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Abstract

In a previous paper, we proved that the arithmetic subderivativeDS is discontinuous

at any rational point with respect to the ordinary absolute value. In the present paper,

we study this question with respect to the p-adic absolute value. In particular, we show

that DS is in this sense continuous at the origin if S is finite or p /∈ S.

1 Introduction

Let 0 6= x ∈ Q. There exists a unique sequence (νp(x))p∈P of integers (with only finitely
many nonzero terms) such that
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x = (sgn x)
∏

p∈P

pνp(x). (1)

Here P stands for the set of primes, and sgn x = x/|x|. Define that sgn 0 = 0 and νp(0) = ∞
for all p ∈ P. In addition to the ordinary axioms of ∞, we state that 0 · ∞ = 0. Then (1)
holds also for x = 0.

We recall the basic properties of the p-adic order νp.

Proposition 1. For all x, y ∈ Q,

(a) νp(x) = ∞ if and only if x = 0;

(b) νp(xy) = νp(x) + νp(y);

(c) νp(x+ y) ≥ min(νp(x), νp(y));

(d) νp(x+ y) = min(νp(x), νp(y)) if νp(x) 6= νp(y).

Proof. Properties (a) and (b) are trivial. For (c) and (d), see, e.g., [2, Proposition 2.4].

Throughout this paper, we let a ∈ Q, p, q ∈ P, p 6= q, and ∅ 6= S ⊆ P.
The arithmetic subderivative [11, 8, 9] of x ∈ Q with respect to S, a.k.a. the arithmetic

type derivative [4] is

DS(x) = x
∑

p∈S

νp(x)

p
.

The arithmetic partial derivative [10, 7] of x with respect to p is Dp(x) = D{p}(x). The
arithmetic derivative [12, 3, 13] of x is D(x) = DP(x). Clearly,

DS(x) =
∑

p∈S

Dp(x), D(x) =
∑

p∈P

Dp(x).

The function DS is very strongly discontinuous at any a [8, Theorem 4] with respect to
the ordinary absolute value. But do we succeed better if we use the p-adic absolute value

of x, defined by

|x|p =
1

pνp(x)
?

(In particular, |0|p = 1/∞ = 0.)
We recall the basic properties of | · |p.

Proposition 2. For all x, y ∈ Q,

(a) |x|p = 0 if and only if x = 0;

(b) |xy|p = |x|p|y|p;
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(c) |x+ y|p ≤ max(|x|p, |y|p);

(d) |x+ y|p = max(|x|p, |y|p) if |x|p 6= |y|p.

Proof. This proposition is equivalent to Proposition 1.

Let us write

x = x
1

pνp(x)
pνp(x) = x|x|pp

νp(x) = µp(x)p
νp(x),

where
µp(x) = x|x|p =

x

pνp(x)
. (2)

Proposition 3. For all x, y ∈ Q,

(a) νp(µp(x)) = 0 if x 6= 0, νp(µp(0)) = νp(0) = ∞;

(b) |µp(x)|p = 1 if x 6= 0, |µp(0)|p = 0;

(c) µp(xy) = µp(x)µp(y);

(d) Dp(µp(x)) = 0.

Proof. Trivial.

The p-adic distance |x− y|p is smaller the larger νp(x− y) is.
We say that a function Q → Q is p-adically continuous, in short p-continuous, if it is

continuous with respect to | · |p. So we ask: Is DS p-continuous at some a? We study this
question by considering sequences (xi) of rational numbers. If |xi − a|p → 0, equivalently
νp(xi − a) → ∞, then (xi) converges p-adically, in short p-converges, to a. Let xi →p a
denote this convergence.

Sections 2–3 are introductory. We present in Section 2 a “light version” of Dirichlet’s
theorem on arithmetic progressions. We study p-convergence in Section 3.

