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Abstract

A connection between covering systems and Bernoulli polynomials established by
Fraenkel, Beebee, and Porubský asserts that a function

∑q
i=1 µiχAi(k) is an MA-

covering function for a system of arithmetic sequences {Ai}
q
i=1 if and only if it satisfies

a generalized Raabe identity. The connection is used to derive recurrence formulas
for the Bernoulli numbers. Here we show that the generalized Raabe identity is a
sum of Raabe’s identities for Ai multiplied by µi, and this sum is the direct source
of the above recurrence formulas. We show that many of these formulas are special
cases of the original multiplication formula of Raabe. We find new applications of the
connection to the covering systems.

1 Introduction

For a ∈ Z and n ∈ Z
+ we let a(n) := a + nZ = {x ∈ Z : x ≡ a (mod n)}. Here a(n) is

called an arithmetic sequence (with common difference n) or a residue class (with modulus
n). Consider a system A = {A1, A2, . . . , Aq} of arithmetic sequences

Ai = ai(ni) = ai + niZ, 0 ≤ ai < ni, i = 1, . . . , q, q ≥ 1. (1)

Definition 1. For i = 1, . . . , q, we let χAi
(k) denote the characteristic function of Ai and

we let µi 6= 0 be real numbers. An MA-covering function for a system (1) is a sum

MA(k) =

q∑

i=1

µiχAi
(k), (2)

If all µi = 1, then MA(k) is the usual covering function: wA(k) =
∑q

i=1 χAi
(k).
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Observe that the function MA(k) is NA-periodic with NA = lcm(n1, . . . , nq).

Definition 2. A system (1) is called a covering system or a cover (of Z) if wA ≥ 1.

Paul Erdős introduced the concept of the covering system in the 1930s (see, e.g., [3]) and
gave a nontrivial example of such a system: 0(2), 0(3), 1(4), 3(8), 7(12), 23(24).

Definition 3. A system (1) is an exact M-cover if wA(k) = M and an exact cover if M = 1.
We also say that A is an exact M -cover of B if wA(k) = MwB(k).

In what follows,
(
Bm

)
m≥0

=
(
1,−1

2
, 1
6
, 0,− 1

30
, 0, 1

42
, . . .

)
are the Bernoulli numbers and

Bm(t) are the Bernoulli polynomials (8). In 1973 Fraenkel [6] found a connection between
exact covers and Bm(t). Two years later Porubský [12] extended it to exact M -covers.

Theorem 4 (A. Fraenkel, M = 1). A system of q ≥ 2 arithmetic sequences {ai(ni)}
q
i=1 is

an exact M-cover if and only if

MBm =

q∑

i=1

nm−1
i Bm

(ai
ni

)
(3)

holds for every m ≥ 0.

Note that for m = 0, 1 the identity (3) gives us two well known properties of exact
M -covers:

∑q
i=1

1
ni

= M (see also Corollary 8) and
∑q

i=1
ai
ni

= q−M
2

.
Beebee [1] observed that (3) is the case x = 0 of a more general identity (4).

Theorem 5 (J. Beebee, M = 1). A system of q ≥ 2 arithmetic sequences {ai(ni)}
q
i=1 is an

exact M-cover if and only if

MBm(x) =

q∑

i=1

nm−1
i Bm

(x+ ai
ni

)
(4)

holds for every m ≥ 0.

Porubský [10, 12] used Beebee’s approach to extend Theorems 4 and 5 to a system (1)
with an MA-covering function (2) (and restrictions q ≥ 2, N = NA, which we omit).

