. Now
for x̂2

n, let C = 1/(t2 + s2 + 2). Then x̂2
n = Cy2n + a2, yn = 2λyn−1 − yn−2, substituting yn in

x̂2
n we get x̂2

n = C(2λyn−1 − yn−2)
2 + a2 = 4λ2x̂2

n−1 + x̂2
n−2 − 4Cλyn−1yn−2 − 4λ2a2 and from

the sum x̂2
n + x̂2

n−1, we obtain the equation (5).

Remark 2. Because of the equation (3), the recurrence relation for the sequence (ŷ2n)n≥0

is the same as for the recurrence of (x̂2
n)n≥0. Thus, the sequence of squared distances of

tangential points and the origin (d2n = x̂2
n+ ŷ2n)n≥0 satisfies the recurrence (5) as well. In the

last section, we give a second-order recurrence solving (5).

3 Ellipse chains between the branches of hyperbola

In this section, we define a tangential chain of ellipses between the branches of H, where the
ellipses’ centers coincide with the circles’ centers. Let us define a chain of ellipses with the
following properties.

The canonical equation of the n-th ellipse centered at point (0, yn) (yn > 0, n ≥ 0) is

x2

α2
n

+
(y − yn)

2

β2
n

= 1, (6)

where 2αn > 0 is the width and 2βn > 0 is the height of the ellipse (Figure 1).
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Figure 1: Ellipse and circle chains between the branches of hyperbola.

Let the equation of the 0-th ellipse be x2/a2 + y2/β2
0 = 1, and thus y0 = 0, α0 = a. This

implies that 0β0 < r0 + r1 = 2aµ.
The ellipses (6) are tangent to the hyperbola (1) and are mutually tangent, i.e.,

yn − yn−1 = βn + βn−1 (n ≥ 1). (7)

The sequence yn is the same as the sequence of circle chains. However, we can give recurrence
formulas for the parameter βn of ellipses (10). Let us determine α2

n. From the system
composed by the equations (1) and (6) and from the tangency condition between the ellipses,
we have

(

a2

b2
+

α2
n

β2
n

)

y2 − 2α2
n

β2
n

yny +
α2
n

β2
n

y2n + a2 − α2

n = 0. (8)

Since the discriminant of equation (8) is equal to zero and after simplification, we get

s2α4

n −
(

b2 + y2n − β2

n

)

α2

n − a2β2

n = 0. (9)

We put δn = α2
n and ωn = b2 + y2n − β2

n. Then the solutions of the equation (9) are
δn,1 = (ωn +

√

ω2
n + 4b2β2

n)/2s
2 and δn,2 = (ωn −

√

ω2
n + 4b2β2

n)/2s
2. Since δn,2 < 0, we

get α2
n = t2/2(ωn +

√

ω2
n + 4b2β2

n). Let (x̃n, ỹn) be the tangential point of the branch x > 0
of H and the n-th ellipse of the chain. Then recurrence relations for x̃n and ỹn are as
follows: ỹn = (α2

nb
2/a2β2

n + α2
nb

2)yn and x̃2
n = (α4

na
2b2/(a2β2

n + α2
nb

2)2)y2n + a2, where y2n =
(α2

n − a2)(a2β2
n + α2

nb
2)/a2α2

n.
The following theorem gives the recurrence relations for (βn)n≥0, (ỹn)n≥0, and (x̃2

n)n≥0.
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Theorem 3. The sequence (βn)n≥0 is a third-order linear homogeneous recurrence sequence

βn = (2λ− 1) βn−1 + (2λ− 1) βn−2 − βn−3 (n ≥ 3). (10)

The sequence (ỹn)n≥0 satisfies the second-order linear homogeneous recurrence sequence (4)
and the sequence (x̃2

n)n≥0 is a third-order linear homogeneous recurrence sequence

x̃2

n = (4λ2 − 1) x̃2

n−1 − (4λ2 − 1) x̃2

n−2 + x̃2

n−3 (n ≥ 3). (11)

The initial values are β0, β1 = 2aµ− β0, β2 = 8at2µ+ β0, ỹ0 = 0, x̃2
0 = a2,

ỹ1 =
α1(2 + 2a2)

aβ2
1 + α2

1b
2
,

x̃2

1 =
α8
1a

2b2(2a2 + 2)2

(a2β2
1 + α2

1b
2)2(aβ2

1 + α2
1b

2)2
+ a2, and

x̃2

2 =
α2
2b

2(a2 + α2
2)(−a2b2 + α2

2 + (b2 − β2
2)x

2
2)

(a2β2
2 + α2

2b
2)2

+ a.

