Leibniz-Additive Functions on UFD's

Viachaslau I. Murashka
Faculty of Mathematics and Technologies of Programming
Francisk Skorina Gomel State University
Gomel 246019
Belarus
mvimath@yandex.ru
Andrey D. Goncharenko and Irina N. Goncharenko
State Educational Establishment "Gymnasium 71"
Gomel 246036
Belarus
goncharenkoandrey8@gmail.com
ira_nika@tut.by

Abstract

Recall that an arithmetic function f is called an L-additive function with respect to a completely multiplicative function h if $f(m n)=f(m) h(n)+f(n) h(m)$ holds for all m and n. We study L-additive functions in the fields of fractions of unique factorization domains (UFD). In particular, we describe all L-additive functions over given UFD such that these functions can be extended to its field of fractions. We find the exact formula for an L-additive function in the terms of prime elements. For a given L-additive function $f(x)$ we study the properties of the sequence $\left(f^{(k)}(x)\right)_{k \geq 1}$ and solutions of the equation $f(x)=\alpha x$. As corollaries we obtain results about the arithmetic derivative and partial arithmetic derivatives.

1 Introduction

Recall $[2,12,13]$ that the arithmetic derivative is a function $D: \mathbb{N} \rightarrow \mathbb{N}$, such that

1. $D(p)=1$ for all prime p;
2. D satisfies the Leibniz rule: $D(m n)=D(m) n+D(n) m$.

It is known that the arithmetic derivative is not a linear function:

$$
D(2+3)=D(5)=1 \text { and } D(2)+D(3)=2 .
$$

One can define the arithmetic derivative for a rational number [13]. Since D is not a linear function, it is difficult to solve even equations $D(x)=2 a$ and $D(D(x))=1$. Ufnarovski and Åhlander [13] showed that the first equation has a solution for any natural a if Goldbach's conjecture is true and the second equation has infinite number of solutions if twin prime conjecture is true. Equations of the form $D(x)=a x+1$ are connected to the conjecture about Guiga numbers as was shown by Grau and Oller-Marcén [4].

Note that the partial arithmetic derivative $D_{p}(n)$ and the arithmetic subderivative $D_{S}(n)$ of an integer number satisfy the Leibniz rule [11].

Also the analogues of arithmetic derivative were considered over different sets of elements [13]. Haukkanen et al. [7] discussed the arithmetic derivative on non-unique factorization domains. Emmons et al. [3] described all functions $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ that satisfy the Leibniz rule. In particular, all values of such functions are divisors of zero. Kovič [10] constructed functions defined on Gaussian rationals that satisfy the Leibniz rule.

Let h be a completely multiplicative function. According to Merikoski et al. [9, 11] a function $f: \mathbb{N} \rightarrow \mathbb{N}$ is called L-additive with respect to h if $f(m n)=f(m) h(n)+f(n) h(m)$ holds for all $m, n \in \mathbb{N}$.

The aim of this paper is to study L-additive functions in the fields of fractions over unique factorization domains (Gaussian integers, Eisenstein integers and etc.).

2 Preliminary results

The notation and terminology agree with the book [1]. We refer the reader to this book for the results on ring theory. Through $\mathbb{N}, \mathbb{P}, \mathbb{Z}, \mathbb{Z}_{+}, \mathbb{Q}$, and $\mathbb{Q}+$ we denote here the sets of natural, prime, integer, non-negative integer, rational, and non-negative rational numbers respectively.

Let Φ be an integral domain [1, p. 368]. Recall that the field of fractions $\operatorname{Frac}(\Phi)$ of Φ is the set $\left\{\left.\frac{a}{b} \right\rvert\, a \in \Phi, b \in \Phi \backslash\{0\}\right.$ with $\frac{a}{b}=\frac{c}{d}$ if $\exists k \neq 0$ such that $a=k c$ and $\left.b=k d\right\}$ with two operations:

$$
\frac{a}{b}+\frac{c}{d}=\frac{a \cdot d+c \cdot b}{b \cdot d} \text { and } \frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d} \forall a, b, c, d \in \Phi \text { and } b, d \neq 0
$$

Note that $\operatorname{Frac}(\mathbb{Z})=\mathbb{Q}$ and $\operatorname{Frac}(\mathbb{Z}[i])=\mathbb{Q}(i)$.
If p is a prime in a UFD, then all elements associated with it are also primes. Let $\mathbb{P}(\Phi)$ be some maximal by inclusion set of non-associated primes in Φ. Note that a UFD can
have infinite number of maximal by inclusion sets of non-associated primes. Now the unique factorization means that every non-zero element of Φ has the following unique factorization:

$$
y=u \cdot \prod_{p \in \mathbb{P}(\Phi)} p^{v_{p}(y)}
$$

where u is a unit, $v_{p}(y) \in \mathbb{Z}_{+}$, and $v_{p}(y) \neq 0$ for finitely many $p \in \mathbb{P}(\Phi)$.
Recall that the characteristic of an integral domain Φ is defined to be the smallest number of times one must use the ring's multiplicative identity in a sum to get the additive identity. If this sum never reaches the additive identity, then Φ is said to have characteristic zero. Note that if the characteristic of an integral domain is not equal to 0 , then it is a prime. Also note that the characteristics of an integral domain and its field of fractions coincide.

Let Φ be a UFD such that its group of units G is finitely generated. Then

$$
G \simeq A_{1} \times A_{2} \times \cdots \times A_{n} \times B_{1} \times B_{2} \times \cdots \times B_{k}
$$

with $n, k \geq 0, A_{i} \simeq \mathbb{Z}$, and $B_{j} \simeq \mathbb{Z}_{n_{j}}$ where n_{j} is a power of a prime for all j. Let $A(\Phi)$ be the set containing exactly one generating element a_{i} of each subgroup A_{i} and $B(\Phi)$ be the set containing exactly one generating element b_{j} of each subgroup B_{j} such that its order is divisible by the characteristic of Φ. If the characteristic of Φ is equal to 0 , then $B(\Phi)$ is empty. Define $R(\Phi)=A(\Phi) \cup B(\Phi)$.

