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Abstract

We use standard techniques of linear algebra to construct an infinite family of

identities that involve finite weighted sums of the Möbius and Mertens functions, where

the weights are equal to −1, 0, or 1. In a related manner, we construct, for each positive

integer n, an n× n symmetric unimodular matrix, and each matrix is used to express

an identity that involves a finite weighted sum of the Möbius function. We establish

several results on the spectral decomposition of these matrices.

1 Introduction

The Möbius function is defined as

µ(k) :=











1, if k is squarefree and has an even number of prime factors;

−1, if k is squarefree and has an odd number of prime factors;

0, otherwise.

Summatory behavior of µ is of great interest, in part due to the close connection that µ has
to the distribution of the prime numbers. Indeed, it is known that the Mertens function,
which we write as M(n) :=

∑

k≤n µ(k), satisfies M(n) = o(n), and that this asymptotic
bound is equivalent to the prime number theorem.

It is the goal of the first part of this paper to state and prove several summatory identities
satisfied by µ and M that we have not found in prior work. These identities are stated in
Proposition 1 and Corollary 3 of Section 2.1. In Section 3, we employ similar techniques to
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construct, for each positive integer n, an n×n symmetric matrix, Qn, having integer entries
and determinant 1 that satisfies

∑

k≤nQn(j, k)µ(k) = 0 when j > 1, and the sum equals 1
when j = 1. This is the content of Proposition 6. We also obtain asymptotic bounds on
the extremal eigenvalues of Qn. This is the content of Proposition 8. A corollary of these
propositions is the asymptotic bound

∑

i≤n vn(i)µ(i) ≤ n−3/2C(1 + o(1)), where vn is the
normalized dominant eigenvector of Qn, and C is a constant smaller than 3. This is stated
in Corollary 9. We conclude with a conjecture about vn.

We now briefly summarize Proposition 1 and Corollary 3 of the next section. For each
m,n ≥ 1, we construct (−1, 0, 1)-valued functions, ǫm,n and Em,n, that satisfy the identities

∑

k≤n

ǫm,n(k)µ(k) = 1

and

∑

k≤n

Em,n(k)M(k) = 1.

Each function ǫm,n is the result of applying the transpose of Dirichlet convolution by the
n-term sequence (1, 1, 1, . . . , 1) to a particular 4m-periodic function. Each function Em,n is
a finite difference operation applied to ǫm,n. Complete details are presented in Section 2.1.
Before proceeding, we state a concise formula for ǫm,n in the special case m = 1. For all
k ≥ 1,

ǫ1,n(k) =
∑

jk≤n

cos

(

π(jk − 1)

2

)

. (1)

See Section 2.2 for further observations concerning the function ǫ1,n.
Figure 1 displays ǫm,n for various choices of m and n. Both Em,n and ǫm,n are 4m-

periodic on the interval n/3 < k ≤ n. The behavior of Em,n and ǫm,n near the origin is more
complicated. In general, ǫm,n and Em,n are sparse when m is large.

The body of literature on the functions µ and M is vast, and many results on sums with
the form

∑

k≤n

w(k)µ(k),

are known. Two well-known examples, both of which may be found in Apostol ([1, Theorem
2.1 and Theorem 3.12]), are

∑

k|n

µ(k) =

{

1, if n = 1;

0, otherwise,
(2)
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Figure 1: Examples of the function ǫm,n.

and

∑

k≤n

⌊n

k

⌋

µ(k) = 1. (3)

This pair of identities is closely related to Proposition 6 of Section 3. The Mertens function
is also known to satisfy similar kinds of identities. One example is

∑

k≤n

M
(n

k

)

= 1.

Lehman [5], Deléglise and Rivat [3] and Benito and Varona [2] have all leveraged this and
similar identities to find efficient recursive methods of evaluating M and related functions
at large values. We state a similar identity in Section 2.3.

2 The functions ǫm,n and Em,n

2.1 Notation, statements of the main results, and proofs

The greatest common divisor of positive integers a, b ∈ N is written (a, b). Let D be the
matrix

D(i, j) :=

{

1, if j|i;
0, otherwise.
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The action of this matrix on vectors corresponds to Dirichlet convolution by 1 := (1, 1, 1, . . .).
In matrix notation, where the functions µ and δ := (1, 0, 0, 0, . . .) are treated as a column
vectors, and ∗ denotes Dirichlet convolution,

1 ∗ µ =





∑

d|k

µ(d) : k ≥ 1



 = Dµ = δ. (4)

We adopt the convention that the smallest index of sequences, vectors and matrices is 1, and
not 0. Thus, the leading entry of δ is δ(1) = 1. Let δm be the column vector consisting of
the m leading terms of δ and let

cm := (δ2m,−δ2m, δ2m,−δ2m, . . .). (5)

Then cm is supported on integers k ≡ 1 (mod 2m) and cm is 4m-periodic. We indicate the
transpose operation using a ′ symbol. The functions of primary interest are now defined.