Theorem 6 (Š. Porubský [10, Th. 1]). Let q, S ∈ Z
+ and N = SNA. Then (2) is an

MA(k)-covering function for the system (1) if and only if

Nm−1

N−1∑

k=0

MA(k)Bm

(x+ k

N

)
=

q∑

i=1

µin
m−1
i Bm

(x+ ai
ni

)
(5)

holds for every m ≥ 0.
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We prove that, by itself, identity (5) is a sum of Raabe identities for arithmetics sequences
ai(ni) (see Theorem 9 and Example 18). Aside from this result, our other contribution to
Theorem 6 is proving its corollary, Theorem 10, where we take advantage of N = SNA rather
than N = NA. Theorem 10 generalizes the results of Beebee and Fraenkel and is useful in
applications to covering systems. In particular, it can be used to check if a system is an exact
M -cover of another system (see Examples 20 and 21). In Section 4 we present Porubský’s
proof of Theorem 6. In Theorem 16 of that section we derive identity (5) again, this time,
from the asymptotic expansion of the Hurwitz zeta function. In Section 5 we give a few
examples.

We begin the article by showing that many known identities for Bernoulli numbers,
including those of Stern and Namias, are special cases of the multiplication formula proved
by Raabe in his 1848 work “The Jacob Bernoulli function” [13].

2 Multiplication formula of J. L. Raabe (1848)

Raabe [13] proved his celebrated multiplication formula:

Tm−1

T−1∑

l=0

bm

(t+ l

T

)
= bm(t)−

Bm

m

(
Tm − 1

)
, m ≥ 1, (6)

for polynomials
(
t, t

2

2
− t

2
, t

3

3
− t2

2
+ t

6
, . . .

)
, called the Bernoulli functions in [13], 1

bm(t) =
1

m

m−1∑

s=0

Bs

(
m

s

)
tm−s. (7)

Modern Bernoulli polynomials Bm(t) are linearly related to bm(t), as follows:

Bm(t) =
m∑

s=0

Bs

(
m

s

)
tm−s = mbm(t) + Bm. (8)

Polynomials bm(t) are solutions to Jacob Bernoulli’s problem: find polynomials that sum

powers of consecutive integers
t−1∑
j=1

jm−1 = bm(t) when m, t > 1
(
e.g.,

30∑
j=1

j7 = b8(31)
)
.

To prove (6), Raabe observed that for odd m the property bm(1 − x) = (−1)mbm(x),
written as a cancellation law b2n+1(1− x) + b2n+1(x) = 0, yields b2n+1(

1
2
) = 0 and a general

cancellation law, that is, multiplication formula (6) at t = 0 and odd m ≥ 3:

b2n+1(
1
T
) + b2n+1(

2
T
) + · · ·+ b2n+1(

T−2
T

) + b2n+1(
T−1
T

) = 0.

1Raabe’s 1851 article [14] is often cited instead of his 1848 monograph [13] as the earliest place in the
literature where the term Bernoulli polynomial (function) appears.
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He then used impressive algebra to obtain (6) for all t and m.
Raabe’s identity (6) can be viewed as a recurrence relation for the Bernoulli numbers:

Bm =
Tm−1

1− Tm

T−1∑

l=0

b̂m

(t+ l

T

)
− b̂m(t), (9)

where b̂m(t) = mbm(t), which are sometimes called Bernoulli polynomials of an older type. If
we take t = 0 in the last identity, we see that it coincides with the following known identities:
J. Stern [15], T = 2:

Bm =
1

2(1− 2m)

m−1∑

s=0

Bs

(
m

s

)
2s

(9)
⇔ Bm =

2m−1

1− 2m
b̂m

(1
2

)
.

V. Namias [9], T = 3:

Bm =
1

3(1− 3m)

m−1∑

s=0

Bs

(
m

s

)
3s(1 + 2m−s)

(9)
⇔ Bm =

3m−1

1− 3m

2∑

l=0

b̂m

( l
3

)
.

Namias [9] conjectured (and Deeba, Rodriguez [2] proved) that for arbitrary T

Bm =
1

T (1− Tm)

m−1∑

s=0

T s

T−1∑

l=1

Bs

(
m

s

)
lm−s (9)

⇔ Bm =
Tm−1

1− Tm

T−1∑

l=0

b̂m

( l

T

)
.