If the characteristic of Φ is equal to 0 , then all its units u can be uniquely represented

$$
u=u_{0} \cdot \prod_{i=1}^{n} a_{i}^{\gamma_{i}}
$$

with $\gamma_{i} \in \mathbb{Z}$ and u_{0} is an element of a finite order.
If the characteristic of Φ is equal to $p \neq 0$, then all its units u can be uniquely represented

$$
u=u_{0} \cdot \prod_{i=1}^{n} a_{i}^{\gamma_{i}} \cdot \prod_{j=1}^{m} b_{j}^{\delta_{j}}
$$

with $\gamma_{i} \in \mathbb{Z}, \delta_{j} \in\left\{0,1, \ldots, n_{j}-1\right\}$, and u_{0} is an element of a finite order t with $\operatorname{gcd}(t, p)=1$.
Let $\mathbb{P}^{*}(\Phi)=\mathbb{P}(\Phi) \cup R(\Phi)$. So the factorization of an element $q \neq 0$ in Φ can be written uniquely in the following form

$$
q=u_{0} \cdot \prod_{r \in R(\Phi)} r^{v_{r}(q)} \cdot \prod_{p \in \mathbb{P}(\Phi)} p^{v_{p}(q)}=u_{0} \cdot \prod_{p \in \mathbb{P}^{*}(\Phi)} p^{v_{p}(q)} .
$$

This means that every element $q \neq 0$ of $\operatorname{Frac}(\Phi)$ can be written uniquely in the following form

$$
q=u_{0} \cdot \prod_{p \in \mathbb{P}^{*}(\Phi)} p^{v_{p}(q)}
$$

where $v_{p}(q) \in \mathbb{Z}$ for all $p \in \mathbb{P}^{*}(\Phi)$ and $v_{p}(q) \neq 0$ only for a finite number of $p \in \mathbb{P}^{*}(\Phi)$.
Let $m, n \in \operatorname{Frac}(\Phi) \backslash\{0\}$. It is easy to check that $v_{p}(m \cdot n)=v_{p}(m)+v_{p}(n)$ for any $p \in \mathbb{P}(\Phi)$. Note that $v_{a_{i}}(m \cdot n)=v_{a_{i}}(m)+v_{a_{i}}(n)$. If characteristic of Φ is p, then $v_{b_{i}}(m \cdot n) \equiv$ $v_{b_{i}}(m)+v_{b_{i}}(n)\left(\bmod n_{i}\right)$, where $n_{i}=p^{\alpha}$ for some α. This means that $v_{b_{i}}(m \cdot n) \equiv v_{b_{i}}(m)+$ $v_{b_{i}}(n)(\bmod p)$. All these mean that $v_{r}(m \cdot n)=v_{r}(m)+v_{r}(n)$ in $\operatorname{Frac}(\Phi)$.

A Gaussian integer is a complex number $a+b i$ with $a, b \in \mathbb{Z}$ and $i^{2}=-1$. Note that Gaussian integers form a UFD. Any Gaussian prime divides some integer prime wherein in Gaussian integers $2=-i(1+i)^{2}$ with $1+i$ is a prime; every integer prime of the form $4 k+1$ is a product of two non-associated Gaussian primes of the form $a+b i$ and $a-b i$; every integer prime of the form $4 k+3$ is a Gaussian prime. Note that the group of units of $\mathbb{Z}[i]$ is the cyclic group of order 4 . So $R(\mathbb{Z}[i])=\emptyset$. We can chose $\mathbb{P}^{*}(\mathbb{Z}[i])$ in the following way: natural primes of the form $4 k+3 ; 1+i$; numbers of the form $a+b i$ and $a-b i$ with $a<b, a, b \in \mathbb{N}$ and $a^{2}+b^{2}$ is a natural prime of the form $4 k+1$. Then $\mathbb{P}^{*}(\mathbb{Z}[i])=\{1+i, 3,1+2 i, 1-2 i, 7,2+3 i, 2-3 i, 11, \ldots\}$.

An Eisenstein integer is a complex number $a+b \omega$ with $a, b \in \mathbb{Z}$ and $\omega=\frac{-1+i \sqrt{3}}{2}$ is a solution of the equation $\omega^{2}+\omega+1=0$. Note that Eisenstein integers form a UFD. Any Eisenstein prime divides some integer prime, with $3=(1+2 \omega)^{2}$ where $1+2 \omega$ is an Eisenstein prime. An integer prime $p \equiv 2(\bmod 3)$ is an Eisenstein prime. The remaining integer primes are the products of two non-associated Eisenstein primes. Note that the group of units of $\mathbb{Z}[\omega]$ is the cyclic group of order 6 . So $R(\mathbb{Z}[\omega])=\emptyset$. We can chose $\mathbb{P}^{*}(\mathbb{Z}[\omega])$ in the following way: an integer prime $p \equiv 2(\bmod 3) ; 1+2 \omega$ and numbers of the form $a+b \omega$ and $a+b \omega^{2}$ with $a \in \mathbb{N},|a|<|b|$ and $a^{2}-a b+b^{2}$ is a natural prime number $p \equiv 1(\bmod 3)$. Then $\mathbb{P}^{*}(\mathbb{Z}[\omega])=\left\{2,1+2 \omega, 5,1+3 \omega, 1+3 \omega^{2}, 11, \ldots\right\}$.

Note that the norm of a Gaussian integer is $N_{1}(a+b i)=a^{2}+b^{2}$. The norm of an Eisenstein integer is $N_{2}(a+b \omega)=a^{2}-a b+b^{2}$.

Recall that $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ is a UFD. Note that its group of units is generated by $\{-1, \sqrt{2}+1\}$ and is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}$. So in this case we can choose $R(\mathbb{Z}[\sqrt{2}])=\{\sqrt{2}+1\}$.

3 Main results

The following well-known function classes play an important role in our paper.
Definition 1. Let K be a ring. A function $h: K \rightarrow K$ is called
(1) Completely multiplicative, if $h(1)=1$ and $h(m n)=h(m) h(n)$ holds for all $m, n \in K$.
(2) Completely additive, if $h(m n)=h(m)+h(n)$ holds for all $m, n \in K$.

Definition $2([11])$. Let K be a ring and $h: K \rightarrow K$ be a completely multiplicative function. A function $f: K \rightarrow K$ is called L-additive with respect to h if $f(m n)=f(m) h(n)+f(n) h(m)$ holds for all $m, n \in K$.

If $h(n) \equiv 1$, then every L-additive function with respect to h is completely additive. Every L-additive function with respect to $h(x)=x$ will be called L-additive.

Theorem 3. Let Φ be an integral domain and $h, f: \Phi \rightarrow \Phi$ be completely multiplicative and L-additive with respect to h functions. Then there exist unique functions $\bar{h}, \bar{f}: \operatorname{Frac}(\Phi) \rightarrow$ $\operatorname{Frac}(\Phi)$, such that \bar{h} is completely multiplicative, \bar{f} is L-additive with respect to \bar{h}, and $h(x)=\bar{h}(x)$ and $f(x)=\bar{f}(x) \forall x \in \Phi$ iff $h(x) \neq 0 \forall x \in \Phi \backslash\{0\}$.

Let $q: \operatorname{Frac}(\Phi) \rightarrow \operatorname{Frac}(\Phi)$ be completely multiplicative. In these terms a function V : $\operatorname{Frac}(\Phi) \rightarrow \operatorname{Frac}(\Phi)$ is L-additive with respect to q where $V(x)=\frac{\bar{f}(x) \cdot q(x)}{\bar{h}(x)}$ for $x \neq 0$ and $V(0)=0$.
Proof. Assume that $h(x) \neq 0 \forall x \in \Phi \backslash\{0\}$. Then for all $x \in \operatorname{Frac}(\Phi)$ there exist $m, n \in \Phi$ with $x=\frac{m}{n}, n \neq 0$. Let $\bar{h}(x)=\frac{h(m)}{h(n)}$ and $\bar{f}(x)=\frac{f(m) h(n)-f(n) h(m)}{h^{2}(n)}$.