Sections 4–7 contain our main results. We prove in Section 4 that DS is p-continuous
at a = 0 if S is finite or p /∈ S. We also prove that Dp is p-continuous also at a 6= 0.
On the other hand, we show in Section 5 that Dq can be (and conjecture that it always is)
p-discontinuous at a 6= 0. In Section 6, we extend the results of Section 5 to DS when S is
finite. Although Section 5 is only a special case of Section 6, we find it instructive to present
it separately. We complete our paper with the conclusion in Section 7.

2 “Poor man’s theorem on arithmetic progressions”

Throughout this section, a, b ∈ Z with gcd (a, b) = 1. As suggested by Graham et al. [5], we
let a ⊥ b denote that gcd(a, b) = 1. See also [6, 4].

We recall Dirichlet’s theorem on arithmetic progressions.
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Theorem 4. If b > 0, then the set

T = {a+ nb : n ∈ Z+} (3)

contains infinitely many primes.

Proof. See, e.g., [1, Theorem 7.9].

Corollary 5. If b 6= 0, then the set (3) contains infinitely many primes or their additive

inverses.

Proof. Trivial.

Theorem 4 is advanced, while our paper is elementary. We do not need the full force of
this theorem, and we want to use only elementary methods. Therefore we apply, instead of
Theorem 4, the following “poor man’s theorem on arithmetic progressions.” It is elementary
but strong enough for us. (Remember that ∅ 6= S ⊆ P throughout.)

Theorem 6. If S is finite and b 6= 0, then the set (3) contains infinitely many numbers that

are not divisible by any element of S.

Proof. If a = 0, then b = ±1, since otherwise a 6⊥ b, a contradiction. Therefore T = Z+ or
T = Z−, and the claim is trivially true.

Now assume that a 6= 0. Let

S = {p1, . . . , ph, q1, . . . , qk}, p1, . . . , ph ∤ a, q1, . . . , qk | a.

(Either the pi or the qi can be missing. Clearly, pi 6= qj for all i, j.) We show that the
numbers a+ nb apply when n goes through the set

N = {mp1 · · · ph : m ∈ Z+, q1, . . . , qk ∤ m}.

Write
c = p1 · · · ph.

(If the pi are missing, then the “empty product” c = 1.)
Let x ∈ T with n ∈ N , that is,

x = a+mcb, q1, . . . , qk ∤ m. (4)

Each pi | c but pi ∤ a, so pi ∤ x. Each qi | a but qi ∤ mcb. (Clearly, qi ∤ m, c. If qi | b, then
a 6⊥ b, a contradiction.) Therefore also qi ∤ x. Consequently, s ∤ x for all s ∈ S. Because
there are infinitely many numbers (4), the claim follows.

4



3 Convergence

Continuity is usually proved by the “ε − δ technique”, while discontinuity is often proved
using suitable sequences. For consistency, we use sequences also in proving continuity. To
that end, we need a characterization of p-convergence.

Proposition 7. Let (xi) be a sequence of rational numbers. If a 6= 0, then the following

conditions are equivalent.

(a) xi →p a;

(b) µp(xi) →p µp(a) and there is i0 ∈ Z+ such that νp(xi0) = νp(xi0+1) = · · · = νp(a).

If a = 0, then (b) ⇒ (a) but not conversely.

Proof.

Case 1: a 6= 0.
(a) ⇒ (b): If i0 does not exist, then (xi) has a subsequence (xik) whose each term satisfies
νp(xik) 6= νp(a). Consequently,

νp(xik − a)
Prop.1(d)

= min(νp(xik), νp(a)) ≤ νp(a)
a 6=0
< ∞, k ≥ 1.

Hence νp(xik − a) 6→ ∞, implying xi 6→p a, a contradiction. Therefore i0 exists, i.e.,

xi = µp(xi)p
νp(a), i ≥ i0.

Now, for i ≥ i0, we have
xi − a = (µp(xi)− µp(a))p

νp(a), (5)

and further

νp(µp(xi)− µp(a)) + νp(a)
(5),Prop. 1(b)

= νp(xi − a)
(a)
→ ∞,

verifying µp(xi) →p µp(a).