In [1, 10] these identities
(
with our notation b̂m(t) for the sum

∑m−1
s=0 Bs

(
m
s

)
tm−s

)
were cited

as special cases of Fraenkel’s identity (3). The latter is the identity (5) in the recurrence
form with t = 0 and MA(k) = M :

Bm

(
M −

q∑

i=1

nm−1
i

)
=

q∑

i=1

nm−1
i b̂m

(ai
ni

)
. (10)

3 Raabe’s identity for arithmetic sequences

When identity (5) (with N = T and x = t) is applied to the sequence 0(1) = Z, it becomes
the multiplication formula (6) written in terms of modern Bernoulli polynomials (8):

Tm−1

T−1∑

l=0

Bm

(t+ l

T

)
= Bm(t). (11)

A substitution t = x+ai
ni

in (11) yields Raabe’s identity for an arithmetic sequence ai(ni):

Tm−1

T−1∑

l=0

Bm

(
x+ai
ni

+ l

T

)
= Bm

(
x+ ai
ni

)
. (12)
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Lemma 7. Let Ai = ai(ni), ai < ni and let T ∈ Z
+, N = Tni, Then for any function f

N−1∑

k=0

χAi
(k)f(k) =

T−1∑

l=0

f(ai + lni).

Proof. The set of integers {0, 1, 2, . . . , N − 1} is split into T subsets:

{
0, 1, . . . , ni − 1; ni, . . . , 2ni − 1; . . . ; (T − 1)ni, . . . , Tni − 1

}
.

In each of these subsets there is exactly one member of Ai.

Corollary 8. Let (1) be a cover. Then Lemma 7 with f = 1 and N = SNA, S ∈ Z
+ yields

N−1∑

k=0

χAi
(k) = T =

N

ni

. Thus
1

N

N−1∑

k=0

wA(k) =

q∑

i=1

1

ni

and

q∑

i=1

1

ni

≥ 1.

Theorem 9. Identity (5) for a system A in (1) with an MA-covering function (2) is the
sum of q identities (12) multiplied by µi.

Proof. With f(k) = Bm

(
x+k
N

)
and N = Tni in Lemma 7, Raabe’s identity (12) for ai(ni)

admits the following form:

Nm−1

N−1∑

k=0

χAi
(k)Bm

(
x+ k

N

)
= nm−1

i Bm

(
x+ ai
ni

)
. (13)

Now if N = SNA, then the sum of q identities (13) multiplied by µi is

q∑

i=1

µiN
m−1

N−1∑

k=0

χAi
(k)Bm

(
x+ k

N

)
=

q∑

i=1

µin
m−1
i Bm

(
x+ ai
ni

)
, (14)

which becomes (5) after we change the order of summation in the left side of (14).

Theorem 10 (Corollary to Theorem 6). A covering system A = {ai(ni)}
q
i=1 is an exact

M-cover of a covering system B = {hj( rj)}
p
j=1 if and only if

M

p∑

j=1

rm−1
j Bm

(
x+ hj

rj

)
=

q∑

i=1

nm−1
i Bm

(
x+ ai
ni

)
(15)

holds for every m ≥ 0.

Proof. Let N = lcm(n1, . . . , nq; r1, . . . , rp) = S1NA = S2NB. We write (5) for systems A
and B. By the assumption, wA(k) = MwB(k), i.e., the left side of (5) for A equals that for
B multiplied by M . Hence, the right sides of (5) for A and B satisfy Eq. (15).
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Theorem 11 (Special case of Theorem 10). A covering system A = {ai(ni)}
q
i=1 is an exact

M-cover of an arithmetic sequence h(r) if and only if for every m ≥ 0:

Mrm−1Bm

(
x+ h

r

)
=

q∑

i=1

nm−1
i Bm

(
x+ ai
ni

)
. (16)

Remark 12. Theorem 11 tells us that writing Raabe’s identity (12) for ai(ni) for all m ≥ 0
is equivalent to exactly covering ai(ni) by the system {(ai + lni)(niT ), l = 0, . . . , T − 1}.