For each m,n ≥ 1, set

ǫm,n := D′
nc

m,n,

where Dn denotes the nth leading principal submatrix of D, D′
n denotes the transpose of Dn

and cm,n consists of the n leading terms of cm. Written explicitly, for 1 ≤ j ≤ n,

ǫm,n(j) =
∑

k
jk≤n

cm(jk). (6)

For example,

ǫ1,6 = D′
6c

1,6 =

















1 1 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

































1
0

−1
0
1
0

















=

















1
0

−1
0
1
0

















.

The following proposition describes basic properties of ǫm,n. When applied to the above
example, items 2 and 4 of Proposition 1 imply that ‖ǫ1,6‖∞ ≤ 1 and

∑

k≤6 ǫ
1,6(k)µ(k) = 1,

which may be verified by inspection.

Proposition 1. In the established notation,

1. if 1 ≤ k ≤ n and (k, 2m) > 1, then ǫm,n(k) = 0;

2. ǫm,n ∈ {−1, 0, 1}n;

3. if n ≥ 3m, then ‖ǫm,n‖1 ≥ ⌊n/(3m)⌋ and max{k :ǫm,n(k) 6= 0}= 2m⌊(n− 1)/(2m)⌋+1;
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4.
∑

k≤n ǫ
m,n(k)µ(k) = 1.

Proof. For all 1 ≤ j ≤ n,

ǫm,n(j) =
∑

k
jk≤n

cm(jk)

=
∑

k≤n
k≡0 (mod j)
k≡1 (mod 4m)

1−
∑

k≤n
k≡0 (mod j)

k≡2m+1 (mod 4m)

1

=
∣

∣Aj
∣

∣−
∣

∣Bj
∣

∣ ,

where

Aj := {jk ≤ n : k ∈ N, jk ≡ 1 (mod 4m)}

and

Bj := {jk ≤ n : k ∈ N, jk ≡ 2m+ 1 (mod 4m)} .

To see item 1 of the proposition, observe that neither jk ≡ 1 (mod 4m) nor jk ≡ 2m +
1 (mod 4m) has an integer solution when (j, 2m) > 1. Consequently, ǫm,n(j) = |Aj|− |Bj| =
0− 0 = 0 when (j, 2m) > 1.

For item 2, observe that either ǫm,n(j) = 0, or else (j, 2m) = 1 and

ǫm,n(j) =
∣

∣Aj
∣

∣−
∣

∣Bj
∣

∣ =
∑

k≤n/j
k≡j∗ (mod 4m)

1−
∑

k≤n/j
k≡(2m+1)j∗ (mod 4m)

1,

where j∗ is the unique integer satisfying both 1 ≤ j∗ ≤ 4m−1 and jj∗ ≡ 1 (mod 4m). Then
since j∗ is necessarily odd, (2m+ 1)j∗ ≡ 2m+ j∗ (mod 4m). Therefore,

ǫm,n(j) =
∑

k
0<j∗+4mk≤n/j

1−
∑

k
0<2m+j∗+4mk≤n/j

1

=
∑

0<2k+ j∗

2m
≤

n/j
2m

1−
∑

0<(2k+1)+ j∗

4m
≤

n/j
2m

1.

Hence,

ǫm,n(j) =
∑

− j∗

2m
<v≤

n/j
2m

− j∗

2m

(−1)v . (7)

Consecutive terms in the last expression sum to 0. Since each individual term in the expres-
sion is either −1 or +1, the total sum is either −1, 0, or 1.
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We now show the third claim. Assume n ≥ k > n/3. From Eq. (6), and since cm(k) = 0
whenever k 6≡ 1 (mod 2m),

ǫm,n(k) = cm(k) + cm(2k) = cm(k). (8)

Consequently,

‖ǫm,n‖1 ≥
∑

n/3<j≤n

|ǫm,n(j)| =
∑

n/3<j≤n

|cm(j)| =
∑

n/3<j≤n
j≡1 (mod 2m)

1 =
∑

n/3<1+2ml≤n

1 =
∑

n−3

6m
<l≤ 3n−3

6m

1.

