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Abstract

Given a sequence w = (wn)n≥0 of distinct positive integers w0, w1, w2, . . . and any
positive integer n, we define the discriminator function Dw(n) to be the smallest pos-
itive integer m such that w0, . . . , wn−1 are pairwise incongruent modulo m. In this
paper, we classify all binary recurrent sequences w consisting of different integer terms
such that Dw(2

e) = 2e for every e ≥ 1. For all of these sequences it is expected that
one can actually give a fairly simple description of Dw(n) for every n ≥ 1. For one
infinite family of such sequences this has already been done by Faye, Luca, and Moree,
and for another by Ciolan and Moree.

1 Introduction

The discriminator sequence of a sequence w = (wn)n≥0 of distinct integers is the sequence
(Dw(n))n≥0 given by

Dw(n) = min{m ≥ 1 : w0, . . . , wn−1 are pairwise distinct modulo m}.

In other words, Dw(n) is the smallest integer m that allows one to discriminate (tell apart)
the integers w0, . . . , wn−1 on reducing them modulo m. If not all integers are distinct, but
say w0, . . . , wk, then we can define Dw(j) for j = 1, . . . , k + 1. Obviously Dw(n) is non-
decreasing as a function of n. Note that since w0, . . . , wn−1 are in n distinct residue classes
modulo Dw(n), we must have Dw(n) ≥ n. On the other hand clearly

Dw(n) ≤ max{w0, . . . , wn−1} −min{w0, . . . , wn−1}+ 1.

The main problem is to give an easy description or characterization of Dw(n). In many cases
such a characterization does not seem to exist.

If wj is a polynomial in j, the behavior of the discriminator is fairly well understood. See
Moree [7], Zieve [11], and the references therein.

An intensively studied class of sequences is that of binary recurrent sequences, cf. the book
by Everest et al. [4]. For a generic binary recurrent sequence there is currently no meaningful
characterization of its discriminator. An example is provided by the discriminator for the
Fibonacci sequence (see Table 1). However, if we have

Dw(2
e) = 2e for every e ≥ 1, (1)

the discriminator behavior tends to be much simpler. It is easy to see that then Dw(n) <
2n. This allows one to exclude many potential discriminator values. Indeed, in general
discriminator characterizations for a fixed n proceed by excluding all integers different from
Dw(n) as values. If (1) holds, then typically many powers of two occur as values (cf. Table 2).
All known binary recurrent discriminators, described in Families 1 and 2 below, satisfy (1).
Thus, it is natural to ask for a classification of all binary recurrent sequences (wn)n≥0 such
that (1) is satisfied. Note that for any such sequence the terms wn must be distinct.

Our main result completely answers this question.
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Theorem 1. For integers w0, w1, p and q, let (wn)n≥0 be the sequence defined by

wn+2 = pwn+1 + qwn for all n ≥ 0. (2)

If w0 + w1 is even and k ≥ 1, then #{wn (mod 2k) : 0 ≤ n ≤ 2k − 1} < 2k.
If (p mod 4, q mod 4) = (2, 3) and w0 + w1 is odd, then Dw(2

k) = 2k for every k ≥ 1.
If (p mod 4, q mod 4) 6= (2, 3) and k ≥ 3, then #{wn (mod 2k) : 0 ≤ n ≤ 2k − 1} < 2k.

Representing the residue classes modulo m by a, with 0 ≤ a ≤ m−1, we can reformulate
property (1) as saying that the map from Z/mZ to Z/mZ given by a 7→ ua is a permutation

for every m that is a power of two.
We next describe the binary recurrent sequences for which the discriminator has been

characterized. They fall into two families. Theorem 1 shows at a glance that for all of them
(1) is satisfied.

Family 1. In Faye et al. [5], and its continuation by Ciolan et al. [2], the discriminator
DU(k)(n) is studied, where the Shallit sequence U(k) is given by U(k) = (Un(k))n≥0 with
U0(k) = 0, U1(k) = 1 and

Un+2(k) = (4k + 2)Un+1(k)− Un(k)

for all n ≥ 0. By Theorem 1, we have DU(k)(2
e) = 2e for every e ≥ 1.