4 Proof of Theorem 6

Lemma 13. Let a function M(z) be N -periodic and a function g(z) satisfy
∞∑
z=0

|g(z)| < ∞.

Then the summation in the series
∑

M(z) g(z) can be rearranged as follows:

∞∑

z=0

M(z) g(z) =
N−1∑

k=0

∞∑

l=0

M(k + lN)g(k + lN) =
N−1∑

k=0

M(k)
∞∑

l=0

g(k + lN).

Corollary 14. Let (2) be an MA(k)-covering function for the system (1) and let N = SNA,
S ∈ Z

+. In addition, let |y| < 1. Then

N−1∑

k=0

MA(k)
yk

1− yN
=

q∑

i=1

µi
yai

1− yni
. (17)

Proof. BecauseMA(z) is N -periodic, using geometric series expansions, the fact that ai < ni,
and Lemma 13, we conclude that

q∑

i=1

µi
y ai

1− yni
=

q∑

i=1

µi

∞∑

l=0

y ai+lni =

q∑

i=1

µi

∞∑

z=0

χAi
(z) y z =

∞∑

z=0

MA(z) y
z (18)

=
N−1∑

k=0

MA(k)
∞∑

l=0

y k+lN =
N−1∑

k=0

MA(k)
y k

1− yN
. �

Corollary 15 (Š. Porubský [12]). Let N = SNA, S ∈ Z
+. Then (2) is an MA(k)-covering

function for the system (1) if and only if Eq. (17) holds for any y with |y| < 1.

We recall Euler’s generating function of polynomials Bm(t):

sest

es − 1
=

∞∑

m=0

Bm(t)

m!
sm. (19)
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Proof of Theorem 6 (J. Beebee, Š. Porubský).
(⇐): We assume that Eq. (5) holds for every m ≥ 0. As in [1, 10], we multiply (5) by sm/m!

and sum the result over m:

N−1∑

k=0

MA(k)
∞∑

m=0

(sN)m

N m!
Bm

(x+ k

N

)
=

q∑

i=1

µi

∞∑

m=0

(sni)
m

ni m!
Bm

(x+ ai
ni

)
.

By Eq. (19) this is equivalent to

N−1∑

k=0

MA(k)
(sN)

N

esN(x+k)/N

esN − 1
=

q∑

i=1

µi
(sni)

ni

esni(x+ai)/ni

esni − 1
,

which, with es = y, becomes (17). Thus MA satisfies (2) by Corollary 15.

(⇒): Let MA satisfy Eq. (2). Starting with (17) we reverse steps in the above argument and
obtain Eq. (5) for every m ≥ 0.

The authors of the proofs of Theorems 5 and 6 use the generating function of integers
employed in (18) of Corollary 14 to Lemma 13 together with Euler’s generating function
(19).

Next we derive identity (5) from the asymptotic expansion of the Hurwitz zeta function
using just Lemma 13.

Theorem 16. Identity (5) holds for any system A in (1) with an MA-covering function (2).

Proof. By Euler-Maclaurin summation (see, e.g., [5, Ex. 3, §467], where L + x = a) 2 the
asymptotic series of an L-th tail of the Hurwitz zeta function at 2 in powers of 1/(L+ x) is

∞∑

l=0

1

(L+ x+ l)2
∼

∞∑

k=0

(−1)kBk

(L+ x)k+1
. (20)

The asymptotic series composed with the converging series yields the series in powers of 1/L:

∞∑

l=0

1

(L+ x+ l)2
∼

∞∑

k=0

(−1)kBk

(L+ x)k+1
=

∞∑

k=0

(−1)kBk

Lk+1

∞∑

j=0

(
k + j

j

)
(−x)j

Lj

k+j=m
=

∞∑

m=0

(−1)m

Lm+1

m∑

k=0

Bk

(
m

m− k

)
xm−k (8)

=
∞∑

m=0

(−1)m

Lm+1
Bm(x). (21)

2Fichtenholtz [5] uses the notation βn for the Bernoulli numbers and Bn for the absolute values
of nonzero Bernoulli numbers. More precisely,

(
βn

)
n≥1

=
(
− 1

2
, 1

6
, 0,− 1

30
, 0, 1

42
, . . .

