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Abstract

Using the technique of formal power series, we obtain some two-parameter binomial
identities for the Tricomi polynomials. Moreover, we establish some relations between
the Tricomi polynomials, the generalized derangement polynomials, and the Touchard
polynomials. Finally, we obtain a characterization of the rising and falling factorial
powers by means of a generalized binomial theorem.

1 Introduction

The Tricomi polynomials [21, 5, 1] are defined by the formula

ℓ(α)n (x) =
n

∑

k=0

(

x− α

k

)

(−1)k
xn−k

(n− k)!
. (1)

They satisfy the three-term recurrence

(n+ 1)ℓ
(α)
n+1(x)− (α + n)ℓ(α)n (x) + xℓ

(α)
n−1(x) = 0

with initial values ℓ
(α)
0 (x) = 1 and ℓ

(α)
1 (x) = α, and have ordinary generating series

ℓ(α)(x; t) =
∑

n≥0

ℓ(α)n (x) tn = (1− t)x−αext . (2)
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The rising factorials are defined by the Pochhammer symbol

(x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1),

while the multiset coefficients are defined by
((

x
n

))

= (x)n
n!

. They have generating series

∑

n≥0

(x)n
tn

n!
=

1

(1− t)x
and

∑

n≥0

((

x

n

))

tn =
1

(1− t)x
.

Notice that, by series (2), we have the relations

1

(1− t)α
· ℓ(β)(x; t) = ℓ(α+β)(x; t) (3)

and
ℓ(α)(x; t) · ℓ(β)(y; t) = ℓ(α+β)(x+ y; t) (4)

corresponding to the identities

n
∑

k=0

((

α

k

))

ℓ
(β)
n−k(x) = ℓ(α+β)(x) (5)

and
n

∑

k=0

ℓ
(α)
k (x) ℓ

(β)
n−k(y) = ℓ(α+β)

n (x+ y) . (6)

From a purely combinatorial point of view, it is more convenient to consider the expo-
nential version of the Tricomi polynomials, namely the polynomials

Λ(α)
n (x) = n!ℓ(α)n (x) =

n
∑

k=0

(

n

k

)(

x− α

k

)

(−1)kk! xn−k (7)

satisfying the recurrence

Λ
(α)
n+2(x)− (α + n+ 1)Λ

(α)
n+1(x) + (n+ 1) xΛ(α)

n (x) = 0

with the initial values Λ
(α)
0 (x) = 1 and Λ

(α)
1 (x) = α, and having exponential generating series

Λ(α)(x; t) =
∑

n≥0

Λ(α)
n (x)

tn

n!
= (1− t)x−αext . (8)
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For the first values of n, we have the following polynomials:

Λ
(α)
0 (x) = (α)0 = 1

Λ
(α)
1 (x) = (α)1 = α

Λ
(α)
2 (x) = (α)2 − x

Λ
(α)
3 (x) = (α)3 − (2 + 3α)x

Λ
(α)
4 (x) = (α)4 − (6 + 14α + 6α2)x+ 3x2

Λ
(α)
5 (x) = (α)5 − (24 + 70α + 50α2 + 10α3)x+ (20 + 15α)x2

Λ
(α)
6 (x) = (α)6 − (120 + 404α + 375α2 + 130α3 + 15α4)x+ (130 + 165α + 45α2)x2 − 15x3 .

Notice that Λ
(α)
n (x) is a polynomial of degree n in α and is a polynomial of degree at most

⌊n/2⌋ in x. Moreover, if α ∈ N, then Λ
(α)
n (x) is a polynomial with integer coefficients. In

particular, we have Λ
(α)
n (0) = (α)n.

Identities (3) and (4) also hold for the exponential series Λ(α)(x; t) defined by (8). This
time, we have the identities

n
∑

k=0

(

n

k

)

(α)k Λ
(β)
n−k(x) = Λ(α+β)(x)

and
n

∑

k=0

(

n

k

)

Λ
(α)
k (x) Λ

(β)
n−k(y) = Λ(α+β)

n (x+ y) .