Family 2. Let q ≥ 5 be a prime and put q∗ = (−1)(q−1)/2·q. The sequence uq(1), uq(2), . . . ,
with

uq(j) =
3j − q∗(−1)j

4
,

we call the Browkin-Sălăjan sequence for q. The sequence uq satisfies the recursive relation
uq(j) = 2uq(j − 1) + 3uq(j − 2) for j ≥ 3, with initial values

uq(1) = (3 + q∗)/4 and uq(2) = (9− q∗)/4.

We denote its discriminator by Dq. In the context of the discriminator, the sequence u5

(2, 1, 8, 19, 62, 181, 548, 1639, 4922, . . .) was first considered by Sabin Sălăjan during an in-
ternship carried out in 2012 under the guidance of Moree (for this reason we call it the
Sălăjan sequence). Disregarding signs this is sequence A084222. Moree and Zumalacárregui
[8] determined D5(n) (cf. Table 2).

Theorem 2. Let n ≥ 1 be an arbitrary integer. Let e be the smallest integer such that 2e ≥ n
and f be the smallest integer such that 5f ≥ 5n/4. Then D5(n) = min{2e, 5f}.

More recently Ciolan and Moree [3] completely characterized Dq for arbitrary primes
q > 5. Noting that uq(1)+uq(2) = 3, one sees that Theorem 1 applies and hence Dq(2

e) = 2e

for every e ≥ 1.
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In order to prove Theorem 1, we will deal with the special case where w is a Lucas
sequence first in Section 3. In the general case, we express w as a linear combination of a
Lucas and a shifted Lucas sequence (Section 4). Our arguments require some consideration
of the two divisibility of binomial coefficients (Section 2).

Beyond the polynomial and the recurrence sequence case there is very little known. Haque
and Shallit [6] considered the discriminator for k-regular sequences. For these also property
(1) is satisfied. Sun [10] made some conjectures regarding the discriminator for various
sequences.

2 Preliminaries

We recall a celebrated result of Kummer, cf. Ribenboim [9, pp. 30–33].

Theorem 3 (Kummer, 1852). Let p be a prime number. The exponent of p in
(

n
m

)

is the

number of base p carries when summing m with n−m in base p.

Here and in what follows we write ν2(a) for the exponent of 2 in the factorization of the
integer a.

Lemma 4. We have

ν2

((

ℓ

k

)

23k
)

> ν2(2ℓ)

for all k ≥ 1. Further,

ν2

((

2k

ℓ

)

2ℓ
)

≥ k + 3

for ℓ = 3 and ℓ ≥ 5.

Proof. We use Theorem 3 with p = 2. For the first inequality, we note that it is clear for
k = 1, so we may assume that k ≥ 2. Write ℓ = 2ℓ0ℓ1 with integers ℓ0 ≥ 0 and ℓ1 odd. The
inequality is clear for ℓ0 ≤ 1. It is also clear if k > (ℓ0 + 1)/3. So, we may assume that
k ≤ (ℓ0+1)/3. Write k = 2k0k1, where k0 ≥ 0 and k1 is odd. Then k0 < k ≤ (ℓ0+1)/3 < ℓ0.
It follows that by summing up k with ℓ− k, we have at least ℓ0 − k0 carries in base 2. Thus,

ν2

((

ℓ

k

)

23k
)

≥ (ℓ0 − k0) + 3k > ℓ0 + 2k ≥ ℓ0 + 2,

which is what we wanted to prove.
We will now prove the second inequality. Assume first that ℓ ∈ [3, 2k − 1]. Then the

number of carries from summing up ℓ with 2k− ℓ is, by the previous argument, k− ℓ0, where
again ℓ = 2ℓ0ℓ1 with ℓ1 odd. Hence,

ν2

((

2k

ℓ

)

2ℓ
)