Let $x=\frac{m_{1}}{n_{1}}=\frac{m_{2}}{n_{2}}$. Then there is $k \neq 0$ such that $m_{1}=k m_{2}$ and $n_{1}=k n_{2}$. The following equality shows that \bar{h} is well-defined:

$$
\bar{h}\left(\frac{m_{1}}{n_{1}}\right)=\frac{h\left(m_{1}\right)}{h\left(n_{1}\right)}=\frac{h\left(k m_{2}\right)}{h\left(k n_{2}\right)}=\frac{h(k) \cdot h\left(m_{2}\right)}{h(k) \cdot h\left(n_{2}\right)}=\bar{h}\left(\frac{m_{2}}{n_{2}}\right) .
$$

Let $x=x_{1} \cdot x_{2}, x=\frac{m}{n}, x_{1}=\frac{m_{1}}{n_{1}}$ and $x_{2}=\frac{m_{2}}{n_{2}}$. Then $m=m_{1} \cdot m_{2} \cdot k$ and $n=n_{1} \cdot n_{2} \cdot k$. The following equality shows that \bar{h} is completely multiplicative:

$$
\bar{h}\left(x_{1}\right) \cdot \bar{h}\left(x_{2}\right)=\frac{h\left(m_{1}\right)}{h\left(n_{1}\right)} \cdot \frac{h\left(m_{2}\right)}{h\left(n_{2}\right)} \cdot \frac{h(k)}{h(k)}=\frac{h\left(k \cdot m_{1} \cdot m_{2}\right)}{h\left(k \cdot n_{1} \cdot n_{2}\right)}=\frac{h(m)}{h(n)}=\bar{h}(x) .
$$

Let \bar{g} be a completely multiplicative extension of h. Then

$$
1=\bar{g}(1)=\bar{g}\left(x \cdot x^{-1}\right)=\bar{g}(x) \cdot \bar{g}\left(x^{-1}\right)
$$

Therefore $\bar{g}\left(x^{-1}\right)=\frac{1}{\bar{g}(x)}=\frac{1}{h(x)} \forall x \in \Phi \backslash\{0\}$. The following shows that \bar{h} is unique:

$$
\bar{g}(x)=\bar{g}\left(\frac{m}{n}\right)=\bar{g}(m) \cdot \bar{g}\left(n^{-1}\right)=\frac{h(m)}{h(n)}=\bar{h}(x)
$$

The following equality shows that \bar{f} is well-defined:

$$
\begin{aligned}
\bar{f}\left(\frac{k m}{k n}\right) & =\frac{f(k m) \cdot h(k n)-f(k n) \cdot h(k m)}{h^{2}(k n)} \\
& =\frac{(f(k) h(m)+f(m) h(k)) \cdot h(k) h(n)-(f(k) h(n)+f(n) h(k)) \cdot h(k) h(m)}{h^{2}(k n)} \\
& =\frac{f(k) h(m) h(k) h(n)+f(m) h^{2}(k) h(n)-f(k) h(n) h(k) h(m)-f(n) h^{2}(k) h(m)}{h^{2}(k) h^{2}(n)} \\
& =\frac{h^{2}(k)(f(m) h(n)-f(n) h(m))}{h^{2}(k) h^{2}(n)}=\frac{f(m) h(n)-f(n) h(m)}{h^{2}(n)}=\bar{f}(x) .
\end{aligned}
$$

Let $x=x_{1} \cdot x_{2}, x=\frac{m}{n}, x_{1}=\frac{m_{1}}{n_{1}}$, and $x_{2}=\frac{m_{2}}{n_{2}}$. Then $m=m_{1} \cdot m_{2} \cdot k$ and $n=n_{1} \cdot n_{2} \cdot k$. The following equality shows that \bar{f} is L-additive with respect to \bar{h} :

$$
\begin{aligned}
& \bar{h}\left(x_{1}\right) \bar{f}\left(x_{2}\right)+\bar{h}\left(x_{2}\right) \bar{f}\left(x_{1}\right)=\bar{h}\left(\frac{m_{1}}{n_{1}}\right) \bar{f}\left(\frac{m_{2}}{n_{2}}\right)+\bar{h}\left(\frac{m_{2}}{n_{2}}\right) \bar{f}\left(\frac{m_{1}}{n_{1}}\right) \\
& =\frac{h\left(m_{1}\right)}{h\left(n_{1}\right)} \cdot\left(\frac{f\left(m_{2}\right) h\left(n_{2}\right)-f\left(n_{2}\right) h\left(m_{2}\right)}{h^{2}\left(n_{2}\right)}\right)+\frac{h\left(m_{2}\right)}{h\left(n_{2}\right)} \cdot\left(\frac{f\left(m_{1}\right) h\left(n_{1}\right)-f\left(n_{1}\right) h\left(m_{1}\right)}{h^{2}\left(n_{1}\right)}\right) \\
& =\frac{f\left(m_{2}\right) h\left(m_{1}\right) h\left(n_{2}\right) h\left(n_{1}\right)-f\left(n_{2}\right) h\left(n_{1}\right) h\left(m_{1}\right) h\left(m_{2}\right)}{h^{2}\left(n_{1}\right) \cdot h^{2}\left(n_{2}\right)} \\
& +\frac{f\left(m_{1}\right) h\left(m_{2}\right) h\left(n_{2}\right) h\left(n_{1}\right)-f\left(n_{1}\right) h\left(n_{2}\right) h\left(m_{1}\right) h\left(m_{2}\right)}{h^{2}\left(n_{1}\right) \cdot h^{2}\left(n_{2}\right)} \\
& =\frac{h\left(n_{1} n_{2}\right)\left(h\left(m_{1}\right) f\left(m_{2}\right)+h\left(m_{2}\right) f\left(m_{1}\right)\right)}{h^{2}\left(n_{1} n_{2}\right)}-\frac{h\left(m_{1} m_{2}\right)\left(h\left(n_{1}\right) f\left(n_{2}\right)+h\left(n_{2}\right) f\left(n_{1}\right)\right)}{h^{2}\left(n_{1} n_{2}\right)} \\
& =\frac{h\left(n_{1} n_{2}\right) f\left(m_{1} m_{2}\right)-h\left(m_{1} m_{2}\right) f\left(n_{1} n_{2}\right)}{h^{2}\left(n_{1} n_{2}\right)}=\bar{f}\left(\frac{m_{1} \cdot m_{2}}{n_{1} \cdot n_{2}}\right)=\bar{f}\left(\frac{k \cdot m_{1} \cdot m_{2}}{k \cdot n_{1} \cdot n_{2}}\right)=\bar{f}(x) .
\end{aligned}
$$

