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Abstract

Recall that an arithmetic function f is called an L-additive function with respect
to a completely multiplicative function h if f(mn) = f(m)h(n) + f(n)h(m) holds
for all m and n. We study L-additive functions in the fields of fractions of unique
factorization domains (UFD). In particular, we describe all L-additive functions over
given UFD such that these functions can be extended to its field of fractions. We find
the exact formula for an L-additive function in the terms of prime elements. For a
given L-additive function f(x) we study the properties of the sequence (f (k)(x))k≥1

and solutions of the equation f(x) = αx. As corollaries we obtain results about the
arithmetic derivative and partial arithmetic derivatives.

1 Introduction

Recall [2, 12, 13] that the arithmetic derivative is a function D : N → N, such that
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1. D(p) = 1 for all prime p;

2. D satisfies the Leibniz rule: D(mn) = D(m)n+D(n)m.

It is known that the arithmetic derivative is not a linear function:

D(2 + 3) = D(5) = 1 and D(2) +D(3) = 2.

One can define the arithmetic derivative for a rational number [13]. Since D is not a linear
function, it is difficult to solve even equations D(x) = 2a and D(D(x)) = 1. Ufnarovski and
Åhlander [13] showed that the first equation has a solution for any natural a if Goldbach’s
conjecture is true and the second equation has infinite number of solutions if twin prime
conjecture is true. Equations of the form D(x) = ax + 1 are connected to the conjecture
about Guiga numbers as was shown by Grau and Oller-Marcén [4].

Note that the partial arithmetic derivative Dp(n) and the arithmetic subderivative DS(n)
of an integer number satisfy the Leibniz rule [11].

Also the analogues of arithmetic derivative were considered over different sets of elements
[13]. Haukkanen et al. [7] discussed the arithmetic derivative on non-unique factorization
domains. Emmons et al. [3] described all functions f : Zn → Zn that satisfy the Leibniz
rule. In particular, all values of such functions are divisors of zero. Kovic̆ [10] constructed
functions defined on Gaussian rationals that satisfy the Leibniz rule.

Let h be a completely multiplicative function. According to Merikoski et al. [9, 11] a
function f : N → N is called L-additive with respect to h if f(mn) = f(m)h(n) + f(n)h(m)
holds for all m,n ∈ N.

The aim of this paper is to study L-additive functions in the fields of fractions over unique
factorization domains (Gaussian integers, Eisenstein integers and etc.).

2 Preliminary results

The notation and terminology agree with the book [1]. We refer the reader to this book
for the results on ring theory. Through N, P, Z, Z+, Q, and Q+ we denote here the sets of
natural, prime, integer, non-negative integer, rational, and non-negative rational numbers
respectively.

Let Φ be an integral domain [1, p. 368]. Recall that the field of fractions Frac(Φ) of Φ is
the set {a

b
| a ∈ Φ, b ∈ Φ \ {0} with a

b
= c

d
if ∃k 6= 0 such that a = kc and b = kd} with two

operations:

a

b
+

c

d
=

a · d+ c · b
b · d and

a

b
· c
d
=

a · c
b · d ∀a, b, c, d ∈ Φ and b, d 6= 0.

Note that Frac(Z) = Q and Frac(Z[i]) = Q(i).
If p is a prime in a UFD, then all elements associated with it are also primes. Let P(Φ)

be some maximal by inclusion set of non-associated primes in Φ. Note that a UFD can
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have infinite number of maximal by inclusion sets of non-associated primes. Now the unique
factorization means that every non-zero element of Φ has the following unique factorization:

y = u ·
∏

p∈P(Φ)

pvp(y)

where u is a unit, vp(y) ∈ Z+, and vp(y) 6= 0 for finitely many p ∈ P(Φ).
Recall that the characteristic of an integral domain Φ is defined to be the smallest number

of times one must use the ring’s multiplicative identity in a sum to get the additive identity.
If this sum never reaches the additive identity, then Φ is said to have characteristic zero.
Note that if the characteristic of an integral domain is not equal to 0, then it is a prime.
Also note that the characteristics of an integral domain and its field of fractions coincide.

Let Φ be a UFD such that its group of units G is finitely generated. Then

G ≃ A1 × A2 × · · · × An ×B1 ×B2 × · · · × Bk

with n, k ≥ 0, Ai ≃ Z, and Bj ≃ Znj
where nj is a power of a prime for all j. Let A(Φ)

be the set containing exactly one generating element ai of each subgroup Ai and B(Φ) be
the set containing exactly one generating element bj of each subgroup Bj such that its order
is divisible by the characteristic of Φ. If the characteristic of Φ is equal to 0, then B(Φ) is
empty. Define R(Φ) = A(Φ) ∪B(Φ).