Since a < b implies
∣

∣

∣(b− a)−
∑

a<j≤b 1
∣

∣

∣ < 1, it follows that

‖ǫm,n‖1 >
n

3m
− 1.

Since ‖ǫm,n‖1 is integer-valued, the first statement of the third item follows. The second
statement of this item follows from the definition of cm and Eq. (8).

To see the last claim, observe that Eq. (4) implies Dnµn = δn, where µn represents the
leading n terms of µ. Then, by applying the definitions of cm,n and ǫm,n, it follows that

∑

1≤k≤n

ǫm,n(k)µ(k) = µ′
nǫ

m,n = µ′
nD

′
nc

m,n = (Dnµn)
′ cm,n = δ′nc

m,n = cm,n(1) = 1.

Equation (1) of Section 1 follows from the above observations. To see this, let dk,n denote
column k of Dn and note that dk,n is supported on integers jk ≤ n. Next, observe that

c1,n = (1, 0,−1, 0, . . .) =

(

cos

(

π(k − 1)

2

)

: 1 ≤ k ≤ n

)

.

Hence,

ǫ1,n(k) =
(

dk,n
)′
c1,n =

∑

jk≤n

cos

(

π(jk − 1)

2

)

,

which shows the claim.

Corollary 2. Let m,n,∈ N. For each positive integer k ≤ n set

ωm,n(k) :=

{

ǫm,n(k), if k is odd;

ǫm,⌊n/2⌋(k/2), if k is even.

Then ωm,n ∈ {−1, 0, 1}n. If n > 1, then
∑

k≤n ω
m,n(k)µ(k) = 0.
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Proof. By Proposition 1 item 1, for all m,n ≥ 1, the function ǫm,n is supported on odd
integers. Since µ(2k) = −µ(k) when k is odd, it follows by Proposition 1 item 4 that

∑

k≤n

ωm,n(k)µ(k) =
∑

2k+1≤n

ǫm,n(2k + 1)µ(2k + 1) +
∑

2k≤n

ǫm,⌊n/2⌋(k)µ(2k) = 1− 1 = 0.

Our next aim is to develop analogous results for the summatory function of µ, i.e.,
the Mertens function, M . Let Sn ∈ {0, 1}n×n denote the lower-triangular matrix with
Sn(i, j) = 1 whenever j ≤ i. Then Sn is the matrix representation that corresponds to
the operation of cumulative summation applied to n-vectors. Let Mn := (M(1), . . . ,M(n)).
Then Mn = Snµn. Let ∆n := (S ′

n)
−1. Then

∆n =















1 −1
1 −1

1 −1
. . . −1

1















, (9)

which is the matrix representation of a difference operation applied to n-vectors. Set

Em,n := ∆n ǫ
m,n.

The next corollary combines the above observations into a result that parallels Proposition 1.

Corollary 3. In the established notation,

1. Em,n ∈ {−1, 0, 1}n;

2. if n ≥ 3m, then ‖Em,n‖1 ≥ 2 ⌊n/(3m)⌋ − 1;

3.
∑

k≤nM(k)Em,n(k) = 1.

Proof. Since ǫm,n(2k) = 0 for all k ≥ 1, the difference of adjacent entries of ǫm,n is −1, 0 or 1.
This shows the first claim.

For 1 ≤ k < n,

|Em,n(k)| = |ǫm,n(k)|+ |ǫm,n(k + 1)| .
This fact, when combined with items 2 and 3 of Proposition 1 implies

‖Em,n‖1 =
∑

k<n

(|ǫm,n(k)|+ |ǫm,n(k + 1)|) + |ǫm,n(n)|

= ‖ǫm,n‖1 + ‖ǫm,n‖1 − |ǫm,n(1)| ≥ 2
⌊ n

3m

⌋

− 1.