Let \bar{g} be an L-additive with respect to \bar{h} extension of \bar{f} :

$$
0=\bar{g}(1)=\bar{g}\left(x x^{-1}\right)=\bar{g}(x) \bar{h}\left(x^{-1}\right)+\bar{g}\left(x^{-1}\right) \bar{h}(x)=\frac{f(x)}{h(x)}+\bar{g}\left(x^{-1}\right) h(x) .
$$

Thus $\bar{g}\left(x^{-1}\right)=-\frac{f(x)}{h^{2}(x)} \forall x \in \Phi \backslash\{0\}$ and
$\bar{g}\left(\frac{m}{n}\right)=\bar{g}(m) \bar{h}\left(\frac{1}{n}\right)+\bar{g}\left(\frac{1}{n}\right) \bar{h}(m)=\frac{f(m)}{h(n)}-\frac{f(n) h(m)}{h^{2}(n)}=\frac{f(m) h(n)-f(n) h(m)}{h^{2}(n)}=\bar{f}\left(\frac{m}{n}\right)$.
Therefore the function \bar{f} is unique.
Let us prove the converse statement. Assume that f and h can be extended to $\operatorname{Frac}(\Phi)$. Suppose that there exists $x \in \Phi \backslash\{0\}$ with $h(x)=0$. Then $x^{-1} \in \operatorname{Frac}(\Phi)$. Therefore $1=\bar{h}\left(x \cdot x^{-1}\right)=\bar{h}(x) \cdot \bar{h}\left(x^{-1}\right)=0$. This is a contradiction.

Let us prove that $V(x)$ is L-additive with respect to q. Let $m, n \in \operatorname{Frac}(\Phi)$. Assume that $m, n \neq 0$. Then

$$
\begin{aligned}
V(m n) & =\frac{\bar{f}(m n) \cdot q(m n)}{\bar{h}(m n)}=\frac{(\bar{f}(m) \bar{h}(n)+\bar{f}(n) \bar{h}(m)) q(m n)}{\bar{h}(m) \cdot \bar{h}(n)} \\
& =\frac{\bar{f}(m) \bar{h}(n) q(m n)}{\bar{h}(m) \bar{h}(n)}+\frac{\bar{f}(n) \bar{h}(m) q(m n)}{\bar{h}(m) \bar{h}(n)}=\frac{\bar{f}(m) q(m) q(n)}{\bar{h}(m)}+\frac{\bar{f}(n) q(n) q(m)}{\bar{h}(n)} \\
& =V(m) q(n)+V(n) q(m) .
\end{aligned}
$$

Assume now that $m=0$. Note that $q(0)=0$. Then

$$
V(m n)=V(0)=0=0 q(n)+V(n) 0=V(m) q(n)+V(n) q(m) .
$$

The case $n=0$ is the same. Hence $V(x)$ is L-additive with respect to q.

Example 4. Let

$$
h(n)=\left\{\begin{array}{ll}
1, & n=1 ; \\
0, & n \neq 1 ;
\end{array} \quad \text { and } \quad f(n)= \begin{cases}1, & n \in \mathbb{P} \\
0, & n \notin \mathbb{P} .\end{cases}\right.
$$

Note that f is L-additive with respect to h and we cannot extend f and h from \mathbb{Z} to \mathbb{Q}.
Corollary 5. A function $f: \operatorname{Frac}(\Phi) \rightarrow \operatorname{Frac}(\Phi)$ is L-additive iff $f(0)=0$ and $\frac{f(x)}{x}$ is completely additive.

Proof. Since every completely additive function is L-additive with respect to $h(x) \equiv 1$ and every L-additive function is L-additive with respect to $h(x)=x$, the statement of corollary directly follows from the last statement of Theorem 3.

Corollary 6 ([6, Theorem 3.1]). A function $D_{S}^{f}(n)$ is L-additive iff $\sum_{p \in S} \frac{f_{p}(n)}{p}$ is completely additive where $D_{S}^{f}(n)$ is as defined in [6].

Proposition 7. Let Φ be an integral domain and $f, g: \operatorname{Frac}(\Phi) \rightarrow \operatorname{Frac}(\Phi)$ be L-additive functions. Then

1. $h(x)=\alpha \cdot f(x)$ is L-additive.
2. $h(x)=f(x)+g(x)$ is L-additive.
3. $f\left(\frac{a}{b}\right)=\frac{f(a) b-f(b) a}{b^{2}}$.
4. $f\left(a^{n}\right)=n \cdot a^{n-1} \cdot f(a), \forall n \in \mathbb{Z}$.

Proof. 1. Let $m, n \in \operatorname{Frac}(\Phi)$. Then $f(m n)=f(m) n+f(n) m$. So $h(m n)=\alpha \cdot(f(n) m+$ $f(m) n)=(\alpha \cdot f(n)) m+(\alpha \cdot f(m)) n=h(n) m+h(m) n$. Hence $h(x)=\alpha \cdot f(x)$ is L-additive.
2. Let $m, n \in \operatorname{Frac}(\Phi)$. Then $f(m n)=f(m) n+f(n) m$ and $g(m n)=g(m) n+g(n) m$. Now $h(m n)=f(m) n+g(m) n+f(n) m+g(n) m=n(f(m)+g(m))+m(f(n)+g(n))=$ $h(m) n+h(n) m$. So $h(x)=f(x)+g(x)$ is L-additive.
3. From $f(1)=0$ it follows that $f(1)=f\left(n \cdot \frac{1}{n}\right)=\frac{f(n)}{n}+f\left(\frac{1}{n}\right) n=0$. So $f\left(\frac{1}{n}\right)=-\frac{f(n)}{n^{2}}$. Thus $f\left(\frac{a}{b}\right)=\frac{f(a)}{b}+f\left(\frac{1}{b}\right) a=\frac{f(a) b-f(b) a}{b^{2}}$.
4. Let us prove this statement by induction. Note that $0=f(1)=f\left(a^{0}\right)=0 a^{-1} f(a)$ and $f(a)=1 a^{0} f(a)$. Assume that the statement holds for $n \in \mathbb{N}$. Let us prove this statement for $n+1: f\left(a^{n+1}\right)=f\left(a \cdot a^{n}\right)=f(a) a^{n}+f\left(a^{n}\right) a=f(a) a^{n}+n f(a) a^{n-1} a=$ $(n+1) f(a) a^{n}$. Now we prove this statement for a negative $n: 0=f(1)=f\left(a^{n} \cdot a^{-n}\right)=$ $f\left(a^{n}\right) a^{-n}+a^{n} f\left(a^{-n}\right)=\frac{n f(a)}{a}+a^{n} f\left(a^{-n}\right)$ and therefore $f\left(a^{-n}\right)=-n \cdot a^{-(n+1)} f(a)$.