If the characteristic of Φ is equal to 0, then all its units u can be uniquely represented

u = u0 ·
n∏

i=1

aγii

with γi ∈ Z and u0 is an element of a finite order.
If the characteristic of Φ is equal to p 6= 0, then all its units u can be uniquely represented

u = u0 ·
n∏

i=1

aγii ·
m∏

j=1

b
δj
j

with γi ∈ Z, δj ∈ {0, 1, . . . , nj −1}, and u0 is an element of a finite order t with gcd(t, p) = 1.
Let P∗(Φ) = P(Φ) ∪ R(Φ). So the factorization of an element q 6= 0 in Φ can be written

uniquely in the following form

q = u0 ·
∏

r∈R(Φ)

rvr(q) ·
∏

p∈P(Φ)

pvp(q) = u0 ·
∏

p∈P∗(Φ)

pvp(q).

This means that every element q 6= 0 of Frac(Φ) can be written uniquely in the following
form

q = u0 ·
∏

p∈P∗(Φ)

pvp(q)
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where vp(q) ∈ Z for all p ∈ P∗(Φ) and vp(q) 6= 0 only for a finite number of p ∈ P∗(Φ).
Let m,n ∈ Frac(Φ) \ {0}. It is easy to check that vp(m · n) = vp(m) + vp(n) for any

p ∈ P(Φ). Note that vai(m ·n) = vai(m)+vai(n). If characteristic of Φ is p, then vbi(m ·n) ≡
vbi(m) + vbi(n) (mod ni), where ni = pα for some α. This means that vbi(m · n) ≡ vbi(m) +
vbi(n) (mod p). All these mean that vr(m · n) = vr(m) + vr(n) in Frac(Φ).

A Gaussian integer is a complex number a + bi with a, b ∈ Z and i2 = −1. Note that
Gaussian integers form a UFD. Any Gaussian prime divides some integer prime wherein in
Gaussian integers 2 = −i(1+ i)2 with 1+ i is a prime; every integer prime of the form 4k+1
is a product of two non-associated Gaussian primes of the form a+bi and a−bi; every integer
prime of the form 4k+3 is a Gaussian prime. Note that the group of units of Z[i] is the cyclic
group of order 4. So R(Z[i]) = ∅. We can chose P∗(Z[i]) in the following way: natural primes
of the form 4k+3; 1+i; numbers of the form a+bi and a−bi with a < b, a, b ∈ N and a2+b2 is a
natural prime of the form 4k+1. Then P∗(Z[i]) = {1+i, 3, 1+2i, 1−2i, 7, 2+3i, 2−3i, 11, . . .}.

An Eisenstein integer is a complex number a + bω with a, b ∈ Z and ω = −1+i
√
3

2
is a

solution of the equation ω2 + ω + 1 = 0. Note that Eisenstein integers form a UFD. Any
Eisenstein prime divides some integer prime, with 3 = (1+2ω)2 where 1+2ω is an Eisenstein
prime. An integer prime p ≡ 2 (mod 3) is an Eisenstein prime. The remaining integer primes
are the products of two non-associated Eisenstein primes. Note that the group of units of
Z[ω] is the cyclic group of order 6. So R(Z[ω]) = ∅. We can chose P∗(Z[ω]) in the following
way: an integer prime p ≡ 2 (mod 3); 1 + 2ω and numbers of the form a + bω and a + bω2

with a ∈ N, |a| < |b| and a2 − ab + b2 is a natural prime number p ≡ 1 (mod 3). Then
P∗(Z[ω]) = {2, 1 + 2ω, 5, 1 + 3ω, 1 + 3ω2, 11, . . .}.

Note that the norm of a Gaussian integer is N1(a + bi) = a2 + b2. The norm of an
Eisenstein integer is N2(a+ bω) = a2 − ab+ b2.

Recall that Z[
√
2] = {a + b

√
2 | a, b ∈ Z} is a UFD. Note that its group of units is

generated by {−1,
√
2 + 1} and is isomorphic to Z2 × Z. So in this case we can choose

R(Z[
√
2]) = {

√
2 + 1}.

3 Main results

The following well-known function classes play an important role in our paper.

Definition 1. Let K be a ring. A function h : K → K is called

(1) Completely multiplicative, if h(1) = 1 and h(mn) = h(m)h(n) holds for all m,n ∈ K.