)
and

(
Bn

)
n≥1

=(
1

6
, 1

30
, 1

42
, 1

30
, 5

66
, . . .

)
.
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Let N = SNA, S ∈ Z
+. Lemma 13 and Eq. (21) with L replaced by L/N and x by (x+k)/N

give us
∞∑

z=0

MA(z)

(L+ x+ z)2
=

N−1∑

k=0

MA(k)
∞∑

l=0

1

(L+ x+ k + lN)2
(22)

=
N−1∑

k=0

MA(k)

N2

∞∑

l=0

1

( L
N
+ x+k

N
+ l)2

∼
∞∑

m=0

(−1)m

Lm+1

N−1∑

k=0

MA(k)N
m−1Bm

(x+ k

N

)
.

Similarly, Eq. (21) with L replaced by L/ni and x by (x+ ai)/ni gives us

∞∑

z=0

∑q
i=1 µiχAi

(z)

(L+ x+ z)2
=

q∑

i=1

µi

∞∑

l=0

1

(L+ x+ ai + lni)2
(23)

=

q∑

i=1

µi

n2
i

∞∑

l=0

1

( L
ni +

x+ai
ni

+ l)2
∼

∞∑

m=0

(−1)m

Lm+1

q∑

i=1

µin
m−1
i Bm

(
x+ ai
ni

)
.

Now Eqs. (22) and (23) yield Eq. (5), because the asymptotic series is unique.

We note that, unlike Theorem 6, steps in the last theorem cannot be reversed because
functions can share asymptotic series.

We conclude the section with the famous proof of a relation for moduli of the exact covers
found by Mirsky and Newman, and independently, by Davenport and Rado (see, e.g., [4]).

Theorem 17 (H. Davenport, L. Mirsky, D. Newman, R. Rado). Let a system (1) be an
exact M-cover and let its moduli ni satisfy 1 < n1 ≤ n2 ≤ · · · ≤ nq−1 ≤ nq. Then nq−1 = nq.
3

Proof. In Eq. (18) of Corollary 14 we take µi = 1, i = 1, . . . , q and MA(z) = M to have

M

1− y
=

q−1∑

i=1

yai

1− yni
+

yaq

1− ynq
. (24)

The assumption that nq−1 < nq would contradict Eq. (24) when y → e2πi/nq :

lim
y→e2πi/nq

(
M

1− y
−

q−1∑

i=1

yai

1− yni

)
6= lim

y→e2πi/nq

yaq

1− ynq
= ∞.

3Further results for covering systems in this direction can be found in [7, 16] and in “Covering systems
and periodic arithmetical functions” (a talk given by Z. W. Sun at UIUC on April 13, 2006).
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5 Examples

Identity (5) in the recurrence form with t = 0 and MA(k) = wA(k) was given in [10, Cor. 1]:

Bm

q∑

i=1

(Nm

ni

− nm−1
i

)
=

q∑

i=1

nm−1
i b̂m

(ai
ni

)
−Nm−1

N−1∑

k=0

wA(k) b̂m

( k

N

)
. (25)

The term
∑q

i=1
N
ni

in the left side of Eq. (25) replaced
∑N−1

k=0 wA(k) (see Corollary 8).

Example 18. Identity (25) applied to the system A = {0(2), 0(3), 1(6), 5(6)} with N = 6 is

Bm

(
2m−1 + 3m−1 − 5 · 6m−1

)
= 6m−1

(
b̂m
(
2
6

)
+ b̂m

(
3
6

)
+ b̂m

(
4
6

))
. [10, Cor. 3]

Since b̂m(t) = Bm(t)−Bm, the above identity is equivalent to

Bm

(
2m−1 + 3m−1 − 2 · 6m−1

)
= 6m−1

(
Bm

(
2
6

)
+ Bm

(
3
6

)
+ Bm

(
4
6

))
. (26)

The latter is the sum of Raabe identities (12) for 0(2) with T = 6
2
and for 0(3) with T = 6

3
:

6m−1
(
Bm + Bm

(
2
6

)
+ Bm

(
4
6

))
= 2m−1Bm and 6m−1

(
Bm + Bm

(
3
6

))
= 3m−1Bm.