Proof. We have yn is defined as follows: yn = λ yn−1 + 2µ rn−1 where rn is the radius of the
circles. Using the tangency condition (7) we get

βn = 2t2 yn−1 + 2µ rn−1 − βn−1. (12)

After calculations, we obtain βn = 4t2 yn−1 + βn−2. Subtracting βn−1 from βn we obtain
βn − βn−1 = 4t2(yn−1 − yn−2) + βn−2 − βn−3. Hence from Eq. (7), we find (10). The initial
values come from (12). The proofs of the second-order and third-order linear homogeneous
recurrence sequences of (ỹn)n≥0 and (x̃2

n)n≥0 are similar to the proof of Theorem 1. Now
C = α4

na
2b2/(a2β2

n + α2
nb

2)2.

Equations (5) and (11) are of the form Vn = (θ − 1)Vn−1 − (θ − 1)Vn−2 + Vn−3 (n ≥ 3),
and thus Wn = Vn−Vn−1 is a second-order linear recurrence Wn = (θ−2)Wn−1−Wn−2 with
θ = 4λ2. We deduce an explicit form for (Vn)n≥0 using (Wn)n≥0 in the following theorem.

Theorem 4. For all n ≥ 2, Vn = V0 +
∑n

k=1
Wk .

Proof. The proof is left to the reader; it can be shown with some calculations. The explicit
terms of the Wk are well known.

4 Associated integer sequences of chains

In this section, we determine conditions to relate the circle and ellipse chains with integer
sequences. In what follow, let β0 = b.
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4.1 Rectangular hyperbolas

Corollary 5. If H is a rectangular hyperbola (a = b), then rn = αn = βn, ŷn = ỹn, and x̂n =
x̃n for all non-negative integers n. Moreover, the recurrence sequence of (rn)n≥0, (yn)n≥0,
(ŷn)n≥0, and (x̂2

n)n≥0 are, respectively, ℓn = 6ℓn−1−ℓn−2 (n ≥ 2), with initial values r0 = a,
r1 = 3a, y0 = 0, y1 = 4a, ŷ0 = 0, and ŷ1 = 2a and x̂2

n = 35x̂2
n−1 − 35x̂n−2 + x̂2

n−3 (n ≥ 3),
with initial values x̂2

0 = a2, x̂2
1 = 5a2, and x̂2

2 = 145a2.

For rectangular hyperbolas H, from Corollary 5, we deduce the following result:

Theorem 6. If H is a rectangular hyperbola, then (rn)n≥0, (yn)n≥0, (ŷn)n≥0, and (x̂2
n)n≥0

are integer sequences, respectively, if and only if a is a positive integer, a = k/4, a = k/2,
and a2 = k, respectively, where k is any positive integer.

Now we give some examples of integer sequences. Some of them appear in the OEIS
[4] for a = 1: (rn)n≥0 = A001541, (yn)n≥0 = A005319, (ŷn)n≥0 = A001542, and (x̂2

n)n≥0 =
{0,A076218} and for general a with the conditions of Theorem 6, (rn)n≥0 = a · A001541,
(yn)n≥0 = a ·A005319 = 2a ·A001542, (ŷn)n≥0 = a ·A001542, and (x̂2

n)n≥0 = a2 ·{0,A076218}.
For more sequences, see Table 1.

We mention that among the sequences in Table 1 and Table 5, there are some sequences,
e.g., A098706, which are defined without any combinatorial or geometrical interpretation.
We provide a geometric interpretation. We also note that k · (yn) = 2k · (ŷn).
Remark 7. The sequence (A001109), e.g., appears, as (ŷn)n≥0 and (yn)n≥0 when a = 1/2 and
a = 1/4, dealing with balancing numbers [1].

a = b (rn)n≥0 (yn)n≥0 (ŷn)n≥0 (x̂2
n)n≥0

1 A001541 A005319 A001542 A076218
a a·A001541 a·A005319 a·A001542 a2·A076218
2 A003499 A081554 A005319 {4, 20, 580, 19604, . . .}
3 A106329 {0, 12, 72, 420, . . .} A075848 {9, 45, 1305, 44109, . . .}
4 {4, 12, 68, 396, . . .} {0, 16, 96, 560, . . .} A081554 {16, 80, 2320, 78416, . . .}√
2 – – – A098706\{0}

Table 1: Integer sequences connected to the regular hyperbola.