(2) Completely additive, if h(mn) = h(m) + h(n) holds for all m,n ∈ K.

Definition 2 ([11]). LetK be a ring and h : K → K be a completely multiplicative function.
A function f : K → K is called L-additive with respect to h if f(mn) = f(m)h(n)+f(n)h(m)
holds for all m,n ∈ K.
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If h(n) ≡ 1, then every L-additive function with respect to h is completely additive.
Every L-additive function with respect to h(x) = x will be called L-additive.

Theorem 3. Let Φ be an integral domain and h, f : Φ → Φ be completely multiplicative and
L-additive with respect to h functions. Then there exist unique functions h̄, f̄ : Frac(Φ) →
Frac(Φ), such that h̄ is completely multiplicative, f̄ is L-additive with respect to h̄, and
h(x) = h̄(x) and f(x) = f̄(x) ∀x ∈ Φ iff h(x) 6= 0 ∀x ∈ Φ \ {0}.

Let q : Frac(Φ) → Frac(Φ) be completely multiplicative. In these terms a function V :

Frac(Φ) → Frac(Φ) is L-additive with respect to q where V (x) = f̄(x)·q(x)
h̄(x)

for x 6= 0 and

V (0) = 0.

Proof. Assume that h(x) 6= 0 ∀x ∈ Φ \ {0}. Then for all x ∈ Frac(Φ) there exist m,n ∈ Φ

with x = m
n
, n 6= 0. Let h̄(x) = h(m)

h(n)
and f̄(x) = f(m)h(n)−f(n)h(m)

h2(n)
.

Let x = m1

n1

= m2

n2

. Then there is k 6= 0 such that m1 = km2 and n1 = kn2. The following

equality shows that h̄ is well-defined:

h̄

(
m1

n1

)

=
h(m1)

h(n1)
=

h(km2)

h(kn2)
=

h(k) · h(m2)

h(k) · h(n2)
= h̄

(
m2

n2

)

.

Let x = x1 · x2, x = m
n
, x1 =

m1

n1

and x2 =
m2

n2

. Then m = m1 ·m2 · k and n = n1 · n2 · k. The
following equality shows that h̄ is completely multiplicative:

h̄(x1) · h̄(x2) =
h(m1)

h(n1)
· h(m2)

h(n2)
· h(k)
h(k)

=
h(k ·m1 ·m2)

h(k · n1 · n2)
=

h(m)

h(n)
= h̄(x).

Let ḡ be a completely multiplicative extension of h. Then

1 = ḡ(1) = ḡ(x · x−1) = ḡ(x) · ḡ(x−1).

Therefore ḡ(x−1) = 1
ḡ(x)

= 1
h(x)

∀x ∈ Φ \ {0}. The following shows that h̄ is unique:

ḡ(x) = ḡ
(m

n

)

= ḡ(m) · ḡ(n−1) =
h(m)

h(n)
= h̄(x).

The following equality shows that f̄ is well-defined:

f̄

(
km

kn

)

=
f(km) · h(kn)− f(kn) · h(km)

h2(kn)

=
(f(k)h(m) + f(m)h(k)) · h(k)h(n)− (f(k)h(n) + f(n)h(k)) · h(k)h(m)

h2(kn)

=
f(k)h(m)h(k)h(n) + f(m)h2(k)h(n)− f(k)h(n)h(k)h(m)− f(n)h2(k)h(m)

h2(k)h2(n)

=
h2(k)(f(m)h(n)− f(n)h(m))

h2(k)h2(n)
=

f(m)h(n)− f(n)h(m)

h2(n)
= f̄(x).
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Let x = x1 · x2, x = m
n
, x1 = m1

n1

, and x2 = m2

n2

. Then m = m1 ·m2 · k and n = n1 · n2 · k.
The following equality shows that f̄ is L-additive with respect to h̄:

h̄(x1)f̄(x2) + h̄(x2)f̄(x1) = h̄

(
m1

n1

)

f̄

(
m2

n2

)

+ h̄

(
m2

n2

)

f̄

(
m1

n1

)

=
h(m1)

h(n1)
·
(
f(m2)h(n2)− f(n2)h(m2)

h2(n2)

)

+
h(m2)

h(n2)
·
(
f(m1)h(n1)− f(n1)h(m1)

h2(n1)

)

=
f(m2)h(m1)h(n2)h(n1)− f(n2)h(n1)h(m1)h(m2)

h2(n1) · h2(n2)

+
f(m1)h(m2)h(n2)h(n1)− f(n1)h(n2)h(m1)h(m2)

h2(n1) · h2(n2)

=
h(n1n2)(h(m1)f(m2) + h(m2)f(m1))

h2(n1n2)
− h(m1m2)(h(n1)f(n2) + h(n2)f(n1))

h2(n1n2)

=
h(n1n2)f(m1m2)− h(m1m2)f(n1n2)

h2(n1n2)
= f̄

(
m1 ·m2

n1 · n2

)

= f̄

(
k ·m1 ·m2

k · n1 · n2

)

= f̄(x).

