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Abstract

Poly-Bernoulli numbers are one of the generalizations of the classical Bernoulli num-

bers. Since a negative indexed poly-Bernoulli number is an integer, it is an interesting

problem to study this number from a combinatorial viewpoint. In this short article, we

give a new combinatorial relation between symmetrized poly-Bernoulli numbers and

Dumont-Foata polynomials.

1 Introduction

A poly-Bernoulli polynomial B
(ℓ)
m (x) of index ℓ ∈ Z is defined by the generating series

e−xtLiℓ(1− e−t)

1− e−t
=

∞
∑

m=0

B(ℓ)
m (x)

tm

m!
,

where Liℓ(z) is the polylogarithm function given by

Liℓ(z) =
∞
∑

m=1

zm

mℓ
(|z| < 1).
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The polynomial B
(1)
m (x) coincides with the classical Bernoulli polynomial Bm(1 − x) =

(−1)mBm(x) since Li1(z) = − log(1 − z) holds. Following Kaneko [7], the special value

B
(ℓ)
m := B

(ℓ)
m (0) is called a poly-Bernoulli number of index ℓ.

The aim of this study is giving a combinatorial perspective to the special values of
B

(ℓ)
m (x) at integers k ∈ Z. We assume that the index ℓ ≤ 0. In this case the values B

(ℓ)
m (k)

are always integers. One of the first such investigations was Brewbaker’s study [4]. He

noticed the coincidence of two numbers, the poly-Bernoulli number B
(ℓ)
m (0) and the number

of 01 lonesum matrices of size m× |ℓ|. Recently, Bényi and Hajnal [3] also established more
combinatorial relations in this direction.

In this article, we take a step in another direction similar to Kaneko, Sakurai, and
Tsumura [9]. To describe this more precisely, let Gn be the Genocchi number A110501

defined by Gn = 2(2n+2 − 1)|Bn+2|, where Bm = B
(1)
m (1) is the classical Bernoulli number.

In [9, Theorem 4.2] the authors showed

n
∑

ℓ=0

(−1)ℓB
(−ℓ−1)
n−ℓ (1) = (−1)n/2Gn (1)

for any n ≥ 0. As they mentioned, this equation is an analogue of the result of Arakawa and
Kaneko [2],

n
∑

ℓ=0

(−1)ℓB
(−ℓ)
n−ℓ (0) =

{

1, if n = 0;

0, if n > 0.
(2)

In addition, Sakurai asked in her master’s thesis whether we can generalize these equa-
tions for any positive integers x = k, and give some combinatorial meaning to them. Our
main result provides an answer to these two questions in terms of the Dumont-Foata poly-
nomial as follows.

Theorem 1. Let Gn(x, y, z) be the n-th Dumont-Foata polynomial defined in (3), and B
(−ℓ)
m (k)

the symmetrized poly-Bernoulli number defined in (5). Then we have

n
∑

ℓ=0

(−1)ℓB
(−ℓ)
n−ℓ (k) = k! · (−1)n/2Gn(1, 1, k)

for any non-negative integers n, k ≥ 0. In particular, both sides equal zero for odd n.

This theorem recovers the equations (1) and (2) since B
(−ℓ)
m (0) = B

(−ℓ)
m (0),B

(−ℓ)
m (1) =

B
(−ℓ−1)
m (1), and Gn(1, 1, 1) = Gn hold as we see later.

Remark 2. I feel that there are a lot of possibilities of establishing similar identities as this
theorem. Recent work of Bényi and Hajnal [3, Section 6] pointed out that the sequence of
diagonal sums

n
∑

ℓ=0

B
(−ℓ−1)
n−ℓ (1) (n ≥ 0)
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appears as A136127 in the On-Line Encyclopedia of Integer Sequences (OEIS) [11]. Further-
more, there are many types of generalizations of poly-Bernoulli numbers as referred in [5],
and analogues such as poly-Euler numbers [10], and poly-cosecant numbers [8].

2 Definitions

2.1 Dumont-Foata polynomials

We review the work of Dumont and Foata [6] here. For a positive even integer n ∈ 2Z,
we consider the surjective map p : {1, 2, . . . , n} → {2, 4, . . . , n} with p(x) ≥ x for each
x ∈ {1, 2, . . . , n}. This map is called a (surjective) pistol of size n, and corresponds to the
following diagram. Here we draw an example for n = 6.

Figure 1: p(1) = 2, p(2) = p(4) = 4, p(3) = p(5) = p(6) = 6

Let Pn be the set of all pistols of size n. For each pistol p ∈ Pn, we define three quantities
called bulging, fixed, and maximal points. First, the number x ∈ {1, 2, . . . , n} is a bulging

point of p ∈ Pn if p(y) < p(x) for any 0 < y < x. We let b(p) denote the number of bluging
points of p. In the diagram, b(p) corresponds to the number of steps of the minimal stair
covering all check marks. For the above example p, the points x = 1, 2, 3 are bulging points,
so that b(p) = 3.