4.2 Integer sequences associated with circle chains

In order to generate only integer sequences, we state the following theorem.

Theorem 8. If t = (
√
k − 2)/2, k ≥ 3, sequence (rn)n≥0, a ∈ N

+ and a · k is even; (yn)n≥0,
a(k + 2) is even; (ŷn)n≥0, 2a is a positive integer, then b = 2a/

√
k − 2 and the sequences

(rn)n≥0, (yn)n≥0, and (ŷn)n≥0 are integer sequences.
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Proof. For (rn)n≥0, we have r0 = a, so a ∈ N
+ and r1 = a(2t2 + 1) is integer if and only if

(2t2+1) = m/a, where m is a suitable positive integer. From this, we find t2 = (m/a−1)/2.
For the first coefficient of (4), we have (4t2 + 2) = 2m/a = k where k is a suitable positive
integer. Now m = (ak)/2 implies that ak is even and t2 = (k − 2) /4. Moreover, we have
t =

√
k − 2/2, where t is positive if and only if k ≥ 3. Obviously, b = a/t comes from the

definition of t.
In the case where (yn)n≥0, let m = y1 = 2a(t2 + 1) be an integer. Then t2 = m/(2a)− 1

and t =
√

m/(2a)− 1, where m > 2a and a is a positive real number. From the coefficient
(4t2 + 2) = k with a suitable positive integer, we have m = a(k + 2)/2. This implies that
a(k + 2) is even and t2 = (k − 2)/4, k ≥ 3. Moreover, t =

√
k − 2/2 and b = a/t.

For (ŷn)n≥0, ŷ1 = 2a = m and (4t2+2) = k, we obtain that 2a is even and t =
√
k − 2/2, k ≥ 3.

Theorem 9. If a2 is an integer and t = k/2, k ≥ 1, then the sequence (x̂2
n)n≥0 consists of

integers and b = a/t.

Proof. All the coefficients and initial values of (5) are integers.

Table 1 and Table 5 (t = 1), moreover, Table 2, Table 3, and Table 4 contain examples of
integer sequences. For a = 1 and b = 2, then (yn − rn)n≥1 is the bisection of Lucas sequence
A002878.

a b t (x̂2
n)n≥0√

2 1
√
2 {2, 18, 1602, . . .}√

2 2
√
2/2 {2, 6, 66, 902, . . .}√

2
√
2/2 2 {2, 34, 10370, . . .}√

2 2
√
2 1/2 {2, 4, 20, 130, . . .}

Table 2: Integer sequences associated with circle chains.
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a b t (rn)n≥0 (yn)n≥0 (ŷn)n≥0 (x̂2
n)n≥0

1 2 1/2 — — {0,A025169};A111282,n ≥ 1 A064170
1 1/2 2 A023039 {0, 10, 180, . . .} A207832 {1, 17, 5185, . . .}
1 1/3 3 A078986 {0, 20, 760, . . .} {0, 2, 76, 2886, . . .} {1, 37, 51985, . . .}
1 2/3 3/2 – – {0, 2, 22, 240 . . .} {1, 10, 1090, . . .}
1 1/4 4 A099370 {0, 34, 2244, . . .} {0, 2, 132, 8710, . . .} {1, 65, 278785, . . .}
2 1 2 A087215 A004292, n ≥ 1 A060645 {4, 68, 20740, . . .}
2 4 1/2 A005248 A201157 {0, 4, 12, 32, . . .} {4, 8, 40, 260, . . .}
2 1/2 4 {2, 66, 4354, . . .} A004298, n ≥ 1 {0, 4, 264, 17420, . . .} {4, 260, 1115140, . . .}
2 1/3 6 {2, 146, 21314, . . .} {0, 148, 21608, . . .} {0, 4, 584, 85260, . . .} {4, 580, 12278020, . . .}
2 2/3 3 {2,A239364} {0, 13, 143, . . .} {0, 4, 44, 480, . . .} {4, 148, 207940, . . .}
2 4/3 3/2 A057076 {0, 40, 1520, . . .} {0, 4, 152, 5772, . . .} {4, 40, 4360, . . .}
3 1 3 {3, 57, 2163, . . .} {0, 60, 2280, . . .} A084070 {9, 333, 467865, . . .}
3 6 1/2 — — A099857, n ≥ 1 {9, 18, 90, 585, . . .}
4 1 4 {4, 132, 8708, . . .} {0, 136, 8976, . . .} {0, 8, 528, 34840, . . .} {16, 1040, 4460560, . . .}
4 2 2 {4, 36, 644, . . .} {0, 40, 720, . . .} A134492 {16, 272, 82960, . . .}
4 8 1/2 {4, 6, 14, 36, . . .} {0, 10, 30, 80, . . .} {0, 8, 24, 64, . . .} {16, 32, 160, . . .}
1
√
2