Let ḡ be an L-additive with respect to h̄ extension of f̄ :

0 = ḡ(1) = ḡ(xx−1) = ḡ(x)h̄(x−1) + ḡ(x−1)h̄(x) =
f(x)

h(x)
+ ḡ(x−1)h(x).

Thus ḡ(x−1) = − f(x)
h2(x)

∀x ∈ Φ \ {0} and

ḡ
(m

n

)

= ḡ(m)h̄

(
1

n

)

+ḡ

(
1

n

)

h̄(m) =
f(m)

h(n)
−f(n)h(m)

h2(n)
=

f(m)h(n)− f(n)h(m)

h2(n)
= f̄

(m

n

)

.

Therefore the function f̄ is unique.
Let us prove the converse statement. Assume that f and h can be extended to Frac(Φ).

Suppose that there exists x ∈ Φ \ {0} with h(x) = 0. Then x−1 ∈ Frac(Φ). Therefore
1 = h̄(x · x−1) = h̄(x) · h̄(x−1) = 0. This is a contradiction.

Let us prove that V (x) is L-additive with respect to q. Let m,n ∈ Frac(Φ). Assume that
m,n 6= 0. Then

V (mn) =
f̄(mn) · q(mn)

h̄(mn)
=

(
f̄(m)h̄(n) + f̄(n)h̄(m)

)
q(mn)

h̄(m) · h̄(n)

=
f̄(m)h̄(n)q(mn)

h̄(m)h̄(n)
+

f̄(n)h̄(m)q(mn)

h̄(m)h̄(n)
=

f̄(m)q(m)q(n)

h̄(m)
+

f̄(n)q(n)q(m)

h̄(n)

= V (m)q(n) + V (n)q(m).

Assume now that m = 0. Note that q(0) = 0. Then

V (mn) = V (0) = 0 = 0q(n) + V (n)0 = V (m)q(n) + V (n)q(m).

The case n = 0 is the same. Hence V (x) is L-additive with respect to q.
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Example 4. Let

h(n) =

{

1, n = 1;

0, n 6= 1;
and f(n) =

{

1, n ∈ P;

0, n /∈ P.

Note that f is L-additive with respect to h and we cannot extend f and h from Z to Q.

Corollary 5. A function f : Frac(Φ) → Frac(Φ) is L-additive iff f(0) = 0 and f(x)
x

is
completely additive.

Proof. Since every completely additive function is L-additive with respect to h(x) ≡ 1 and
every L-additive function is L-additive with respect to h(x) = x, the statement of corollary
directly follows from the last statement of Theorem 3.

Corollary 6 ([6, Theorem 3.1]). A function Df
S(n) is L-additive iff

∑

p∈S
fp(n)

p
is completely

additive where Df
S(n) is as defined in [6].

Proposition 7. Let Φ be an integral domain and f, g : Frac(Φ) → Frac(Φ) be L-additive
functions. Then

1. h(x) = α · f(x) is L-additive.

2. h(x) = f(x) + g(x) is L-additive.

3. f
(
a
b

)
= f(a)b−f(b)a

b2
.

4. f(an) = n · an−1 · f(a), ∀n ∈ Z.

Proof. 1. Let m,n ∈ Frac(Φ). Then f(mn) = f(m)n+ f(n)m. So h(mn) = α · (f(n)m+
f(m)n) = (α · f(n))m + (α · f(m))n = h(n)m + h(m)n. Hence h(x) = α · f(x) is
L-additive.

2. Let m,n ∈ Frac(Φ). Then f(mn) = f(m)n + f(n)m and g(mn) = g(m)n + g(n)m.
Now h(mn) = f(m)n+g(m)n+f(n)m+g(n)m = n(f(m)+g(m))+m(f(n)+g(n)) =
h(m)n+ h(n)m. So h(x) = f(x) + g(x) is L-additive.