The Tricomi polynomials Λ
(α)
n (x) =

∑⌊n/2⌋
k=0 Λ

(α)
n,k xk are the row polynomials of the (im-

proper) Sheffer matrix ([2, p. 309] [12, 13, 7])

Λ(α) =
[

Λ
(α)
n,k

]

n,k≥0
=

(

1

(1− t)α
, t− ln

1

1− t

)

where

Λ
(α)
n,k =

n
∑

i=0

(

n

i

)min(i,k)
∑

j=0

(

i

j

)[

n− i

k − j

]

(−1)k−j(α)i−j ,

where the coefficients
[

n
k

]

are the Stirling numbers of the first kind [9].
In this paper, we obtain some two-parameter binomial identities for the Tricomi polyno-

mials. Moreover, we establish some relations between the Tricomi polynomials, the gener-
alized derangement polynomials and the Touchard polynomials. Finally, we obtain a char-
acterization of the rising and falling factorial powers by means of a generalized binomial
theorem.

To obtain the mentioned two-parameter binomial identities, we will use (as we did in [14],
in order to extended a similar identity involving the derangement numbers) the following
theorem in the context of formal series:
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Theorem 1 (Taylor’s formula). For any formal power series f(t), the exponential generating
series of the successive derivatives Dm

t f(t), where Dt =
d

dt
denotes the formal derivative with

respect to t, is
∑

m≥0

Dm
t f(t)

um

m!
= f(t+ u) . (9)

Notice that this theorem is valid both when f(t) is an exponential series and when f(t)
is an ordinary series. Moreover, the m-derivative of an exponential series f(t) =

∑

n≥0 fn
tn

n!

is

Dmf(t) =
∑

n≥0

fn+m
tn

n!
(10)

while the m-derivative of an ordinary series f(t) =
∑

n≥0 fn t
n is

Dmf(t) = m!
∑

n≥0

(

m+ n

n

)

fn+m tn . (11)

2 Tricomi polynomials

We start by computing the successive derivatives of the generating series of the Tricomi
polynomials.

Lemma 2. For every m ∈ N, we have the identity

Dm
t ℓ

(α)(x; t) = m!
m
∑

k=0

(

x− α

k

)

(−1)k
xm−k

(m− k)!
ℓ(α+k)(x; t) (12)

or, equivalently,

Dm
t Λ

(α)(x; t) =
m
∑

k=0

(

m

k

)(

x− α

k

)

(−1)kk! xm−k Λ(α+k)(x; t) . (13)

Proof. By applying Taylor’s formula (9) to series (2), we have

∑

m≥0

Dm
t ℓ

(α)(x; t)
um

m!
= ℓ(α)(x; t+ u)

= (1− t− u)x−α ex(t+u)

= (1− t)x−α
(

1−
u

1− t

)x−α

extexu

= ℓ(α)(x; t)
(

1−
u

1− t

)x−α

exu

=
∑

m≥0

[

m
∑

k=0

(

x− α

k

)

(−1)k
m! xm−k

(m− k)!

ℓ(α)(x; t)

(1− t)k

]

um

m!
.

Hence, by identity (3), we obtain identity (12) (and, consequently, identity (13)).
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As an immediate consequence of Lemma 2 and formulas (10) and (11), we have the
following theorem.

Theorem 3. For every m,n ∈ N, we have the identities

(

m+ n

n

)

ℓ
(α)
m+n(x) =

m
∑

k=0

(

x− α

k

)

(−1)k
xm−k

(m− k)!
ℓ(α+k)
n (x) (14)

and

Λ
(α)
m+n(x) =

m
∑

k=0

(

m

k

)(

x− α

k

)

(−1)kk! xm−k Λ(α+k)
n (x) . (15)

Remark 4. Notice that Agrawal [1] obtained the following different relation

(

m+ n

n

)

ℓ
(α)
m+n(x) =

min(m,n)
∑

k=0

((

α− x+ n

k

))

ℓ
(α+n+k)
m−k (x) ℓ

(α−m+k)
n−k (x),

which can also be rewritten as

Λ
(α)
m+n(x) =

min(m,n)
∑

k=0

(

m

k

)(

n

k

)

(α− x+ n)k k! Λ
(α+n+k)
m−k (x) Λ

(α−m+k)
n−k (x) .

More generally, Lemma 2 implies the following two-parameter identities.