Figure 2: minimal stair (left), not minimal stair (right)

Next, the point x ∈ {1, 2, . . . , n} is called a fixed point of p ∈ Pn if p(x) = x. Finally,
the point x ∈ {1, 2, . . . , n − 1} is a maximal point of p ∈ Pn if p(x) = n. We let f(p) and
m(p) denote the numbers of fixed points and maximal points of p ∈ Pn, respectively. For
the above example, we have f(p) = 2 and m(p) = 2. Dumont and Foata [6, Théorème 1a,
2] established the following interesting theorem.
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Theorem 3. [6] Let n ∈ 2Z>0 be a positive even integer. The polynomial defined by

Gn(x, y, z) :=
∑

p∈Pn

xb(p)yf(p)zm(p) (3)

is a symmetric polynomial in three variables, and satisfies Gn(1, 1, 1) = Gn.

In addition, G0(x, y, z) = 1 and Gn(x, y, z) = 0 for a positive odd integer n ∈ Z. The
polynomial Gn(x, y, z) is called the n-th Dumont-Foata polynomial. Furthermore, Dumont
and Foata showed that the polynomial for n > 0 has the form Gn(x, y, z) = xyzFn(x, y, z),
and the polynomial Fn(x, y, z) satisfies the recurrence relation

Fn(x, y, z) = (x+ z)(y + z)Fn−2(x, y, z + 1)− z2Fn−2(x, y, z)

with initial values F1(x, y, z) = 0 and F2(x, y, z) = 1. This implies that the polynomial
Gn(z) := Gn(1, 1, z) called the Gandhi polynomial A036970 satisfies

Gn+2(z) = z(z + 1)Gn(z + 1)− z2Gn(z) (4)

with G0(z) = 1, G1(z) = 0.
For instance, there exist three pistols of size 4. The pistols have (b(p), f(p),m(p)) =

(2, 2, 1), (2, 1, 2) and (1, 2, 2), so that the Dumont-Foata polynomial is given by

G4(x, y, z) = x2y2z + x2yz2 + xy2z2 = xyz(xy + yz + zx).

Indeed, G4(1, 1, 1) = 3 coincides the 4-th Genocchi number given by G4 = 2(26− 1)|B6| = 3.

Figure 3: All elements of P4

2.2 Symmetrized poly-Bernoulli numbers

Table 1. includes the first few values of poly-Bernoulli numbers {B
(−ℓ)
m (0)} and {B

(−ℓ)
m (1)}

with m, ℓ ≥ 0.

ℓ\m 0 1 2 3 4

0 1 1 1 1 1
1 1 2 4 8 16
2 1 4 14 46 146
3 1 8 46 230 1066
4 1 16 146 1066 6902

ℓ\m 0 1 2 3 4

0 1 0 0 0 0
1 1 1 1 1 1
2 1 3 7 15 31
3 1 7 31 115 391
4 1 15 115 675 3451

Table 1: B
(−ℓ)
m (0) A099594, B

(−ℓ)
m (1) A136126
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We can see the symmetric property of these numbers at a glance. On the other hand,
for k ≥ 2 it seems unlikely that such a simple symmetric property can be given. In order to
reproduce the symmetric properties for any k ≥ 2, Kaneko-Sakurai-Tsumura [9] considered

combinations of B
(−ℓ)
m (k). To make this precise, let m, ℓ, k ≥ 0 be non-negative integers. We

now define the symmetrized poly-Bernoulli number B
(−ℓ)
m (k) by

B
(−ℓ)
m (k) =

k
∑

j=0

[

k

j

]

B(−ℓ−j)
m (k), (5)

where

[

k

j

]

is the unsigned Stirling number of the first kind A130534 defined in [1, Definition

2.5]. This number satisfies the symmetry property

B
(−ℓ)
m (k) = B

(−m)
ℓ (k)

for any m, ℓ, k ≥ 0. Note that

B
(−ℓ)
m (0) = B(−ℓ)

m (0), B
(−ℓ)
m (1) = B(−ℓ−1)

m (1).

ℓ\m 0 1 2 3 4

0 1 −1 1 −1 1
1 1 0 0 0 0
2 1 2 2 2 2
3 1 6 18 42 90
4 1 14 86 374 1382

ℓ\m 0 1 2 3 4

0 2 2 2 2 2
1 2 8 20 44 92
2 2 20 104 416 1472
3 2 44 416 2744 15032
4 2 92 1472 15032 120632

Table 2: B
(−ℓ)
m (2) and B

(−ℓ)
m (2)

Moreover, the authors showed the following explicit formula for B
(−ℓ)
m (k).