3. From f(1) = 0 it follows that f(1) = f
(
n · 1

n

)
= f(n)

n
+ f

(
1
n

)
n = 0. So f

(
1
n

)
= −f(n)

n2 .

Thus f
(
a
b

)
= f(a)

b
+ f

(
1
b

)
a = f(a)b−f(b)a

b2
.

4. Let us prove this statement by induction. Note that 0 = f(1) = f(a0) = 0a−1f(a)
and f(a) = 1a0f(a). Assume that the statement holds for n ∈ N. Let us prove this
statement for n+ 1 : f(an+1) = f(a · an) = f(a)an + f(an)a = f(a)an + nf(a)an−1a =
(n+1)f(a)an. Now we prove this statement for a negative n : 0 = f(1) = f(an ·a−n) =

f(an)a−n + anf(a−n) = nf(a)
a

+ anf(a−n) and therefore f(a−n) = −n · a−(n+1)f(a).
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Let S ⊆ P∗(Φ). We shall call the function

DS(x) = x ·
∑

p∈S

vp(x)

p

an arithmetic subderivative in Φ. If |S| = 1, then we shall call it a partial arithmetic
derivative and if S = P∗(Φ), then we shall call it the arithmetic derivative in Φ. These
functions for integers were studied, for example, by Merikoski et al. [11]. Note that the
function DS is also referred to as “arithmetic type derivative” [5].

Corollary 8. Let Φ be a UFD such that its group of units is finitely generated and S ⊆ P∗(Φ).
Then DS(x) is L-additive.

Proof. Recall that vp(x) is completely additive. Then x · vp(x) is a L-additive function by

Corollary 5. Since vp(x) 6= 0 only for finite number of p ∈ P∗(Φ), DS(x) = x ·∑p∈S
vp(x)

p
is

L-additive by 1 and 2 of Proposition 7.

Theorem 9. Let Φ be a UFD such that its group of units is finitely generated. A function
g : Frac(Φ) \ {0} → Frac(Φ) is completely additive iff

g(n) =
∑

p∈P∗(Φ)

(vp(n)g(p)) ∀n ∈ Frac(Φ).

Proof. Let g be a completely additive function. Note that for all n ∈ Frac(Φ) holds

n = u0 ·
∏

p∈P∗(Φ)

pvp(n),

where u0 is a unit of Φ of a finite order k (if char(Frac(Φ)) = p 6= 0, then gcd(k, p) = 1).
Note that g(1 · 1) = g(1) + g(1). Therefore g(1) = 0. Hence

g(1) = g(uk
0) = kg(u0) = 0.

Since gcd(k, p) = 1 and Φ is an integral domain, we see that g(u0) = 0.
Since g is completely additive, it is clear that g(xk) = k · g(x) for all k ∈ N. We proved

that g(x0) = g(1) = 0 = 0 · g(x). From 0 = g(1) = g(xk · x−k) = g(xk) + g(x−k) it follows
that g(x−k) = (−k) · g(x). Thus g(xk) = k · g(x) for all k ∈ Z. Then

g(n) = g






u ·

∏

p∈P∗(Φ),
vp(n) 6=0

pvp(n)







= g(u) +
∑

p∈P∗(Φ),
vp(n) 6=0

(vp(n)g(p)) =
∑

p∈P∗(Φ)

(vp(n)g(p)).

To prove the converse let

g(n) =
∑

p∈P∗(Φ)

(vp(n)g(p)).
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Then

g(m · n) =
∑

p∈P∗(Φ)

(vp(m · n)g(p)) =
∑

p∈P∗(Φ)
vp(n) 6=0or vp(m) 6=0

(vp(m · n)g(p))

=
∑

p∈P∗(Φ)
vp(n) 6=0or vp(m) 6=0

((vp(n) + vp(m))g(p))

=
∑

p∈P∗(Φ)
vp(n) 6=0

(vp(n)g(p)) +
∑

p∈P∗(Φ)
vp(m) 6=0

(vp(m)g(p)) = g(n) + g(m).

This means that g is completely additive.

Corollary 10. Let Φ be a UFD such that its group of units is finitely generated and f :
Frac(Φ) → Frac(Φ) be an L-additive function. Then

f(x) = x ·
∑

p∈P∗(Φ), vp(x) 6=0

f(p)vp(x)

p
.

Corollary 11 ([13, Theorem 1]). Let D be the arithmetic derivative of rational numbers.
Then

D(x) = x ·
∑

p∈P, vp(x) 6=0

vp(x)

p
= DP(x).