Note that in Theorem 9 identity (26) for A is a sum (14) of 4 identities (12), but identity
(12) applied to the arithmetic sequence 1(6) or 5(6) yields just Bm = Bm.

Example 19. Nevertheless, we could apply Eq. (25) in the original form (5) to a system A′

related to A, for example, to find Bm

(
1/6
)
without knowledge of Bm(1/2) and Bm(1/3):

Bm

(
1
6

)
= Bm(1− 2m−1)(1− 3m−1)/(6m−1 2). (27)

According to Theorem 11, writing identities (26) is equivalent to covering 0(3) by {0(6), 3(6)}
and 0(2) by {0(6), 2(6), 4(6)}. Clearly systems A′ ={0(6), 2(6), 4(6), 0(6), 3(6), 1(6), 5(6)}
and A have the same covering function: wA(k) = 2 if k ≡ 0 (mod 6) and wA(k) = 1
otherwise. We apply Eq. (5) to A′ with MA′ = wA, N = NA = 6 and t = 0 to get

6m−1

5∑

k=0

Bm

(k
6

)
+ 6m−1Bm(0) = 2m−1Bm(0) + 3m−1Bm(0) + 6m−1

(
Bm

(1
6

)
+ Bm

(5
6

))

and useBm

(
5
6

)
= (−1)mBm

(
1
6

)
and Raabe’s identity 6m−1

5∑
k=0

Bm

(
k
6

)
= Bm to prove Eq. (27).

The next two examples show how their exact covers were constructed.
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Example 20. Choi constructed an exact 2-cover that is not the union of two exact covers:
1(2), 0(3), 1(3), 2(6), 0(10), 4(10), 6(10), 8(10), 2(15), 5(30), 11(30), 12(30), 22(30), 23(30), 29(30)
(see, e.g., [10, p. 156]). To confirm that this system is an exact 2-cover, we split its sequences
0(3), 1(3), 2(15) into odd and even terms and show that the modified cover is the union of an
exact 2-cover B ∪ C of the sequence 1(2) and an exact 2-cover D ∪ E of the sequence 0(2):

B = 1(2); C =
{
1(6), 3(6), 5(30), 11(30), 17(30), 23(30), 29(30)

}
;

D =
{
0(6), 2(6), 4(6)

}
; E =

{
0(10), 4(10), 6(10), 8(10), 2(30), 12(30), 22(30)

}
.

Since B and D are already exact covers of 1(2) and 0(2) respectively, we use Theorem 11
with M = 1, x = 0 to show that C and E are such covers.

First, in Theorem 11 we let the sequence h(r) be 1(2) and the system A be C. In that
case, the right side of (16) in Theorem 11 is

6m−1Bm

(1
6

)
+ 6m−1Bm

(3
6

)
+ 6m−15m−1

5−1∑

l=0

Bm

(5 + 6l

30

)

= 6m−1Bm

(1
6

)
+ 6m−1Bm

(3
6

)
+ 6m−1Bm

(5
6

)
= 2m−1Bm

(1
2

)
,

which is the left side of (16). We have applied Raabe’s identity (12) with T = 5, x = 5
6
to

the sum in the first row and with T = 3, x = 1
2
in the second row.

Now, similarly, in Theorem 11 we take h(r) = 0(2), A = E and with the help of (12)
confirm (16):

10m−1
∑

l=0,2,3,4

Bm

( 2l
10

)
+ 10m−13m−1

3−1∑

l=0

Bm

(2 + 10l

30

)
= 10m−1

5−1∑

l=0

Bm

( l
5

)
= 2m−1Bm(

0

2
).