(b) ⇒ (a): Since

xi − a
(b)
= µp(xi)p

νp(a) − µp(a)p
νp(a) = (µp(xi)− µp(a))p

νp(a), i ≥ i0,

we have

νp(xi − a)
Prop. 1(b)

= νp(µp(xi)− µp(a)) + νp(a)
(b)
→ ∞,

verifying (a).

Case 2: a = 0.
(b) ⇒ (a). Since νp(xi0) = νp(xi0+1) = · · · = νp(0) = ∞, it follows that xi0 = xi0+1 = · · · = 0.
Therefore xi →p 0.

(a) 6⇒ (b). If xi = pi, then xi →p 0, but µp(xi) = 1 →p 1 6= 0 = µp(0).
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Proposition 8. A function F : Q → Q is p-continuous at a if and only if any sequence (xi)
of rational numbers satisfying xi →p a satisfies F (xi) →p F (a).

Proof. Proceed as in proving the corresponding property of the ordinary continuity.

There are three formally different ways to consider p-convergence. First, use νp every-
where. Second, use | · |p everywhere. Third, use either νp or | · |p, depending on the situation.
We follow the first way.

4 The cases of DS, a = 0, and Dp, a arbitrary

We begin with a lemma that may be interesting on its own.

Lemma 9. Let S be finite and y ∈ Q. Assume that

{q ∈ P | νq(y) 6= 0} ⊆ S.

Factorize

y =
∏

q∈S

qνq(y) = u(y)w(y),

where

u(y) =
∏

q∈S

qνq(y)−1, w(y) =
∏

q∈S

q.

Then

DS(y) = u(y)v(y),

where

v(y) =
∑

q∈S

νq(y)
∏

r∈S\{q}

r.

Proof. We have

DS(y) =
∑

q∈S

DS(q
νq(y))

∏

r∈S\{q}

rνr(y) =
∑

q∈S

νq(y)q
νq(y)−1

∏

r∈S\{q}

rνr(y)

=
∑

q∈S

νq(y)q
νq(y)−1

∏

r∈S\{q}

rνr(y)−1r =
∑

q∈S

νq(y)
(

∏

r∈S

rνr(y)−1
)(

∏

r∈S\{q}

r
)

,

verifying the claim.

Theorem 10. If S is finite or p /∈ S, then DS is p-continuous at the origin.
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Proof. Let
xi →p 0. (6)

We show that DS(xi) →p 0 = DS(0).
If (xi) has only a finite number of nonzero terms, then the claim is trivially true. So, we

assume that there are infinitely many xi 6= 0. Because zeros do not cause any problem in
the proof, we can omit them and thus assume that each xi 6= 0.

Write

xi

(1)
= (sgn xi)

∏

q∈P

qνq(xi) = (sgn xi)
(

∏

q∈S

qνq(xi)
)(

∏

q∈P\S

qνq(xi)
)

= (sgn xi)yizi,

where
yi =

∏

q∈S

qνq(xi), zi =
∏

q∈P\S

qνq(xi).

(If S = P, then the “empty product” zi = 1.) Then

DS(xi) = (sgn xi)ziDS(yi). (7)

First, let us assume that S is finite. By Lemma 9,

DS(yi) = u(yi)v(yi). (8)

Since v(yi) ∈ Z, it follows that
νp(v(yi)) ≥ 0. (9)

If p /∈ S, then

νp(DS(xi))
(7),(8)
= νp(ziu(yi)v(yi))

Prop. 1(b)
= νp(zi) + 0 + νp(v(yi))

(9)

≥ νp(zi) = νp(xi)
(6)
→ ∞.

If p ∈ S, then

νp(DS(xi))
(7),(8)
= νp(ziu(yi)v(yi))

Prop. 1(b)
= 0 + νp(u(yi)) + νp(v(yi))

(9)

≥ νp(u(yi))

= νp(xi)− 1
(6)
→ ∞.

Thus, DS(xi) →p 0 in each case.
Second, assume that S is infinite. Because w(y) and v(y) contain a divergent infinite

product, applying Lemma 9 needs some preparation. Define

Si = {q ∈ S | νq(xi) 6= 0}.