Corollary 12. Let F be a finite field and f : F → F be an L-additive function. Then
f(x) = 0 for all x ∈ F .

Proof. Since F is a finite field, there is a prime p such that the characteristic of F is p and
|F | = pα. It is well-known that the group of units of F is a cyclic group of order |F | − 1.
Hence R(F ) = ∅. Since every non-zero element in F has the inverse, P(F ) = ∅. Thus
P∗(F ) = ∅. Now f(x) = 0 for all x ∈ F by Corollary 10.

Example 13. Let us show that the arithmetic derivatives in integers, Gaussian integers,
and Eisenstein integers of the same number can be different. For example,

DP(6) = 5, DP(Z[i])(6) = 8− 6i, and DP(Z[ω])(6) =
15+6ω
1+2ω

= 3− 4
√
3i.

Definition 14. We shall say that a UFD Γ of characteristic 0 satisfies (∗) if its group of
units is finitely generated and for any prime p ∈ Γ there is m ∈ Z with p | m.

In Definition 14 by Z we mean the smallest subring of Γ which contains 1. Note that Z[i]
and Z[ω] satisfy (∗), but Z[x] does not satisfy (∗).

Lemma 15. Let Γ satisfy (∗) and f : Frac(Γ) → Frac(Γ). If f(x) ∈ Γ for all x ∈ Γ, then

the denominator of f(p)
p

is equal to 1 or p for all p ∈ P∗(Γ).
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Proof. Note that f(p) ∈ Γ for all prime p ∈ P(Γ). Then we have either f(p) is divisible by

p and the denominator of f(p)
p

is 1 or f(p) is not divisible by p and the denominator of f(p)
p

is p. If p ∈ R(Γ), then f(p)
p

∈ Γ. Therefore its denominator is 1.

Let f (0)(x) = x and f (i)(x) = f(f (i−1)(x)) for every i ∈ N.

Theorem 16. Let Γ satisfy (∗), p ∈ P(Γ) and f : Frac(Γ) → Frac(Γ) be an L-additive
function with f(x) ∈ Γ for all x ∈ Γ. Then

vp(f
(k)(x)) ≥ max{n ∈ Z |n ≤ vp(x) and p | n} ∀x ∈ Γ.

Proof. From Corollary 10 it follows that

f(x) = x ·




vp(x)f(p)

p
+

∑

pi∈P∗(Γ), pi 6=p, vpi (x) 6=0

vpi(x)f(pi)

pi



 =

= x ·
(
vp(x)f(p)

p
+

A

B

)

= x ·
(
vp(x)f(p)B + Ap

p ·B

)

.

Since Z ⊆ Γ, we may assume that A, B ∈ Γ and gcd(B, p) = 1 by Lemma 15. Note that
vp(x)f(p)B+Ap ∈ Γ. Therefore vp(f(x)) ≥ vp(x)−1 and if p | vp(x), then vp(f(x)) ≥ vp(x).

Since Γ satisfies (∗), we see that {n ∈ Z |n ≤ vp(x) and p | n} 6= ∅. This is a set of
integers bounded from above. Hence it has the greatest element β = max{n ∈ Z | n ≤
vp(x) and p | n}.

Suppose that vp(f
(k)(x)) < β for some k. Note that vp(f

(m)(x)) ∈ Z and vp(f
(m+1)(x))−

vp(f
(m)(x)) ≥ −1 for all m. Hence there is n with vp(f

(n)(x)) = β and vp(f
(n+1)(x)) = β−1.

Since p | β, we have the contradiction.

Corollary 17. Let f ∈ {DP∗(Γ), Dp, DS} and x ∈ Frac(Γ). Then there are finitely many
different denominators of numbers in the sequence (f (k)(x))k≥1.

Definition 18. A function W : Frac(Γ) → Q+ is called norm-like if

0) W (x) = 0 ⇔ x = 0.

1) W (a) ·W (b) = W (ab) for all a, b ∈ Frac(Γ).

2) W (x) ∈ N ∪ {0} for all x ∈ Γ.

3) W (x) = n has a finite number of solutions in Γ for all n ∈ N.

Lemma 19. The absolute value of rational number |·| : Frac(Z) → Q+, the norm of Gaussian
rational N1 : Frac(Z[i]) → Q+ and the norm of Eisenstein rational N2 : Frac(Z[ω]) → Q+

are norm-like functions.
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Proof. Obviously, all these functions have properties 0−2 and the absolute value of rational
number has property 3.