Let $S \subseteq \mathbb{P}^{*}(\Phi)$. We shall call the function

$$
D_{S}(x)=x \cdot \sum_{p \in S} \frac{v_{p}(x)}{p}
$$

an arithmetic subderivative in Φ. If $|S|=1$, then we shall call it a partial arithmetic derivative and if $S=\mathbb{P}^{*}(\Phi)$, then we shall call it the arithmetic derivative in Φ. These functions for integers were studied, for example, by Merikoski et al. [11]. Note that the function D_{S} is also referred to as "arithmetic type derivative" [5].

Corollary 8. Let Φ be a UFD such that its group of units is finitely generated and $S \subseteq \mathbb{P}^{*}(\Phi)$. Then $D_{S}(x)$ is L-additive.

Proof. Recall that $v_{p}(x)$ is completely additive. Then $x \cdot v_{p}(x)$ is a L-additive function by Corollary 5. Since $v_{p}(x) \neq 0$ only for finite number of $p \in \mathbb{P}^{*}(\Phi), D_{S}(x)=x \cdot \sum_{p \in S} \frac{v_{p}(x)}{p}$ is L-additive by 1 and 2 of Proposition 7 .

Theorem 9. Let Φ be a UFD such that its group of units is finitely generated. A function $g: \operatorname{Frac}(\Phi) \backslash\{0\} \rightarrow \operatorname{Frac}(\Phi)$ is completely additive iff

$$
g(n)=\sum_{p \in \mathbb{P}^{*}(\Phi)}\left(v_{p}(n) g(p)\right) \forall n \in \operatorname{Frac}(\Phi) .
$$

Proof. Let g be a completely additive function. Note that for all $n \in \operatorname{Frac}(\Phi)$ holds

$$
n=u_{0} \cdot \prod_{p \in \mathbb{P}^{*}(\Phi)} p^{v_{p}(n)},
$$

where u_{0} is a unit of Φ of a finite order $k($ if $\operatorname{char}(\operatorname{Frac}(\Phi))=p \neq 0$, then $\operatorname{gcd}(k, p)=1)$. Note that $g(1 \cdot 1)=g(1)+g(1)$. Therefore $g(1)=0$. Hence

$$
g(1)=g\left(u_{0}^{k}\right)=k g\left(u_{0}\right)=0 .
$$

Since $\operatorname{gcd}(k, p)=1$ and Φ is an integral domain, we see that $g\left(u_{0}\right)=0$.
Since g is completely additive, it is clear that $g\left(x^{k}\right)=k \cdot g(x)$ for all $k \in \mathbb{N}$. We proved that $g\left(x^{0}\right)=g(1)=0=0 \cdot g(x)$. From $0=g(1)=g\left(x^{k} \cdot x^{-k}\right)=g\left(x^{k}\right)+g\left(x^{-k}\right)$ it follows that $g\left(x^{-k}\right)=(-k) \cdot g(x)$. Thus $g\left(x^{k}\right)=k \cdot g(x)$ for all $k \in \mathbb{Z}$. Then

$$
g(n)=g\left(u \cdot \prod_{\substack{p \in \mathbb{P}^{*}(\Phi), v_{p}(n) \neq 0}} p^{v_{p}(n)}\right)=g(u)+\sum_{\substack{p \in \mathbb{P}^{*}(\Phi), v_{p}(n) \neq 0}}\left(v_{p}(n) g(p)\right)=\sum_{p \in \mathbb{P}^{*}(\Phi)}\left(v_{p}(n) g(p)\right) .
$$

To prove the converse let

$$
g(n)=\sum_{p \in \mathbb{P}^{*}(\Phi)}\left(v_{p}(n) g(p)\right) .
$$

Then

$$
\begin{aligned}
g(m \cdot n) & =\sum_{\substack{p \in \mathbb{P}^{*}(\Phi)}}\left(v_{p}(m \cdot n) g(p)\right)=\sum_{\substack{p \in \mathbb{P}^{*}(\Phi) \\
v_{p}(n) \neq 0 \text { or } v_{p}(m) \neq 0}}\left(v_{p}(m \cdot n) g(p)\right) \\
& =\sum_{\substack{p \in \mathbb{P}^{*}(\Phi) \\
v_{p}(n) \neq \operatorname{or} v_{p}(m) \neq 0}}\left(\left(v_{p}(n)+v_{p}(m)\right) g(p)\right) \\
& =\sum_{\substack{p \in \mathbb{P}^{*}(\Phi) \\
v_{p}(n) \neq 0}}\left(v_{p}(n) g(p)\right)+\sum_{\substack{p \in \mathbb{P}^{*}(\Phi) \\
v_{p}(m) \neq 0}}\left(v_{p}(m) g(p)\right)=g(n)+g(m) .
\end{aligned}
$$

This means that g is completely additive.
Corollary 10. Let Φ be a UFD such that its group of units is finitely generated and f : $\operatorname{Frac}(\Phi) \rightarrow \operatorname{Frac}(\Phi)$ be an L-additive function. Then

$$
f(x)=x \cdot \sum_{p \in \mathbb{P}^{*}(\Phi), v_{p}(x) \neq 0} \frac{f(p) v_{p}(x)}{p} .
$$

Corollary 11 ([13, Theorem 1]). Let D be the arithmetic derivative of rational numbers. Then

$$
D(x)=x \cdot \sum_{p \in \mathbb{P}, v_{p}(x) \neq 0} \frac{v_{p}(x)}{p}=D_{\mathbb{P}}(x) .
$$

Corollary 12. Let F be a finite field and $f: F \rightarrow F$ be an L-additive function. Then $f(x)=0$ for all $x \in F$.

Proof. Since F is a finite field, there is a prime p such that the characteristic of F is p and $|F|=p^{\alpha}$. It is well-known that the group of units of F is a cyclic group of order $|F|-1$. Hence $R(F)=\emptyset$. Since every non-zero element in F has the inverse, $\mathbb{P}(F)=\emptyset$. Thus $\mathbb{P}^{*}(F)=\emptyset$. Now $f(x)=0$ for all $x \in F$ by Corollary 10 .

Example 13. Let us show that the arithmetic derivatives in integers, Gaussian integers, and Eisenstein integers of the same number can be different. For example,

$$
D_{\mathbb{P}}(6)=5, D_{\mathbb{P}(\mathbb{Z}[i])}(6)=8-6 i, \text { and } D_{\mathbb{P}(\mathbb{Z}[\omega])}(6)=\frac{15+6 \omega}{1+2 \omega}=3-4 \sqrt{3} i .
$$

Definition 14. We shall say that a UFD Γ of characteristic 0 satisfies (*) if its group of units is finitely generated and for any prime $p \in \Gamma$ there is $m \in \mathbb{Z}$ with $p \mid m$.

In Definition 14 by \mathbb{Z} we mean the smallest subring of Γ which contains 1 . Note that $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$ satisfy $(*)$, but $\mathbb{Z}[x]$ does not satisfy ($*$).