Example 21. Show that a system F ∪G = {2i−1(2i)}fi=1 ∪ {(j − 1)2f (n2f )}nj=1 is an exact
cover. First, we use (11) with t = 0 and T = n to see that G is an exact cover of 0(2f ):

f∑

i=1

(2i)m−1Bm

(1
2

)
+ (2f )m−1nm−1

n−1∑

l=0

Bm

( l
n

)
(28)

=

f∑

i=1

(2i)m−1Bm

(1
2

)
+ (2f )m−1Bm(0). (29)

Then we apply Theorem 11 repeatedly using (11) with t = 0 and T = 2 to see that 2f−1(2f )∪
0(2f ) is an exact cover of 0(2f−1), etc.:

(29) =

f−1∑

i=1

(2i)m−1Bm

(1
2

)
+ (2f−1)m−12m−1

(
Bm

(0
2

)
+ Bm

(1
2

))

=

f−1∑

i=1

(2i)m−1Bm

(1
2

)
+ (2f−1)m−1Bm

(0
2

)
= · · · = Bm

(0
2

)
= Bm.
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Note that (29) = Bm is Bm

(
1
2

)∑f
i=1(2

i)m−1 = Bm

(
1 − (2f )m−1

)
which computes Bm

(
1
2

)
.

Now (28) = Bm with Bm(t) = b̂m(t)+Bm is the relation given in [10, Cor. 4]. The latter was
(10) applied to the system F ∪G and multiplied by 2f+1(2m−1 − 1).

When the covering function wA of a system A is unknown or complicated, the identity
(5) can still compute and estimate the averages of wA(k), kwA(k), . . . over NA.

Example 22. For an odd n ≥ 3, the system F ∪H = {2i−1(2i)}n−1
i=1 ∪ {j2n−1(n2j−1)}nj=1

[16, Ex. 1, p. 4314] is an example of a distinct cover of Z (all ni are different), 4 thus by
the result of Davenport-Mirsky-Newman-Rado it is not an exact cover. To show that it
covers Z, we take f = n − 1 and observe that 0(n2f ) = n2f (n2f ) and, if 0 ≤ j ≤ f , the
sequence j2f (n2j−1) covers the sequence j2f (n2f ). Hence, system H = {j2n−1(n2j−1)}nj=1

covers system G = {(j − 1)2f (n2f )}nj=1 of Example 21, while system F is that of Example
21.

As in [16], Corollary 8 computes the arithmetic average of wF∪H(k) with N = NF∪H =
2n−1n:

1

N

N−1∑

k=0

wF∪H(k) =
n−1∑

i=1

1

2i
+

n∑

j=1

1

n2j−1
= 1 +

2n − n− 1

2n−1 n
< 1 +

2

n
. (30)

It shows that for large n the system F ∪H covers integers with fewer overlaps.
Note that the system H = {hj(rj)}

n
j=1 = {j2n−1(n2j−1)}nj=1 is not in the form of (1). In

order to apply (5) with m ≥ 1 to the system F ∪H, we define h ′
j = hj − kjrj with kj so that

0 ≤ h ′
j < rj, j = 1, . . . , n and write H = {h ′

j(rj)}
n
j=1, where h ′

n = 0.
Identity (5) at m = 1 computes the arithmetic average of kwA(k) for any system (1):

1

N

N−1∑

k=0

kwA(k) =
N

2

q∑

i=1

1

ni

+

q∑

i=1

ai
ni

−
q

2
. (31)

Now (31) and (30) estimate the arithmetic average of kwF∪H(k) for our system:

1

N

N−1∑

k=0

k wF∪H(k) =
N

2

q∑

i=1

1

ni

+
n−1∑

i=1

1

2
+

n∑

j=1

h ′
j

rj
−

2n− 1

2
<

N − 1

2
+

N

n
.

For an exact cover this average would be N−1
2

.
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4Erdős-Selfridge Conjecture (See e.g., [8]). There are no distinct covers with all n1, . . . , nq odd and
greater than one.
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