Let us prove that the equation N1(x) = n has a finite number of solutions in Z[i]. Let
x = a + bi. Then N1(x) = a2 + b2 = n with a, b ∈ Z. So 0 ≤ |a| ≤ √

n and 0 ≤ |b| ≤ √
n.

Therefore N1(x) = n has a finite number of solutions.
Let us prove that the equation N2(y) = n has a finite number of solutions in Z[ω]. Let

y = c + dω. Then N2(y) = a2 + b2 − ab = m with a, b ∈ Z. So (a − b)2 + ab = m. Let
a = v+ k and b = v− k. Therefore (v+ k− v+ k)2+ v2− k2 = 3k2+ v2 = m. Note that the
denominators of v and k can be equal to 1 or 2. Since 0 ≤ |v| < √

m and 0 ≤ |k| ≤
√

m
3
, we

see that N2(y) = m has a finite number of solutions.

Theorem 20. Let Γ satisfy (∗), g : Frac(Γ) → Frac(Γ) be an L-additive function with g(x) ∈
Γ for all x ∈ Γ and W be a norm-like function. If x ∈ Frac(Γ), then either W (g(k)(x)) → +∞
or the sequence (g(k)(x))k≥1 is periodic starting from some k.

Proof. Let x ∈ Frac(Γ). Assume that g(k)(x) = 0 for some k. Then g(n)(x) = 0 for all n ≥ k.
Hence Theorem 20 for such x is proved. Now assume that g(k)(x) 6= 0 for all k. Note that if
a, b 6= 0, then

W (a) = W
(

b · a
b

)

= W (b) ·W
(a

b

)

⇒ W
(a

b

)

=
W (a)

W (b)
.

Let pα1

1 · pα2

2 · · · pαn
n be the denominator of x. Then by Theorem 16 there are β1, β2, . . . , βn

and Ak ∈ Γ such that g(k)(x) can be written as Ak

p
β1
1

·pβ2
2

···pβnn
(this fraction is not necessary

irreducible).
Suppose that W (g(k)(x)) 6→ +∞. This means that

∃A : ∀M ∃m > M : W (g(m)(x)) ≤ A.

The last inequality is equivalent to W (Am) ≤ A ·W (pβ1

1 · pβ2

2 · · · pβn
n ).

Note that B = ⌈A⌉ · W (pβ1

1 · pβ2

2 · · · pβn
n ) ∈ N and there is a finite number of y ∈ Γ

with W (y) ≤ B by 3) of Definition 18. Therefore for infinitely many m the number W (Am)
belongs to the same finite set. Hence for infinitely manym allW (Am) are equal by Pigeonhole
principle. So there arem1 andm2 with Am1

= Am2
. Now g(m1)(x) = g(m2)(x) wherem2 > m1.

Thus g(m1+i·(m2−m1))(x) = g(m1)(x) and m2 −m1 = T is a period of g(k)(x).

Corollary 21. Let f ∈ {DP∗(Γ), Dp, DS}.

(a) If x ∈ Q, then either |f (k)(x)| → +∞ or (f (k)(x))k≥1 is periodic starting from some
natural number k.

(b) If x ∈ Q(i), then either N1(f
(k)(x)) → +∞ or (f (k)(x))k≥1 is periodic starting from

some natural number k.
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(c) If x ∈ Q(ω), then either N2(f
(k)(x)) → +∞ or (f (k)(x))k≥1 is periodic starting from

some natural number k.

Theorem 22. Let Φ be a UFD such that its group of units is finitely generated, α ∈ Frac(Φ)
and f : Frac(Φ) → Frac(Φ) be an L-additive function.

1. Let x0 be a non-zero solution of
f(x) = αx (1)

Then x = y · x0 for any solution x of (1) where y is a solution of f(y) = 0.

2. Let S = {p ∈ P∗(Φ) | f(p) 6= 0}. If vp(x) = 0 for all p ∈ S, then f(x) = 0.

3. There exists a bijection between non-zero solutions l of (1) with P = {p | vp(l) 6= 0} ⊆
S and integer solutions {vp(x) | p ∈ P∗(Φ)} of

α =
∑

p∈P∗(Φ)

(

vp(x) ·
f(p)

p

)

.

4. Assume that Frac(Φ) = Q. Let f(p)
p

= cp
zp

be an irreducible fraction for all p ∈ S. The

equation (1) has a solution x iff β = α · δ ∈ Z is divisible by gcd
(

δf(p)
p

| p ∈ P
)

where

P = {p ∈ P | vp(x) 6= 0} and δ = lcm(zp | p ∈ P ).