= k − ℓ0 + ℓ.
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This is at least k+3 if ℓ ≥ 3 is odd (since then ℓ0 = 0). It is also at least k− ℓ0+2ℓ0 > k+3
if ℓ0 ≥ 3. If ℓ0 = 1, then ℓ > 4 so k − ℓ0 + ℓ ≥ k + 3. Finally, if ℓ0 = 2, then since ℓ 6= 4, we
have ℓ ≥ 8 (since 4 | ℓ), so the above expression is at least k − 2 + 8 > k + 3. This was for
ℓ < 2k. Finally, when ℓ = 2k, we have

ν2

((

2k

ℓ

)

2ℓ
)

= 2k > k + 3

because k ≥ 3.

3 The Lucas sequence

A basic role in the theory of binary recurrent sequences is played by Lucas sequences.

Theorem 5. Let (un)n≥0 be a Lucas sequence with u0 = 0, u1 = 1 and

un+2 = pun+1 + qun, for all n ≥ 0.

Then Du(2
k) = 2k for all k ≥ 1 if and only if (p mod 4, q mod 4) = (2, 3).

Proof. We look at {u0, u1, u2, u3} = {0, 1, p, p2 + q}. Since these are all the residues modulo
4, it follows that either (p mod 4, q mod 4) = (2, 3) or (p mod 4, q mod 4) = (3, 1). The
second possibility entails (p mod 8, q mod 8) ∈ {(3, 1), (7, 1), (3, 5), (7, 5)} and one checks
computationally that none of these 4 possibilities gives that {uk (mod 8) : 0 ≤ k ≤ 7} covers
all residue classes modulo 8. Thus, we must have (p mod 4, q mod 4) = (2, 3).

We consider the quadratic polynomial x2 − px− q having discriminant ∆ = p2 +4q. The
equation x2 − px− q = 0 is the characteristic equation for the Lucas sequence. We consider
the cases ∆ = 0 and ∆ 6= 0 separately.

The degenerate case (∆ = 0). In this case un = npn−1
0 with p0 = p/2. We have

{u0, u1, u2, u3} = {0, 1, 2p0, 3p20} and since p0 is odd, these are distinct modulo 4. We claim
that ν2(um − un) = ν2(m− n) for m > n. Notice that this claim implies (1).

We have um − un ≡ m − n (mod 2). So ν2(um − un) = 0 if and only if ν2(m − n) = 0.
Next assume that m ≡ n (mod 2). Write m = n+ 2ℓ. Then

um − un = (n+ 2ℓ)pn+2ℓ−1
0 − npn−1

0 = (n+ 2ℓ)pn−1
0 (p2ℓ0 − 1) + 2ℓpn−1

0 . (3)

We can write p20 = 1 + 8p1 with p1 an integer. Thus,

p2ℓ0 = (1 + 8p1)
ℓ = 1 + 8ℓp1 +

(

ℓ

2

)

(8p1)
2 + · · · .

This in combination with (3) leads to

um − un = pn−1
0

(

2ℓ+
∑

k≥1

(n+ 2ℓ)

(

ℓ

k

)

(8p1)
k

)

.
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Since by Lemma 4 for every k ≥ 1 we have

ν2

((

ℓ

k

)

(8p1)
k

)

> ν2(2ℓ),

we conclude that
ν2(um − un) = ν2(2ℓ) = ν2(m− n),

thus establishing the claim.
The non-degenerate case (∆ 6= 0). Since p = 2p0 and q mod 4 = 3, it follows that

∆ = 4(p20 + q) = 16∆0, where ∆0 is an integer. Let

α = p0 + 2
√

∆0 and β = p0 − 2
√

∆0

be the roots of x2 − px− q = 0. The Binet formula for un is

un =
αn − βn

α− β
. (4)

While not necessary for this proof, we take a detour and prove a property concerning the
index of appearance of powers of 2. In the course of proving it, we will show that 2‖vn, with
(vn)n≥0 the companion sequence of our Lucas sequence. This fact we actually do need in our
proof.