Theorem 5. For every m,n ∈ N, we have the identity

n
∑

k=0

(

m+ k

k

)

ℓ
(α)
m+k(x) ℓ

(β)
n−k(y) =

m
∑

k=0

(

x− α

k

)

(−1)k
xm−k

(m− k)!
ℓ(α+β+k)
n (x+ y) . (16)

Equivalently, we have the identity

n
∑

k=0

(

n

k

)

Λ
(α)
m+k(x) Λ

(β)
n−k(y) =

m
∑

k=0

(

m

k

)(

x− α

k

)

(−1)kk! xm−kΛ(α+β+k)
n (x+ y) . (17)

Proof. By identity (12) and property (4), we have

ℓ(β)(y; t)
1

m!
Dm

t ℓ
(α)(x; t) =

m
∑

k=0

(

x− α

k

)

(−1)k
xm−k

(m− k)!
ℓ(α+k)(x; t) ℓ(β)(y; t)

=
m
∑

k=0

(

x− α

k

)

(−1)k
xm−k

(m− k)!
ℓ(α+β+k)(x+ y; t)

from which we have identity (16) (and identity (17)).
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Remark 6. If y = −x, then

ℓ(α+β+k)
n (x+ y) = ℓ(α+β+k)

n (0) =

((

α + β + k

n

))

and identity (16) becomes

n
∑

k=0

(

m+ k

k

)

ℓ
(α)
m+k(x) ℓ

(β)
n−k(−x) =

m
∑

k=0

((

α + β + k

n

))(

x− α

k

)

(−1)k
xm−k

(m− k)!
. (18)

Moreover, if β = y = −x, then

ℓ(−x)
n (−x) = (−1)n

xn

n!
and

ℓ(α+β+k)
n (x+ y) = ℓ(α+β+k)

n (0) =

((

α− x+ k

n

))

= (−1)n
(

x− α− k

n

)

.

So, identity (16) becomes

n
∑

k=0

(

m+ k

k

)

(−1)k
xn−k

(n− k)!
ℓ
(α)
m+k(x) =

m
∑

k=0

(

x− α

k

)(

x− α− k

n

)

(−1)k
xm−k

(m− k)!
. (19)

Similarly, if y = 0, then identity (16) becomes

n
∑

k=0

(

m+ k

k

)((

β

n− k

))

ℓ
(α)
m+k(x) =

m
∑

k=0

(

x− α

k

)

(−1)k
xm−k

(m− k)!
ℓ(α+β+k)
n (x) . (20)

Finally, if x = y = 0, then identity (16) becomes

n
∑

k=0

(

m+ k

k

)((

α

m+ k

))((

β

n− k

))

=

((

α

m

))((

α + β +m

n

))

. (21)

Equivalently, this identity can be easily rewritten as

n
∑

k=0

(

n

k

)

(α)m+k(β)n−k = (α)m(α + β +m)n . (22)

For m = 0, we recover the fact that the rising factorials form a polynomial sequence of
binomial type [11, 18, 10], that is, that they satisfy the binomial identity

n
∑

k=0

(

n

k

)

(α)k(β)n−k = (α + β)n .

Notice that replacing α and β by −α and −β, respectively, then identity (22) becomes

n
∑

k=0

(

n

k

)

αm+k βn−k = αm (α + β −m)n (23)

where the polynomials xn = x(x− 1)(x− 2) · · · (x− n+ 1) are the falling factorials.
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3 Generalized derangement polynomials

The generalized derangement numbers d
(ν)
n and the generalized arrangement numbers a

(ν)
n

are defined [14] by the formulas

d(ν)n =
n

∑

k=0

(

ν + n− k

n− k

)

n!

k!
(−1)k (24)

a(ν)n =
n

∑

k=0

(

ν + n− k

n− k

)

n!

k!
(25)

and have exponential generating series

d(ν)(t) =
∑

n≥0

d(ν)n

tn

n!
=

e−t

(1− t)ν+1
(26)

a(ν)(t) =
∑

n≥0

a(ν)n

tn

n!
=

et

(1− t)ν+1
. (27)

For ν = 0, we have the ordinary derangement numbers dn [6, p. 182] (A000166 in the OEIS
Sloane) and the ordinary arrangement numbers an [6, p. 75] A000522.