Proof. 1. Let x = x0 · y, with f(y) = 0. Since f is an L-additive function, we see that
f(x) = f(y · x0) = f(y)x0 + f(x0)y = f(x0)y = (αx0)y = αx. Hence x is a solution of
(1).

Assume now that x1 is a non-zero solution of (1). Let us show that x1 = y · x0 with

f(y) = 0. Let y = x1

x0

. Then f(y) = f
(

x1

x0

)

= f(x1)x0−f(x0)x1

x2

0

= αx1x0−αx0x1

x2

0

= 0.

2. By Corollary 10 we have that

f(x) = x ·
∑

p∈P∗(Φ), vp(x) 6=0

f(p)vp(x)

p
= 0.

3. By Corollary 10 we have that

f(l) = α · l = l ·
∑

p∈P∗(Φ), vp(l) 6=0

f(p)vp(l)

p
⇔ α =

∑

p∈P∗(Φ), vp(l) 6=0

vp(l) ·
f(p)

p
.
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4. By 3) we have that

α =
f(x)

x
=

∑

p∈P

(

vp(x)
f(p)

p

)

=
∑

p∈P

vp(x)cp
zp

.

Note that

β = α · δ =
∑

p∈P

(
cpδ

zp
· vp(x)

)

=
∑

p∈P

(
f(p)δ

p
· vp(x)

)

∈ Z.

This equation is a linear Diophantine equation. It is well-known that this equation has

a solution iff β is divisible by gcd
(

δf(p)
p

| p ∈ P
)

. Then we know all vp(x). Hence we

know ±x.

Corollary 23 ([8, Theorem 3]). Let p ∈ P and α ∈ Q. The equation Dp(x) = αx has a
nontrivial solution iff αp ∈ Z. Then all nontrivial solutions are of the form x = cpαp, where
p 6 | c ∈ Q \ {0}. Conversely, all numbers of this from are nontrivial solutions.

Corollary 24 ([13, Theorem 18]). Let α = a
b
be a rational number with gcd(a, b) = 1, b > 0.

Then the equation D(x) = αx has non-zero rational solutions iff b is a product of different
primes or b = 1.

Theorem 25. Let a field F be a finite algebraic extension of Q. If f : F → F is an
L-additive linear function, then f(x) ≡ 0.

Proof. According to Artin’s theorem on primitive elements, every finite algebraic extension
of Q is simple, i.e., there exists α ∈ F with F = Q(α). Let g be a minimal polynomial of α
over Q. We may assume that all coefficients of g are integer. It is known that g does not
have multiple zeros.

Since f(xy) = f(x)y + f(y)x and f(x+ y) = f(x) + f(y), we see that

f(ny) = f(y) + f(y) + · · ·+ f(y)
︸ ︷︷ ︸

n

= n · f(y) and f(ny) = f(n)y + f(y)n.

Therefore f(n)y = 0. Hence f(n) = 0 for all n ∈ N. Note that f(−n) = −f(n) = 0. Thus
f(x) = 0 for all x ∈ Z.

Let g(x) = anx
n + · · ·+ a1x+ a0. Then

0 = f(0) = f(g(α)) =
n∑

i=0

f(aiα
i) =

n∑

i=0

aif(α
i) =

n∑

i=1

ai(iα
i−1)f(α) = g′(α)f(α).

Since g′(α) 6= 0, we see that f(α) = 0. Therefore f(x) = 0 for every x ∈ Z[α]. It is easy
to see that for every x ∈ F there are m ∈ Z[α] and n ∈ Z with x = m

n
. So f(x) = 0 by 3 of

Proposition 7. Thus f(x) = 0 for all x ∈ Q(α) = F .
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4 Final remarks

In this paper we studied L-additive functions over unique factorization domains. So it is
natural to ask the following question.

Question 26. Let J be a factorization domain which is not UFD. Are there any non-zero
L-additive functions over J?

Haukkanen et al. [7] discussed some ideas about this question.
According to Theorem 25 there are no L-additive linear non-zero functions over any finite

extension of Q.

Question 27. Describe all UFD J such that there are no L-additive linear non-zero functions
over J .

By Corollary 12 there are no non-zero L-additive functions over a finite field. According
to Emmons et al. [3] every value of an L-additive function over Zn is a divisor of zero.

Question 28. Let f be an L-additive function over a finite ring. Is it true that all values of
f are divisors of zero?
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