For a positive integer m let z(m) be the order of appearance of m in the sequence (un)n≥0.
It is the minimal positive integer k such that m | uk. It is known (see Bilu et al. [1]) that
this exists for all m which are coprime to q. Further, m | un if and only if z(m) | n. For us,
z(2) = 2 since p ≡ 2 (mod 4) and z(4) = 4. It follows easily by induction on k that

z(2k) = 2k.

One way to see this is to introduce the companion sequence (vn)n≥0 given by v0 = 2, v1 = p
and vn+2 = pvn+1 + qvn for all n ≥ 0. By induction, we get that 2‖vn for all n ≥ 0. The
Binet formula for vn is

vn = αn + βn for all n ≥ 0. (5)

We have u2n = unvn by the Binet formulas (4) and (5). We are now ready to show that
z(2k) = 2k. Assume that k ≥ 3 and that 2k | un. This implies that n = 2ℓn1 for some
integers ℓ and n, with ℓ ≥ 2 and n1 odd. Now we use repeatedly the formula u2m = umvm
for m = n/2, n/4, . . . , resulting in

un = u2ℓn1
= v2ℓ−1n1

v2ℓ−2n1
· · · vn1

un1
.

Since v2in1
≡ 2 (mod 4) for i = 0, 1, . . . , ℓ− 1 and un1

is odd, we infer that

ν2(u2ℓn1
) = ℓ.
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It follows that k ≥ ℓ. In particular, z(2k) = 2k.
Next we show that

un+2k ≡ un + 2k (mod 2k+1) (6)

for all k ≥ 1. One checks it easily by hand for k = 1 and n = 0, 1 as well as for k = 2 and
n = 0, 1, 2, 3. Assume next k ≥ 3. In what follows, for three algebraic integers a, b, c, we
write a ≡ b (mod c) if (a− b)/c is an algebraic integer. We have

α2k = (p0 + 2
√

∆0)
2k =p2

k

0 + 2kp2
k−1

0 (2
√

∆0) +

(

2k

2

)

p2
k−2

0 (2
√

∆0)
2

+

(

2k

4

)

p2
k−4

0 (2
√

∆0)
4 +

∑

ℓ≥3
ℓ6=4

(

2k

ℓ

)

p2
k−ℓ

0 (2
√

∆0)
ℓ.

Then, by Lemma 4,

α2k ≡ p2
k

0 + 2kp2
k−1

0 (2
√

∆0) +

(

2k

2

)

p2
k−2

0 (2
√

∆0)
2 +

(

2k

4

)

p2
k−1

0 (2
√

∆0)
4 (mod 2k+3

√

∆0).

Changing α to β, the same calculation yields

β2k ≡ p2
k

0 − 2kp2
k−1

0 (2
√

∆0) +

(

2k

2

)

p2
k−2

0 (2
√

∆0)
2 +

(

2k

4

)

p2
k−4

0 (2
√

∆0)
4 (mod 2k+3

√

∆0).

Thus,

αn+2k − βn+2k ≡ αn

(

p2
k

0 + 2kp2
k−1

0 (2
√

∆0) +

(

2k

2

)

p2
k−2

0 (2
√

∆0)
2 +

(

2k

4

)

p2
k−4

0 (2
√

∆0)
4

)

− βn

(

p2
k

0 − 2kp2
k−1

0 (2
√

∆0) +

(

2k

2

)

p2
k−2

0 (2
√

∆0)
2 +

(

2k

4

)

p2
k−4

0 (2
√

∆0)
4

)

≡ p2k0 (αn − βn) + 2kp2
k−1

0 (2
√

∆0)(α
n + βn)

+

(

2k

2

)

p2
k−2

0 (2
√

∆0)
2(αn − βn)

+

(

2k

4

)

p2
k−4

0 (2
√

∆0)
4(αn − βn) (mod 2k+3

√

∆0).