Lemma 15. Let Γ satisfy $(*)$ and $f: \operatorname{Frac}(\Gamma) \rightarrow \operatorname{Frac}(\Gamma)$. If $f(x) \in \Gamma$ for all $x \in \Gamma$, then the denominator of $\frac{f(p)}{p}$ is equal to 1 or p for all $p \in \mathbb{P}^{*}(\Gamma)$.

Proof. Note that $f(p) \in \Gamma$ for all prime $p \in \mathbb{P}(\Gamma)$. Then we have either $f(p)$ is divisible by p and the denominator of $\frac{f(p)}{p}$ is 1 or $f(p)$ is not divisible by p and the denominator of $\frac{f(p)}{p}$ is p. If $p \in R(\Gamma)$, then $\frac{f(p)}{p} \in \Gamma$. Therefore its denominator is 1 .

Let $f^{(0)}(x)=x$ and $f^{(i)}(x)=f\left(f^{(i-1)}(x)\right)$ for every $i \in \mathbb{N}$.
Theorem 16. Let Γ satisfy $(*), p \in \mathbb{P}(\Gamma)$ and $f: \operatorname{Frac}(\Gamma) \rightarrow \operatorname{Frac}(\Gamma)$ be an L-additive function with $f(x) \in \Gamma$ for all $x \in \Gamma$. Then

$$
v_{p}\left(f^{(k)}(x)\right) \geq \max \left\{n \in \mathbb{Z} \mid n \leq v_{p}(x) \text { and } p \mid n\right\} \forall x \in \Gamma .
$$

Proof. From Corollary 10 it follows that

$$
\begin{aligned}
f(x)= & x \cdot\left(\frac{v_{p}(x) f(p)}{p}+\sum_{p_{i} \in \mathbb{P}^{*}(\Gamma), p_{i} \neq p, v_{p_{i}}(x) \neq 0} \frac{v_{p_{i}}(x) f\left(p_{i}\right)}{p_{i}}\right)= \\
& =x \cdot\left(\frac{v_{p}(x) f(p)}{p}+\frac{A}{B}\right)=x \cdot\left(\frac{v_{p}(x) f(p) B+A p}{p \cdot B}\right) .
\end{aligned}
$$

Since $\mathbb{Z} \subseteq \Gamma$, we may assume that $A, B \in \Gamma$ and $\operatorname{gcd}(B, p)=1$ by Lemma 15 . Note that $v_{p}(x) f(p) B+A p \in \Gamma$. Therefore $v_{p}(f(x)) \geq v_{p}(x)-1$ and if $p \mid v_{p}(x)$, then $v_{p}(f(x)) \geq v_{p}(x)$.

Since Γ satisfies $(*)$, we see that $\left\{n \in \mathbb{Z} \mid n \leq v_{p}(x)\right.$ and $\left.p \mid n\right\} \neq \emptyset$. This is a set of integers bounded from above. Hence it has the greatest element $\beta=\max \{n \in \mathbb{Z} \mid n \leq$ $v_{p}(x)$ and $\left.p \mid n\right\}$.

Suppose that $v_{p}\left(f^{(k)}(x)\right)<\beta$ for some k. Note that $v_{p}\left(f^{(m)}(x)\right) \in \mathbb{Z}$ and $v_{p}\left(f^{(m+1)}(x)\right)-$ $v_{p}\left(f^{(m)}(x)\right) \geq-1$ for all m. Hence there is n with $v_{p}\left(f^{(n)}(x)\right)=\beta$ and $v_{p}\left(f^{(n+1)}(x)\right)=\beta-1$. Since $p \mid \beta$, we have the contradiction.

Corollary 17. Let $f \in\left\{D_{\mathbb{P}^{*}(\Gamma)}, D_{p}, D_{S}\right\}$ and $x \in \operatorname{Frac}(\Gamma)$. Then there are finitely many different denominators of numbers in the sequence $\left(f^{(k)}(x)\right)_{k \geq 1}$.

Definition 18. A function $W: \operatorname{Frac}(\Gamma) \rightarrow \mathbb{Q}_{+}$is called norm-like if
0) $W(x)=0 \Leftrightarrow x=0$.

1) $W(a) \cdot W(b)=W(a b)$ for all $a, b \in \operatorname{Frac}(\Gamma)$.
2) $W(x) \in \mathbb{N} \cup\{0\}$ for all $x \in \Gamma$.
3) $W(x)=n$ has a finite number of solutions in Γ for all $n \in \mathbb{N}$.

Lemma 19. The absolute value of rational number $|\cdot|: \operatorname{Frac}(\mathbb{Z}) \rightarrow \mathbb{Q}_{+}$, the norm of Gaussian rational $N_{1}: \operatorname{Frac}(\mathbb{Z}[i]) \rightarrow \mathbb{Q}_{+}$and the norm of Eisenstein rational $N_{2}: \operatorname{Frac}(\mathbb{Z}[\omega]) \rightarrow \mathbb{Q}_{+}$ are norm-like functions.

Proof. Obviously, all these functions have properties $0-2$ and the absolute value of rational number has property 3 .

Let us prove that the equation $N_{1}(x)=n$ has a finite number of solutions in $\mathbb{Z}[i]$. Let $x=a+b i$. Then $N_{1}(x)=a^{2}+b^{2}=n$ with $a, b \in \mathbb{Z}$. So $0 \leq|a| \leq \sqrt{n}$ and $0 \leq|b| \leq \sqrt{n}$. Therefore $N_{1}(x)=n$ has a finite number of solutions.

Let us prove that the equation $N_{2}(y)=n$ has a finite number of solutions in $\mathbb{Z}[\omega]$. Let $y=c+d \omega$. Then $N_{2}(y)=a^{2}+b^{2}-a b=m$ with $a, b \in \mathbb{Z}$. So $(a-b)^{2}+a b=m$. Let $a=v+k$ and $b=v-k$. Therefore $(v+k-v+k)^{2}+v^{2}-k^{2}=3 k^{2}+v^{2}=m$. Note that the denominators of v and k can be equal to 1 or 2 . Since $0 \leq|v|<\sqrt{m}$ and $0 \leq|k| \leq \sqrt{\frac{m}{3}}$, we see that $N_{2}(y)=m$ has a finite number of solutions.

Theorem 20. Let Γ satisfy $(*), g: \operatorname{Frac}(\Gamma) \rightarrow \operatorname{Frac}(\Gamma)$ be an L-additive function with $g(x) \in$ Γ for all $x \in \Gamma$ and W be a norm-like function. If $x \in \operatorname{Frac}(\Gamma)$, then either $W\left(g^{(k)}(x)\right) \rightarrow+\infty$ or the sequence $\left(g^{(k)}(x)\right)_{k \geq 1}$ is periodic starting from some k.