The generalized derangement polynomials [14] are the Appell polynomials [3, 12, 16] as-
sociated with the generalized derangement numbers, namely

D(ν)
n (x) =

n
∑

k=0

(

n

k

)

d
(ν)
n−kx

k =
n

∑

k=0

(

ν + n− k

n− k

)

n!

k!
(x− 1)k

and have exponential generating series

D(ν)(x; t) =
∑

n≥0

D(ν)
n (x)

tn

n!
=

e(x−1)t

(1− t)ν+1
. (28)

In particular, we have D
(ν)
n (0) = d

(ν)
n , D

(ν)
n (1) =

(

ν+n
n

)

n! and D
(ν)
n (2) = a

(ν)
n .

The generalized derangement polynomials and the Tricomi polynomials are related in the
following way1.

Theorem 7. For every n ∈ N, we have the identity

D(ν)
n (x) = Λ(ν+x)

n (x− 1) . (29)

In particular, for x = 0, x = 1 and x = 2, we have the identities

Λ(ν)
n (−1) = d(ν)n , Λ(ν+1)

n (0) =

(

ν + n

n

)

n! and Λ(ν+2)
n (1) = a(ν)n .

1Notice that the numbers d
(ν)
n and a

(ν)
n , and the polynomials D

(ν)
n (x) considered here are very similar

to those considered in some recent papers [4, 7, 15, 8] and that all the results we obtain here can be easily
adapted to these variants.
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Proof. By series (8) and (30), we have

Λ(ν+x)(x− 1; t) = (1− t)x−1−ν−xe(x−1)t =
e(x−1)t

(1− t)ν+1
= D(ν)(x; t) .

This relation implies identity (29) at once.

Moreover, we have the following result.

Theorem 8. For every n ∈ N, we have the identity

n
∑

k=0

(

n

k

)

D
(α)
k (x) Λ

(β)
n−k(y) =

n
∑

k=0

(

n

k

)

(x)k Λ
(α+β)
n−k (x+ y − 1) . (30)

In particular, for x = 0, 2 and y = 0, we have the identities

n
∑

k=0

(

n

k

)

d
(α)
k (β)n−k = d(α+β)

n

and
n

∑

k=0

(

n

k

)

a
(α)
k (β)n−k =

n
∑

k=0

(

n

k

)

(k + 1)! a
(α+β−2)
n−k .

Proof. By series (30) and (8), we have

D(α)(x; t) Λ(β)(x; t) =
e(x−1)t

(1− t)α+1
· (1− t)y−βeyt

=
1

(1− t)x
· (1− t)x+y−1−α−βe(x+y−1)t

=
1

(1− t)x
· Λ(α+β)(x+ y − 1; t) .

This relation is equivalent to identity (30).

More generally, we have the following formulas.

Theorem 9. For every m,n ∈ N, we have the identities

n
∑

k=0

(

m+ k

k

)

d
(ν)
n−k

(n− k)!
ℓ
(α)
m+k(x) =

m
∑

k=0

(

x− α

k

)

(−1)k
xm−k

(m− k)!
ℓ(α+ν+k)
n (x− 1) (31)

n
∑

k=0

(

m+ k

k

)

a
(ν)
n−k

(n− k)!
ℓ
(α)
m+k(x) =

m
∑

k=0

(

x− α

k

)

(−1)k
xm−k

(m− k)!
ℓ(α+ν+k+2)
n (x+ 1) . (32)
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Equivalently, we have the identities

n
∑

k=0

(

n

k

)

d
(ν)
k Λ

(α)
m+n−k(x) =

m
∑

k=0

(

m

k

)(

x− α

k

)

(−1)kk! xm−k Λ(α+ν+k)
n (x− 1) (33)

n
∑

k=0

(

n

k

)

a
(ν)
k Λ

(α)
m+n−k(x) =

m
∑

k=0

(

m

k

)(

x− α

k

)

(−1)kk! xm−k Λ(α+ν+k+2)
n (x+ 1) . (34)

Proof. From identity (12) and series (26), we have

d(ν)(t)
1

m!
Dm

t ℓ
(α)(x; t) =

m
∑

k=0

(

x− α

k

)

(−1)k
xm−k

(m− k)!
d(ν)(t) ℓ(α+k)(x; t)

=
m
∑

k=0

(

x− α

k

)

(−1)k
xm−k

(m− k)!
(1− t)x−1−α+ν−k e(x−1)t

=
m
∑

k=0

(

x− α

k

)

(−1)k
xm−k

(m− k)!
ℓ(α+ν+k)(x− 1; t)

from which we obtain identity (31). In a similar way, we also obtain identity (32).