This shows the second claim.
Finally, apply Proposition 1 and the respective definitions to find

M ′
nE

m,n = (Snµn)
′ ∆n ǫ

m,n = µ′
nS

′
n (S

′
n)

−1
ǫm,n = µ′

nǫ
m,n = 1.
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2.2 Remarks on Eq. (1)

It follows from (1), that for all positive integers n and k ∈ N satisfying k ≤ n, the value of
ǫ1,n(k) equals the real part of the sum,

∑

1≤j≤⌊n/k⌋ i
jk−1, where i :=

√
−1. This leads to a

closed-form expression for ǫ1,n(k). When k is even, it follows by Proposition 1 item 1 that
ǫ1,n(k) = 0. Now assume k is odd. One has

∑

1≤j≤⌊n/k⌋

ijk−1 = ik−11− ik⌊n/k⌋

1− ik
= (−1)⌊k/2⌋

(1− ik⌊n/k⌋)(1 + ik)

2
.

Since ik⌊n/k⌋ =
(

i⌊n/k⌋
)k
, the above expression vanishes when ⌊n/k⌋ ≡ 0 (mod 4). Next,

when ⌊n/k⌋ is odd, and since k is assumed odd, the real part of the above expression equals
(−1)⌊k/2⌋

(

1− ik(⌊n/k⌋+1)
)

/2, which vanishes when ⌊n/k⌋ ≡ −1 (mod 4). When ⌊n/k⌋ ≡
1 (mod 4), one has i⌊n/k⌋ = i so that the right-hand side of the above sum reduces to

(−1)⌊k/2⌋
(1− ik)(1 + ik)

2
= (−1)⌊k/2⌋

1− i2k

2
= (−1)⌊k/2⌋.

Finally, when ⌊n/k⌋ ≡ 2 (mod 4), i⌊n/k⌋ = −1, and (recalling that k is assumed odd) the
right-hand side of the above sum reduces to

(−1)⌊k/2⌋
(1− (−1)k)(1 + ik)

2
= (−1)⌊k/2⌋(1 + ik),

the real part of which is (−1)⌊k/2⌋.
Therefore, for all positive integers n and k that satisfy k ≤ n,

ǫ1,n(k) =

{

0, if ⌊n/k⌋ ≡ r (mod 4) for some r ∈ {0,−1};
sin (kπ/2) , otherwise.

(10)

When 1 ≤ k ≤ n, an explicit formula for ǫm,n(k) is possible to derive. The case where
(k, 2m) > 1 is discussed in Proposition 1 item 1, so we now assume (k, 2m) = 1. Let k∗ be
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any integer satisfying kk∗ = 1 (mod 4m). By Eq. (7), one has

ǫm,n(k) =
∑

j
−k∗

2m
<2j≤

⌊n/k⌋−k∗

2m

1−
∑

j
−k∗

2m
<2j+1≤

⌊n/k⌋−k∗

2m

1

=
∑

j
−k∗

4m
<j≤

⌊n/k⌋−k∗

4m

1−
∑

j
−k∗

4m
− 1

2
<j≤

⌊n/k⌋−k∗

4m
− 1

2

1

=

(⌊⌊n/k⌋ − k∗

4m

⌋

−
⌊−k∗

4m

⌋)

−
(⌊⌊n/k⌋ − k∗

4m
− 1

2

⌋

−
⌊−k∗

4m
− 1

2

⌋)

=

(⌊⌊n/k⌋ − k∗

4m

⌋

−
⌊⌊n/k⌋ − k∗

4m
− 1

2

⌋)

−
(⌊−k∗

4m

⌋

−
⌊−k∗

4m
− 1

2

⌋)

=
∑

j
⌊n/k⌋−k∗

4m
− 1

2
<j≤

⌊n/k⌋−k∗

4m

1−
∑

j
−k∗

4m
− 1

2
<j≤−k∗

4m

1.

Then, letting {x} := x− ⌊x⌋ denote the fractional part of x,

ǫm,n(k) =















1, if (k, 2m) = 1,
{

k∗

4m

}

∈ (0, 1
2
] and

{

k∗−⌊n/k⌋
4m

}

6∈ (0, 1
2
];

−1, if (k, 2m) = 1,
{

k∗

4m

}

6∈ (0, 1
2
] and

{

k∗−⌊n/k⌋
4m

}

∈ (0, 1
2
];

0, otherwise.

2.3 An identity involving a sparse sum

Benito and Varona ([2, Theorem 9]) establish the identity,

2M(n) + 3 = g(n, 1) +
∑

3≤a≤n−1

h(a)

(

M
(n

a

)

−M

(

n

a+ 1

))

,

where g(x, 1) and h(x) depend on the value of x (mod 6), and the values of both g and h
are tabulated. The utility of this formula is that it leads to an efficient and recursive means
of evaluating M . In Proposition 4 of this section, we establish a similar identity.