Proof. Let $x \in \operatorname{Frac}(\Gamma)$. Assume that $g^{(k)}(x)=0$ for some k. Then $g^{(n)}(x)=0$ for all $n \geq k$. Hence Theorem 20 for such x is proved. Now assume that $g^{(k)}(x) \neq 0$ for all k. Note that if $a, b \neq 0$, then

$$
W(a)=W\left(b \cdot \frac{a}{b}\right)=W(b) \cdot W\left(\frac{a}{b}\right) \Rightarrow W\left(\frac{a}{b}\right)=\frac{W(a)}{W(b)}
$$

Let $p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots p_{n}^{\alpha_{n}}$ be the denominator of x. Then by Theorem 16 there are $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ and $A_{k} \in \Gamma$ such that $g^{(k)}(x)$ can be written as $\frac{A_{k}}{p_{1}^{\beta_{1}} \cdot p_{2}^{\beta_{2} \ldots p_{n}^{\beta_{n}}}}$ (this fraction is not necessary irreducible).

Suppose that $W\left(g^{(k)}(x)\right) \nrightarrow+\infty$. This means that

$$
\exists A: \forall M \exists m>M: W\left(g^{(m)}(x)\right) \leq A
$$

The last inequality is equivalent to $W\left(A_{m}\right) \leq A \cdot W\left(p_{1}^{\beta_{1}} \cdot p_{2}^{\beta_{2}} \cdots p_{n}^{\beta_{n}}\right)$.
Note that $B=\lceil A\rceil \cdot W\left(p_{1}^{\beta_{1}} \cdot p_{2}^{\beta_{2}} \cdots p_{n}^{\beta_{n}}\right) \in \mathbb{N}$ and there is a finite number of $y \in \Gamma$ with $W(y) \leq B$ by 3) of Definition 18. Therefore for infinitely many m the number $W\left(A_{m}\right)$ belongs to the same finite set. Hence for infinitely many m all $W\left(A_{m}\right)$ are equal by Pigeonhole principle. So there are m_{1} and m_{2} with $A_{m_{1}}=A_{m_{2}}$. Now $g^{\left(m_{1}\right)}(x)=g^{\left(m_{2}\right)}(x)$ where $m_{2}>m_{1}$. Thus $g^{\left(m_{1}+i \cdot\left(m_{2}-m_{1}\right)\right)}(x)=g^{\left(m_{1}\right)}(x)$ and $m_{2}-m_{1}=T$ is a period of $g^{(k)}(x)$.

Corollary 21. Let $f \in\left\{D_{\mathbb{P}^{*}(\Gamma)}, D_{p}, D_{S}\right\}$.
(a) If $x \in \mathbb{Q}$, then either $\left|f^{(k)}(x)\right| \rightarrow+\infty$ or $\left(f^{(k)}(x)\right)_{k \geq 1}$ is periodic starting from some natural number k.
(b) If $x \in \mathbb{Q}(i)$, then either $N_{1}\left(f^{(k)}(x)\right) \rightarrow+\infty$ or $\left(f^{(k)}(x)\right)_{k \geq 1}$ is periodic starting from some natural number k.
(c) If $x \in \mathbb{Q}(\omega)$, then either $N_{2}\left(f^{(k)}(x)\right) \rightarrow+\infty$ or $\left(f^{(k)}(x)\right)_{k \geq 1}$ is periodic starting from some natural number k.

Theorem 22. Let Φ be a UFD such that its group of units is finitely generated, $\alpha \in \operatorname{Frac}(\Phi)$ and $f: \operatorname{Frac}(\Phi) \rightarrow \operatorname{Frac}(\Phi)$ be an L-additive function.

1. Let x_{0} be a non-zero solution of

$$
\begin{equation*}
f(x)=\alpha x \tag{1}
\end{equation*}
$$

Then $x=y \cdot x_{0}$ for any solution x of (1) where y is a solution of $f(y)=0$.
2. Let $S=\left\{p \in \mathbb{P}^{*}(\Phi) \mid f(p) \neq 0\right\}$. If $v_{p}(x)=0$ for all $p \in S$, then $f(x)=0$.
3. There exists a bijection between non-zero solutions l of (1) with $P=\left\{p \mid v_{p}(l) \neq 0\right\} \subseteq$ S and integer solutions $\left\{v_{p}(x) \mid p \in \mathbb{P}^{*}(\Phi)\right\}$ of

$$
\alpha=\sum_{p \in \mathbb{P}^{*}(\Phi)}\left(v_{p}(x) \cdot \frac{f(p)}{p}\right) .
$$

4. Assume that $\operatorname{Frac}(\Phi)=\mathbb{Q}$. Let $\frac{f(p)}{p}=\frac{c_{p}}{z_{p}}$ be an irreducible fraction for all $p \in S$. The equation (1) has a solution x iff $\beta=\alpha \cdot \delta \in \mathbb{Z}$ is divisible by $\operatorname{gcd}\left(\left.\frac{\delta f(p)}{p} \right\rvert\, p \in P\right)$ where $P=\left\{p \in \mathbb{P} \mid v_{p}(x) \neq 0\right\}$ and $\delta=\operatorname{lcm}\left(z_{p} \mid p \in P\right)$.

Proof. 1. Let $x=x_{0} \cdot y$, with $f(y)=0$. Since f is an L-additive function, we see that $f(x)=f\left(y \cdot x_{0}\right)=f(y) x_{0}+f\left(x_{0}\right) y=f\left(x_{0}\right) y=\left(\alpha x_{0}\right) y=\alpha x$. Hence x is a solution of (1).

Assume now that x_{1} is a non-zero solution of (1). Let us show that $x_{1}=y \cdot x_{0}$ with $f(y)=0$. Let $y=\frac{x_{1}}{x_{0}}$. Then $f(y)=f\left(\frac{x_{1}}{x_{0}}\right)=\frac{f\left(x_{1}\right) x_{0}-f\left(x_{0}\right) x_{1}}{x_{0}^{2}}=\frac{\alpha x_{1} x_{0}-\alpha x_{0} x_{1}}{x_{0}^{2}}=0$.
2. By Corollary 10 we have that

$$
f(x)=x \cdot \sum_{p \in \mathbb{P}^{*}(\Phi), v_{p}(x) \neq 0} \frac{f(p) v_{p}(x)}{p}=0 .
$$

3. By Corollary 10 we have that

$$
f(l)=\alpha \cdot l=l \cdot \sum_{p \in \mathbb{P}^{*}(\Phi), v_{p}(l) \neq 0} \frac{f(p) v_{p}(l)}{p} \Leftrightarrow \alpha=\sum_{p \in \mathbb{P}^{*}(\Phi), v_{p}(l) \neq 0} v_{p}(l) \cdot \frac{f(p)}{p} .
$$

4. By 3) we have that

$$
\alpha=\frac{f(x)}{x}=\sum_{p \in P}\left(v_{p}(x) \frac{f(p)}{p}\right)=\sum_{p \in P} \frac{v_{p}(x) c_{p}}{z_{p}} .
$$

Note that

$$
\beta=\alpha \cdot \delta=\sum_{p \in P}\left(\frac{c_{p} \delta}{z_{p}} \cdot v_{p}(x)\right)=\sum_{p \in P}\left(\frac{f(p) \delta}{p} \cdot v_{p}(x)\right) \in \mathbb{Z}
$$

This equation is a linear Diophantine equation. It is well-known that this equation has a solution iff β is divisible by $\operatorname{gcd}\left(\left.\frac{\delta f(p)}{p} \right\rvert\, p \in P\right)$. Then we know all $v_{p}(x)$. Hence we know $\pm x$.