B
(−ℓ)
m (k) =

min(m,ℓ)
∑

j=0

j!(k + j)!

{

m+ 1
j + 1

}{

ℓ+ 1
j + 1

}

, (6)

where

{

k

j

}

is the Stirling number of the second kind A008277 defined in [1, Definition 2.2].

We prove our main theorem using this formula in the next section.

3 Proof

To prove Theorem 1, it suffices to show that the function

G̃n(k) :=
(−1)n/2

k!

n
∑

ℓ=0

(−1)ℓB
(−ℓ)
n−ℓ (k)
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satisfies the recurrence relation (4) for any integer k ≥ 0. First, we can easily see that
G̃0(k) = 1 and G̃1(k) = 0, which are the initial cases. Moreover, for any odd integer n,

G̃n(k) = 0 follows from the symmetric property of B
(−ℓ)
m (k). For an even integer n ≥ 2, by

the formula (6) we have

(−1)n/2k!

(

k(k + 1)G̃n(k + 1)− k2G̃n(k)− G̃n+2(k)

)

= k

n/2
∑

j=0

j!(k + j + 1)!

n−j
∑

ℓ=j

(−1)ℓ
{

n− ℓ+ 1
j + 1

}{

ℓ+ 1
j + 1

}

(7)

− k2

n/2
∑

j=0

j!(k + j)!

n−j
∑

ℓ=j

(−1)ℓ
{

n− ℓ+ 1
j + 1

}{

ℓ+ 1
j + 1

}

(8)

+

n/2+1
∑

j=0

j!(k + j)!

n+2−j
∑

ℓ=j

(−1)ℓ
{

n− ℓ+ 3
j + 1

}{

ℓ+ 1
j + 1

}

. (9)

Since

{

k

1

}

= 1 holds for any k ≥ 1, we can split the third line (9) according as j = 0 or not,

which equals

k! +

n/2
∑

j=0

(j + 1)!(k + j + 1)!

n+1−j
∑

ℓ=j+1

(−1)ℓ
{

n+ 3− ℓ

j + 2

}{

ℓ+ 1
j + 2

}

.

Let

an,j :=

n−j
∑

ℓ=j

(−1)ℓ
{

n− ℓ+ 1
j + 1

}{

ℓ+ 1
j + 1

}

. (10)

Then the total of (7), (8), and (9) equals

k! +

n/2
∑

j=0

j!(k + j)!

(

k(j + 1)an,j + (j + 1)(k + j + 1)an+2,j+1

)

. (11)

Once the sum is 0, the proof completes. By using the generating function given in [1,
Proposition 2.6 (8)], we have

tj

(1− t)(1− 2t) · · · (1− (j + 1)t)
=

∑

ℓ≥j

{

ℓ+ 1
j + 1

}

tℓ =
∑

ℓ≤n−j

{

n− ℓ+ 1
j + 1

}

tn−ℓ

for any non-negative integers n, j ∈ Z≥0. Multiplying these two expressions, we obtain

sjtj

(1− s)(1− t) · · · (1− (j + 1)s)(1− (j + 1)t)
=

∑

ℓ≥j

∑

k≤n−j

{

ℓ+ 1
j + 1

}{

n− k + 1
j + 1

}

sℓtn−k.
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By specializing at s = −x, t = x,

(−1)jx2j

(1− x2) · · · (1− (j + 1)2x2)
=

∑

ℓ≥j

∑

k≤n−j

(−1)ℓ
{

ℓ+ 1
j + 1

}{

n− k + 1
j + 1

}

xn+ℓ−k. (12)

Thus, we see that the number an,j defined in (10) appears as the n-th coefficient of (12). By
the expression of the left-hand side of (12), we easily see that an,j = 0 when n is an odd
integer or 2j > n. Further, we get the initial values a2j,j = (−1)j, an,0 = 1 for even n, and
the recurrence relation

an+2,j = (j + 1)2an,j − an,j−1.

Applying this to the equation (11), we get

k! +

n/2
∑

j=0

j!(k + j)!

(

k(j + 1)an,j + (j + 1)(k + j + 1)((j + 2)2an,j+1 − an,j)

)

= k! +

n/2
∑

j=0

(j + 2)(j + 2)!(k + j + 1)!an,j+1 −

n/2
∑

j=0

(j + 1)(j + 1)!(k + j)!an,j.

Since an,n/2+1 = 0 and an,0 = 1, this equals 0, which concludes the proof of Theorem 1.
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