Consider the Touchard polynomials Tn(x), [17, 20], and the associated polynomials Un(x)
defined by

Tn(x) =
n

∑

k=0

(

n

k

)

(−1)n−kxk

Un(x) =
n

∑

k=0

(

n

k

)

(−1)n−k(x)k

and having exponential generating series

T (x; t) =
∑

n≥0

Tn(x)
tn

n!
= e−t(1 + t)x (35)

U(x; t) =
∑

n≥0

Un(x)
tn

n!
=

e−t

(1− t)x
. (36)

The following identities relate the Tricomi polynomials and the generalized derangement
polynomials by means of the Touchard polynomials.

Theorem 10. We have the identities

Λ(α)
n (x) =

n
∑

k=0

(

n

k

)

(−1)k Tk(x+ 1)D
(α)
n−k(x) (37)

D(α)
n (x) =

n
∑

k=0

(

n

k

)

Uk(x+ 1)Λ
(α)
n−k(x) . (38)
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Proof. By series (8), (28) and (35), we have

Λ(α)(x; t) = (1− t)x−αext = et(1− t)x+1 ·
e(x−1)t

(1− t)α+1
= T (x+ 1;−t) ·D(α)(x; t)

from which we get identity (37) at once. Similarly, by series (8), (28) and (36), we have

D(α)(x; t) =
e(x−1)t

(1− t)α+1
=

e−t

(1− t)x+1
· (1− t)x−αext = U(x+ 1; t) · Λ(α)(x; t)

from which we get identity (38) at once.

4 Final remarks

The rising factorials and the falling factorials form two polynomial sequences of binomial
type and have several characterizations and combinatorial interpretations [10]. In Remark 6,
we noticed that these polynomials satisfy the generalized binomial theorems (22) and (23),
respectively. More generally, we have the following characterization.

Theorem 11. Let {pn(x)}n∈N be a polynomial sequence, where each polynomial pn(x) has

degree n. There exists a constant λ 6= 0 for which the binomial identity

n
∑

k=0

(

n

k

)

pm+k(x) pn−k(y) = pm(x) pn(x+ y + λm) ∀m,n ∈ N (39)

holds if and only if there exists a constant µ such that

pn(x) = (λµ)n(x/λ)n . (40)

Proof. If identity (39) is true for every m,n ∈ N, then it is true also for m = 0 and n ∈ N.
This implies that {pn(x)}n∈N is a polynomial sequence of binomial type and, consequently,
that it has exponential generating series

p(x; t) =
∑

n≥0

pn(x)
tn

n!
= exf(t)

for a given exponential series f(t) =
∑

n≥0 fn
tn

n!
with f0 = 0 and f1 6= 0. Hence, identity (39)

turns out to be equivalent to the identity

(Dm
t p(x; t)) p(y; t) = pm(x) p(x+ y + λm; t) ∀m ∈ N

that is
(Dm

t e
xf(t)) eyf(t) = pm(x) e

(x+y+λm)f(t) ∀m ∈ N .
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that is
Dm

t e
xf(t) = pm(x) e

(x+λm)f(t) ∀m ∈ N .

For m = 1, this relation reduces to

xf ′(t) exf(t) = p1(x) e
(x+λ)f(t)

or
xf ′(t) = p1(x) e

λf(t)

or
f ′(t)

eλf(t)
=

p1(x)

x
= µ

for a constant µ. This is equivalent to p1(x) = µx and f ′(t) = µ eλf(t). By integrating this
last differential equation, we obtain

f(t) =
1

λ
ln

1

1− λµt

and consequently

p(x; t) = e
x
λ
ln 1

1−λµt =
1

(1− λµt)x/λ
=

∑

n≥0

(λµ)n(x/λ)n
tn

n!

from which we have identity (40). Vice versa, employing identity (22), we can say that the
polynomials defined by formula (40) satisfy the binomial identity (39).

Notice that the falling factorials can be expressed by identity (40) for λ = −1 and µ = 1,
namely xn = (−1)n(−x)n.
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