Corollary 23 ([8, Theorem 3]). Let $p \in \mathbb{P}$ and $\alpha \in \mathbb{Q}$. The equation $D_{p}(x)=\alpha x$ has a nontrivial solution iff $\alpha p \in \mathbb{Z}$. Then all nontrivial solutions are of the form $x=c p^{\alpha p}$, where $p \nmid c \in \mathbb{Q} \backslash\{0\}$. Conversely, all numbers of this from are nontrivial solutions.
Corollary 24 ([13, Theorem 18]). Let $\alpha=\frac{a}{b}$ be a rational number with $\operatorname{gcd}(a, b)=1, b>0$. Then the equation $D(x)=\alpha x$ has non-zero rational solutions iff b is a product of different primes or $b=1$.

Theorem 25. Let a field F be a finite algebraic extension of \mathbb{Q}. If $f: F \rightarrow F$ is an L-additive linear function, then $f(x) \equiv 0$.

Proof. According to Artin's theorem on primitive elements, every finite algebraic extension of \mathbb{Q} is simple, i.e., there exists $\alpha \in F$ with $F=\mathbb{Q}(\alpha)$. Let g be a minimal polynomial of α over \mathbb{Q}. We may assume that all coefficients of g are integer. It is known that g does not have multiple zeros.

Since $f(x y)=f(x) y+f(y) x$ and $f(x+y)=f(x)+f(y)$, we see that

$$
f(n y)=\underbrace{f(y)+f(y)+\cdots+f(y)}_{n}=n \cdot f(y) \text { and } f(n y)=f(n) y+f(y) n .
$$

Therefore $f(n) y=0$. Hence $f(n)=0$ for all $n \in \mathbb{N}$. Note that $f(-n)=-f(n)=0$. Thus $f(x)=0$ for all $x \in \mathbb{Z}$.

Let $g(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$. Then

$$
0=f(0)=f(g(\alpha))=\sum_{i=0}^{n} f\left(a_{i} \alpha^{i}\right)=\sum_{i=0}^{n} a_{i} f\left(\alpha^{i}\right)=\sum_{i=1}^{n} a_{i}\left(i \alpha^{i-1}\right) f(\alpha)=g^{\prime}(\alpha) f(\alpha) .
$$

Since $g^{\prime}(\alpha) \neq 0$, we see that $f(\alpha)=0$. Therefore $f(x)=0$ for every $x \in \mathbb{Z}[\alpha]$. It is easy to see that for every $x \in F$ there are $m \in \mathbb{Z}[\alpha]$ and $n \in \mathbb{Z}$ with $x=\frac{m}{n}$. So $f(x)=0$ by 3 of Proposition 7. Thus $f(x)=0$ for all $x \in \mathbb{Q}(\alpha)=F$.

4 Final remarks

In this paper we studied L-additive functions over unique factorization domains. So it is natural to ask the following question.

Question 26. Let J be a factorization domain which is not UFD. Are there any non-zero L-additive functions over J ?

Haukkanen et al. [7] discussed some ideas about this question.
According to Theorem 25 there are no L-additive linear non-zero functions over any finite extension of \mathbb{Q}.

Question 27. Describe all UFD J such that there are no L-additive linear non-zero functions over J.

By Corollary 12 there are no non-zero L-additive functions over a finite field. According to Emmons et al. [3] every value of an L-additive function over \mathbb{Z}_{n} is a divisor of zero.

Question 28. Let f be an L-additive function over a finite ring. Is it true that all values of f are divisors of zero?

References

[1] M. Artin, Algebra, Prentice-Hall, 1991.
[2] E. J. Barbeau, Remarks on arithmetic derivative, Canad. Math. Bull. 4 (1961), 117-122.
[3] C. Emmons, M. Krebs, and A. Shaheen, How to differentiate an integer modulo n, College Math. J. 40 (2009), 345-353.
[4] J. M. Grau and A. M. Oller-Marcén, Giuga numbers and the arithmetic derivative. J. Integer Sequences 15 (2012), Article 12.4.1.
[5] J. Fan and S. Utev, The Lie bracket and the arithmetic derivative, J. Integer Sequences 23 (2020), Article 20.2.5.
[6] P. Haukkanen, Generalized arithmetic subderivative, Notes on Number Theory and Discrete Mathematics. 25 (2019), 1-7, http://nntdm.net/papers/nntdm-25/ NNTDM-25-2-001-007.pdf.
[7] P. Haukkanen, M. Mattila, J. K. Merikoski, and T. Tossavainen, Can the arithmetic derivative be defined on a non-unique factorization domain? J. Integer Sequences 16 (2013), Article 13.1.2.
[8] P. Haukkanen, J. K. Merikoski, and T. Tossavainen, On arithmetic partial differential equations, J. Integer Sequences 19 (2016), Article 16.8.6.
[9] P. Haukkanen, J. K. Merikoski, and T. Tossavainen, The arithmetic derivative and Leibniz-additive functions, Notes on Number Theory and Discrete Mathematics. 24(3) (2018), 68-76, http://nntdm.net/papers/nntdm-24/NNTDM-24-3-068-076.pdf.
[10] J. Kovič, The arithmetic derivative and antiderivative, J. Integer Sequences 15 (2012), Article 12.3.8.
[11] J. K. Merikoski, P. Haukkanen, and T. Tossavainen, Arithmetic subderivatives and Leibniz-additive functions, Ann. Math. Informat. 50 (2019), 145-157, https://ami. uni-eszterhazy.hu/uploads/papers/finalpdf/AMI_50_from145to157.pdf.
[12] J. Mingot Shelly, Una cuestión de la teoría de los números, Asociación Española, Granada (1911), 1-12.
[13] V. Ufnarovski and B. Åhlander, How to differentiate a number, J. Integer Sequences 6 (2003), Article 03.3.4.

2010 Mathematics Subject Classification. Primary 11A25; Secondary 11A51, 11R27.
Keywords: Leibniz-additive function, arithmetic derivative, completely multiplicative function, completely additive function, unique factorization domain (UFD), field of fractions.
(Concerned with sequences A000040 and A003415.)

Received June 12 2020; revised versions received August 22 2020; August 25 2020. Published in Journal of Integer Sequences, October 172020.

Return to Journal of Integer Sequences home page.