Dividing across by α− β (which is equal to 4
√
∆0), we obtain

un+2k ≡ p2
k

0 un + 2kp2
k−1

0 (vn/2) +

(

2k

2

)

p2
k−2

0 (4∆0)un

+

(

2k

4

)

p2
k−4

0 (16∆2
0)un (mod 2k+1).

(7)
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We have p2
k

0 ≡ 1 (mod 2k+1) and vn/2 ≡ 1 (mod 2). Finally,

(

2k

2

)

p2
k−2

0 (4∆0) = 2k+1(2k − 1)p2
k−2

0 ∆0 ≡ 0 (mod 2k+1),

and also
(

2k

4

)

p2
k−4

0 (16∆2
0) =

2k−2(2k − 1)(2k−1 − 1)(2k − 3)

3
24∆2

0 ≡ 0 (mod 2k+1).

We thus get from (7) that (6) holds for all k ≥ 1. This implies by induction on k that
Du(2

k) = 2k.

4 The general case: the proof of Theorem 1

In the previous section we dealt with the Lucas sequence (Theorem 5). We will make crucial
use of that result in order to deal with a more general recurrence (wn)n≥0 as in (2).

Proof of Theorem 1. If #{wn (mod 2k) : 0 ≤ n ≤ 2k − 1} = 2k for all k, it holds for k = 1
in particular. Thus, w0, w1 have different parities which is equivalent to w0 +w1 being odd.
This proves the first assertion. Conversely, write

wn = aun + bun+1.

Note that aun + bun+1 satisfies the same recurrence relation as wn. On setting n = 0,
respectively n = 1, we find b = w0 and a = w1 − pw0. Thus, a+ b = (w1 +w0)− pw0 is odd.
By (6), we obtain

wn+2k = aun+2k + bun+1+2k ≡ a(un + 2k) + b(un+1 + 2k)

≡ (aun + bun+1) + (a+ b)2k ≡ wn + 2k (mod 2k+1)

for k ≥ 1. This shows that Dw(2
k) = 2k for every k ≥ 1.

It remains to prove the final assertion. Note that it is enough to prove it for k = 3. This
can be done by doing a computer calculation modulo 8. We consider all integers a, b, p, q
with 0 ≤ a, b, p, q ≤ 7 and compute #{wn (mod 8) : 0 ≤ n ≤ 7}. It turns out that if
(p mod 4, q mod 4) 6= (2, 3), then this cardinality is < 8.

5 Tables

We tabulate the discriminator for a sequence that does not (Fibonacci sequence) and a
sequence that does (Sălăjan sequence) satisfy the conditions of Theorem 1. We give the
prime factorization of the values. Note the big difference in behavior.
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n DF (n) n DF (n) n DF (n)

1 1 21− 24 59 69− 80 431

2 2 25− 26 79 81− 113 3 · 197
3 3 27− 32 83 114− 115 3 · 283
4 5 33− 35 23 · 3 · 5 116− 152 1039

5 23 36− 39 157 153− 158 5 · 13 · 17
6 32 40− 44 173 159− 162 1171

7− 8 2 · 7 45− 55 193 163− 166 1451

9− 11 3 · 5 56− 59 311 167− 184 3 · 487
12− 16 2 · 3 · 5 60− 64 337 185− 208 1609

17− 20 5 · 7 65− 68 409 209− 281 3 · 761

Table 1: A270151: Discriminator for the Fibonacci sequence 1, 2, 3, 5, 8, 13, . . .

n DS(n) n DS(n)

1 1 129− 256 28

2 2 257− 512 29

3− 4 22 513− 1024 210

5− 8 23 1025− 2048 211

9− 16 24 2049− 2500 55

17− 20 52 2501− 4096 212

21− 32 25 4097− 8192 213

33− 64 26 8193− 12500 56

65− 100 53 12501− 16384 214

101− 128 27 16385− 32768 215

Table 2: Discriminator for the Sălăjan sequence 2, 1, 8, 19, 62, 181, . . .

Table 2 demonstrates Theorem 2.
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