If DS(xi) 6= 0 only for finitely many terms, then the claim is trivially true. So, we assume
that there are infinitely many such terms. We can omit all xi satisfying DS(xi) = 0, because
they do not violate the convergence. Then each Si 6= ∅.
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Now

DS(xi) = DSi
(xi)

(7)
= (sgn xi)ziDSi

(yi). (10)

By Lemma 9,
DSi

(yi) = ui(yi)vi(yi), (11)

where
ui(yi) =

∏

q∈Si

qνq(yi)−1, vi(yi) =
∑

q∈Si

νq(yi)
∏

r∈Si\{q}

r.

If p /∈ S, then

νp(DS(xi))
(10),(11)
= νp(ziui(yi)vi(yi))

Prop. 1(b)
= νp(zi) + 0 + νp(vi(yi))

(9)

≥ νp(zi) = νp(xi)
(6)
→ ∞.

Consequently, DS(xi) →p 0. We discuss the case of p ∈ S at the end of this section.

Theorem 11. The function Dp is p-continuous everywhere.

Proof. If a = 0, then apply Theorem 10. If a 6= 0, then let xi →p a, and let i0 be as in
Proposition 7. For i ≥ i0,

Dp(xi)−Dp(a) = Dp(µp(xi)p
νp(a))−Dp(µp(a)p

νp(a))
Prop. 3(d)

= νp(a)p
νp(a)−1µp(xi)− νp(a)p

νp(a)−1µp(a)

= νp(a)p
νp(a)−1(µp(xi)− µp(a)) = c(µp(xi)− µp(a)), c = νp(a)p

νp(a)−1.
(12)

If νp(a) = 0, then

Dp(xi)
(12)
= Dp(a), i ≥ i0.

If νp(a) 6= 0, then

νp(Dp(xi)−Dp(a))
(12),Prop. 1(b)

= νp(c) + νp(µp(xi)− µp(a))
Prop. 7
→ ∞.

Therefore Dp(xi) →p Dp(a) in each case.

Can we extend the proof of Theorem 10 to the case where S is infinite and p ∈ S? If
p ∈ Si, then

νp(DS(xi))
(10),(11)
= νp(ziui(yi)vi(yi))

Prop. 1(b)
= 0 + νp(ui(yi)) + νp(vi(yi))

(9)

≥ νp(ui(yi))

= νp(xi)
(6)
→ ∞,

implying the convergence.
If

p ∈ S \ Si, (13)
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then

νp(DS(xi))
(10),(11)
= νp(ziui(yi)vi(yi))

Prop. 1(b)
= 0 + 0 + νp(vi(yi)) = νp(xi).

If (13) holds only for finitely many indices i, then the corresponding xi do not effect on the
convergence, and therefore they do not bother us. If there are infinitely many such indices,
then the question of convergence remains open.

We thus conclude that DS(xi) →p 0 also if, for any sequence (xi) of nonzero numbers with
xi →p 0, only finitely many terms satisfy (13). However, we find this assumption useless,
because its validity cannot be tested.

5 The case of Dq, a 6= 0

In this and the next section, we show that Dq is under certain assumptions discontinuous
outside the origin. These sections are quite technical and require the use of rather heavy
notation. In order to increase readability, we consider the special case S = {q} separately.

Theorem 12. Let

a 6= 0. (14)

If

Dq(a) = 0, (15)

then Dq is p-discontinuous at a.

Proof. Let

xi = a+
pi

q
. (16)

Then
νp(xi − a) = i → ∞, (17)

implying xi →p a. Since

νq(a)
(15)
= 0, νq(

pi

q
) = −1,

we have νq(xi)
(16),Prop. 1(d)

= −1.
Consequently,

Dq(xi) =
νq(xi)

q
xi = −

xi

q
, (18)

and further

νp(Dq(xi)−Dq(a))
(15)
= νp(Dq(xi))

(18)
= νp(

xi

q
) = νp(xi).