√
2/2 A001075 A005320 A052530 A011922

1
√
2/2

√
2 A001079 A122653 A001078 {1, 9, 801, 78409, . . .}

2
√
2

√
2 A087799 A004291, n ≥ 1 A122652 {4, 36, 3204, . . .}

2
√
2/2 2

√
2 {2, 34, 1154, . . .} A004294, n ≥ 1 A202299 {4, 132, 147972, . . .}

2 2
√
2

√
2/2 A003500 A001352, n ≥ 1 A231896 {4, 12, 132, . . .}

Table 3: Integer sequences associated with circle chains.

a b t (yn)n≥0 (ŷn)n≥0

1/2 1 1/2 — A001906
1/2 1/3 3/2 — {0,A004190}
1/2 1/4 2 {0, 5, 90, . . .} A049660
1/2 1/5 5/2 — {0,A049660}
1/2 1/6 3 {0, 10, 380, . . .} {0,A078987}
1/2 1/7 7/2 — A097836
1/2 1/8 4 {0, 17, 1122, . . .} {0,A097316}
1/2 1/9 9/2 — {0,A097839}
1/2 1/10 5 {0, 26, 2652, . . .} {0,A097725}
1/2 1/11 11/2 — {0,A049670}
1/2 1/13 13/2 — {0,A097844}

Table 4: Integer sequences associated with circle
chains.

a = b (yn)n≥0 (ŷn)n≥0

1/2 A001542 A001109
3/2 A075848 A106328
5/2 {0, 10, 60, 350, . . .} A276598
7/2 {0,A273182} A054890,n ≥ 1
9/2 {0, 18, 108, 630, . . .} A276602
1/4 A001109 –
3/4 A106328 –
5/4 A276598 –
7/4 A054890, n ≥ 1 –

Table 5: Integer sequences connected
to the regular hyperbola.
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4.3 Integer sequences associated with ellipse chains

Theorem 10. For positive integers a, b, if b divides a then the sequence (βn)n≥0 is an integer
sequence and its recurrence is

βn = (4t2 + 1)βn−1 + (4t2 + 1)βn−2 − βn−3 (n ≥ 3), (13)

and the initial values are β0 = b, β1 = 2aµ− b, and β2 = 8at2µ+ b.

Proof. We notice that the initial values of the sequence are integers. Thus, the coefficients
of recurrence relation (13) are also integers, which guarantees that all the other terms of the
sequence are integers.

Equations (10) and (13) are of the form Vn = (θ−1)Vn−1+(θ−1)Vn−2−Vn−3, (n ≥ 3),
and thus Wn = Vn + Vn−1 is a second-order linear recurrence Wn = θWn−1 − Wn−2. Here
θ = 2λ and 4t2, respectively. We deduce an explicit form for (Vn)n≥0 using (Wn)n≥0 and
leaving the proof to the reader in the following theorem:

Theorem 11. For all n ≥ 2, we have Vn = (−1)nV0 +
∑n

k=1
(−1)n−kWk.

The explicit terms of Wk are well known.
We give some integer recurrence sequences for (βn)n≥0 in Table 6. If t = 1, so a = b, then

our hyperbola is a rectangular hyperbola, and it holds for the integer sequences associated
with ellipse chain not only for the sequence (βn)n≥0, but also for the sequences αn, βn, ỹn,
and x̃n. See Subsection 4.1.

a b t (βn)n≥0

a a 1 in Table 1
2 1 2 {1, 19, 321, 5779, 103681, 1860499, . . .}
3 1 3 {1, 59, 2161, 82139, 3119041, 118441499, . . .}
4 1 4 {1, 135, 8705, 574599, 37914625, 2501790855, . . .}
4 2 2 {2, 38, 642, 11558, 207362, 3720998, . . .}

Table 6: Integer sequences associated with ellipse chains.
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