We show that νp(xi) 6→ ∞; then Dq(xi) 6→p Dq(a), verifying the claim. If

νp(xi) → ∞, (19)
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then

νp(a) = νp(xi − (xi − a))
Prop. 1(c)

≥ min(νp(xi), νp(xi − a))
(17),(19)
→ ∞.

Hence νp(a) = ∞, i.e., a = 0, contradicting (14).

Theorem 13. Let

a =
a1
a2

, 0 6= a1 ∈ Z, a2 ∈ Z+, a1 ⊥ a2. (20)

If

Dq(a) 6= 0 (21)

and

q ∤ a2, (22)

then Dq is p-discontinuous at a.

Proof. Let i ∈ Z+. Since µp(a1)
(20),Prop. 3(a)

⊥ µp(a2)p
i and µp(a2)

(20)
> 0, there are, by Theo-

rem 6 (S = {p, q}, a = µp(a1), b = µp(a2)p
i) positive integers ri1 < ri2 < · · · satisfying

rik = µp(a1) + nikµp(a2)p
i, nik ∈ Z+, p, q ∤ rik, k = 1, 2, . . . . (23)

Consequently,

µp(a) + nikp
i Prop. 3(c)

=
µp(a1)

µp(a2)
+ nikp

i =
µp(a1) + nikµp(a2)p

i

µp(a2)

(23)
=

rik
µp(a2)

.

Choose r1k1 < r2k2 < · · · and write n1 = n1k1 , n2 = n2k2 , . . . , r1 = r1k1 , r2 = r2k2 , . . . . Define
the sequence (yi) by

yi = µp(a) + nip
i =

ri
µp(a2)

. (24)

Then

νp(yi)
(24),Prop. 1(b)

= νp(ri)− νp(µp(a2))
(23),Prop. 3(a)

= 0 (25)

and

νp(yi − µp(a))
(24)
= νp(nip

i)
Prop. 1(b)

= νp(ni) + i
ni∈Z+

≥ i → ∞. (26)

For all i ∈ Z+, we have

Dq(yi)
(24)
=

µp(a2)Dq(ri)− riDq(µp(a2))

µp(a2)2

q ∤ ri
= −

riDq(µp(a2))

µp(a2)2
(2)
= −

(

riDq

( a2
pνp(a2)

)

)

/

( a2
pνp(a2)

)2

= −
( ri
pνp(a2)

Dq(a2)
)

/

( a2
pνp(a2)

)2

= −
rip

νp(a2)Dq(a2)

a22

(22)
= 0. (27)
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Also define
xi = yip

νp(a); (28)

then

Dq(xi) = pνp(a)Dq(yi)
(27)
= 0. (29)

Since µp(xi)
(25),(28)
= yi

(26)
→p µp(a), it follows that xi

Prop. 7
→p a. On the other hand, since

Dq(xi)−Dq(a)
(29)
= −Dq(a)

(21)

6= 0,

we have

νp(Dq(xi)−Dq(a)) = νp(Dq(a))
(21)
< ∞,

verifying Dq(xi) 6→p Dq(a).

Corollary 14. If 0 6= a ∈ Z, then Dq is p-discontinuous at a.

Proof. Apply Theorem 12 if q ∤ a, and Theorem 13 if q | a.

If Dq(a) 6= 0 and q | a2 (where a2 is as in (20)), then our question remains open. We
conjecture that discontinuity holds also in this case.

Conjecture 15. The function Dq is p-discontinuous outside the origin.

6 The case of DS, S finite, a 6= 0

We extend Theorems 12 and 13, Corollary 14, and Conjecture 15. The presentation branches
according to properties of DS(a) and S, summarized in Section 7.

Theorem 16. Let S be finite, p /∈ S, and a 6= 0. If

DS(a) = 0, (30)

then DS is p-discontinuous at a.

Proof. Let S = {q1, . . . , qm}, take γ ∈ Z+ satisfying

γ > −νq1(a), . . . ,−νqm(a), (31)

and define

xi = a+
pi

(q1 · · · qm)γ
. (32)

Let i ∈ Z+ and j ∈ {1, . . . ,m}. Then

νp(xi − a)
(32)
= i → ∞, xi →p a, νqj(xi − a)

(32)
= −γ

(31)
< νqj(a),

νqj(xi) = νqj((xi − a) + a)
Prop. 1(d)

= −γ, Dqj(xi) =
νqj(xi)

qj
xi = −

γxi

qj
. (33)
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As in the proof of Theorem 12, we see that

νp(xi) 6→ ∞. (34)

Now

DS(xi)
(33)
= −

( 1

q1
+ · · ·+

1

qm

)

γxi = −
em−1(q1, . . . , qm)γxi

q1 · · · qm
, (35)

where em−1 denotes the (m− 1)’th elementary symmetric function. Therefore

νp(DS(xi)−DS(a))
(30)
= νp(DS(xi))

(35),Prop. 1(b)
= νp(em−1(q1, . . . , qm)) + νp(γ) + νp(xi).

Since νp(em−1(q1, . . . , qm)) and νp(γ) are (finite) constants and νp(xi) 6→ ∞, we have

νp(DS(xi)−DS(a)) 6→ ∞,

i.e., DS(xi) 6→p DS(a).

Theorem 17. Let S 6= {p} be finite, p ∈ S, and a 6= 0. If

DS(a) = 0, (36)

then DS is p-discontinuous at a.

Proof. Let
S = {q1, . . . , qm, p}, S0 = {q1, . . . , qm}, (37)

and let (xi) be as in (32). For i > νp(a),

νp(xi − a)
(32)
= i > νp(a) (38)

and further

νp(xi) = νp((xi − a) + a)
(38),Prop. 1(d)

= νp(a);

hence

Dp(xi) =
νp(a)

p
xi. (39)

Now

DS(xi) = DS0
(xi) +Dp(xi)

(35),(39)
=

em−1(q1, . . . , qm)γxi

q1 · · · qm
+

νp(a)

p
xi = cxi, (40)

where

c =
em−1(q1, . . . , qm)γ

q1 · · · qm
+

νp(a)

p
.

We can choose γ ∈ Z+ so that, in addition to (31), the inequality c 6= 0 holds. Then

νp(c) < ∞. (41)

Since

νp(DS(xi)−DS(a))
(36)
= νp(DS(xi))

(40),Prop. 1(b)
= νp(c) + νp(xi)

(34),(41)

6→ ∞,

DS(xi) 6→p DS(a) follows.
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Theorem 18. Let a be as in (20), let S be finite, and p /∈ S. If

DS(a) 6= 0 (42)

and

νp(a2DS(a)) 6= νp(aDS(a2)), (43)

then DS is p-discontinuous at a.

Proof. Let S = {q1, . . . , qm}, i ∈ Z+, and j ∈ {1, . . . ,m}. Proceeding as in the proof of
Theorem 13, we have

rik = µp(a1) + nikµp(a2)p
i, p, q1, . . . , qm ∤ rik, k = 1, 2, . . . ,

yi = µp(a) + nip
i =

ri
µp(a2)

, p, q1, . . . , qm ∤ ri, (44)

Dqj(yi) = −
rip

νp(a2)Dqj(a2)

a22
, (45)

xi = yip
νp(a) →p a, (46)

and

Dqj(xi)
(45),(46)
= −pνp(a)

rip
νp(a2)Dqj(a2)

a22

(20),Prop. 1(b)
= −

rip
νp(a1)Dqj(a2)

a22
= −criDqj(a2), (47)

where

c =
pνp(a1)

a22
.

Consequently,

DS(xi) =
m
∑

j=1

Dqj(xi)
(47)
= −cri

m
∑

j=1

Dqj(a2) = −criDS(a2), (48)

and further

νp(DS(xi))
(48)
= νp(criDS(a2))

Prop. 1(b)
= νp(a1)− 2νp(a2) + νp(DS(a2))

(20),Prop. 1(b)
= νp(a)− νp(a2) + νp(DS(a2)) (49)

(43),Prop. 1(b)

6= νp(a2)− νp(a2) + νp(DS(a))

= νp(DS(a)). (50)

Let
u(xi) = DS(xi)−DS(a).

13



Then

νp(u(xi))
(50),Prop. 1(d)

= min(νp(DS(xi)), νp(DS(a)))
(48),Prop. 1(b)

= min(νp(cDS(a2)), νp(DS(a))) (51)

≤ νp(DS(a))
(42)
< ∞, (52)

and DS(xi) 6→p DS(a) follows.

Theorem 19. Let a be as in (20), let S 6= {p} be finite and p ∈ S. Assume that DS(a) 6= 0.
If

DS\{p}(a) = 0, (53)

then DS is p-continuous at a. If
DS\{p}(a) 6= 0 (54)

and

νp(a2DS\{p}(a)) 6= νp(aDS\{p}(a2)), (55)

then DS is p-discontinuous at a.

Proof. If (53) holds, then

DS(a) = DS\{p}(a) +Dp(a) = Dp(a),

and the claim follows from Theorem 11.
Now assume that (54) holds. Let S, S0, and xi be as in (37) and (46), respectively. Since

νp(xi)
(44),(46)
= νp(a), we have

Dp(xi) = ρxi, ρ =
νp(a)

p
.

Now
DS(xi)−DS(a) = DS0

(xi) +Dp(xi)− (DS0
(a) +Dp(a)) = u(xi) + v(xi), (56)

where
u(xi) = DS0

(xi)−DS0
(a), v(xi) = ρ(xi − a).

Because

νp(v(xi))
Prop. 1(b)

= νp(ρ) + νp(xi − a)
(46)
→ ∞

and νp(u(xi)) is bounded by (52), there is i0 ∈ Z+ such that

νp(v(xi)) > νp(u(xi)) for all i ≥ i0. (57)

Thus, for i ≥ i0,

νp(DS(xi)−DS(a))
(56),(57),Prop. 1(d)

= νp(u(xi))
(52)

6→ ∞,

verifying DS(xi) 6→p DS(a).

14



Corollary 20. If S 6= {p} is finite and 0 6= a ∈ Z, then DS is p-discontinuous at a.

Proof. Apply Theorem 16 if p /∈ S and DS(a) = 0, Theorem 17 if p ∈ S and DS(a) = 0,
Theorem 18 if p /∈ S and DS(a) 6= 0, and Theorem 19 if p ∈ S and DS(a) 6= 0. Note that
(43) and (55) are satisfied (the right-hand side is infinite but the left-hand side is finite).

We conjecture that Theorems 18 and 19 remain true without (43) and (55), respectively.

Conjecture 21. If S 6= {p} is finite, 0 6= a ∈ Q, and DS\{p}(a) 6= 0, then DS is p-
discontinuous at a.

7 Conclusion

We summarize our results. C denotes p-continuity, D p-discontinuity, and O denotes that
the question is open.

1 (Theorem 10). S is finite or p /∈ S, a = 0. C.

2 (the end of Section 5). S infinite, p ∈ S, a = 0. C or O.

3 (Theorem 11). S = {p}, a arbitrary. C.

4 (Theorem 12, a special case of Theorems 16 and 17). S = {q}, a 6= 0, Dq(a) = 0. D.

5 (Theorem 13, a special case of Theorems 18 and 19). S = {q}, a 6= 0, Dq(a) 6= 0. D.

6 (Theorem 16). S finite, p /∈ S, a 6= 0, DS(a) = 0. D.

7 (Theorem 17). S( 6= {p}) finite, p ∈ S, a 6= 0, DS(a) = 0. D.

8 (Theorem 18). S finite, p /∈ S, a 6= 0, DS(a) 6= 0. D under (43), otherwise O.

9 (Theorem 19). S( 6= {p}) finite, p ∈ S, a 6= 0, DS(a) 6= 0. C under (53), D under (54)
and (55), otherwise O.

10. S infinite, a 6= 0. O.
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