Before stating the identity, we introduce notation. The unique non-principal Dirichlet
character mod 4 is

χ(k) =











1, if k ≡ 1 (mod 4);

−1, if k ≡ −1 (mod 4);

0, otherwise.

The sine-factor in the non-vanishing case of (10) satisfies sin (kπ/2) = χ(k) for all integers
k. Next, we define

M(x, χ) :=
∑

k≤x

µ(k)χ(k),
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and set

η(k) :=

{

1, if k ≡ r (mod 4) for some r ∈ {1, 2};
0, otherwise.

We are now ready to state the identity.

Proposition 4. For all n ≥ 1,

∑

1≤k≤n

η(k)

(

M
(n

k
, χ
)

−M

(

n

k + 1
, χ

))

= 1.

Proof. One has

∑

1≤k≤n

η(k)

(

M
(n

k
, χ
)

−M

(

n

k + 1
, χ

))

=
∑

k,j
k≡r (mod 4),r∈{1,2}

n
k+1

<j≤n
k

µ(j)χ(j)

=
∑

4l+3>⌊n/j⌋≥4l+1

µ(j)χ(j)

=
∑

j

ǫ1,n(j)µ(j)

= 1,

where the third equality follows from Eq. (10) and the definition of χ, and the last equality
from Proposition 1 item 4.

3 A family of unimodular matrices

The classical identities expressed in Eq. (2) and Eq. (3) of the introduction are equivalent.
Indeed, for any integer n ∈ N, Eq. (2) states Dnµn = δn. Multiplication of both sides by
Sn yields, SnDnµn = Snδn = 1n, which is (3). Equivalence follows by observing that Sn is
invertible. This observation generalizes to yield the infinite family of identities, Sk

nDnµn =
Sk
nδn, where k, n ∈ N are arbitrary. The next proposition describes a closely-related family

of identities. We first state a lemma that generalizes the identity,
∑

d|n φ(d) = n, where φ is
Euler’s totient function.

Lemma 5. For positive j, k ∈ N, write φk(j) :=
∑

ℓ≤j/k, (ℓ,j)=1 1. Let Rn := D−1
n SnDn. Then

for all 1 ≤ j, k ≤ n, Rn(j, k) = φk(j).
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Proof. Column k of SnDn equals (⌊1/k⌋ , ⌊2/k⌋ , . . . , ⌊n/k⌋). Let φk
n denote the column vector

consisting of the n leading terms of φk. Our aim is to demonstrate that

(Dnφ
k
n)(j) =

∑

d|j

φk(d) = ⌊j/k⌋ (11)

holds when 1 ≤ j, k ≤ n. Once this has been shown, one arrives at (D−1
n SnDn)(j, k) = φk(j)

by applying D−1
n to both sides. Fix j and k. For each integer d with d|j, define the set

Sd := {s ∈ N : 1 ≤ s ≤ j/k and (s, j) = j/d} .

Then Sd consists of all integers with the form (t)(j/d), where 1 ≤ t ≤ d/k and (t, d) = 1.
Then |Sd| = φk(d). Each integer between 1 and ⌊j/k⌋ belongs to a unique Sd. Summing
over d, one has (11).

Proposition 6. For positive n ∈ N, set Qn := R′
nRn. Then Qn is a positive definite matrix,

both Qn and (Qn)
−1 ∈ Z

n×n, and detQn = det (Qn)
−1 = 1. Additionally,

1. Qnµn = δn;

2. Qn(i, j) > 0 for all 1 ≤ i, j ≤ n;

3. Qn(1, 1) =
∑

1≤k≤n φ(k)
2.

Proof. Recall that D is the matrix representation of Dirichlet convolution by 1, and the
inverse operation is Dirichlet convolution by µ. In particular, the matrix D−1

n is (−1, 0, 1)-
valued. Since each of Dn, D

−1
n and Sn live in Z

n×n, it follows that Qn ∈ Z
n×n.

Also, each of Dn, D
−1
n and Sn are lower-triangular with 1 along the main diagonal, so each

has determinant equal to 1, as do their transposes. Since det is multiplicative, detQn = 1,
from which it follows (by Cramer’s rule) that (Qn)

−1 ∈ Z
n×n. Additionally, since for all

x ∈ R
n \ {0} one has x′Qnx = ‖(D−1

n SnDn)x‖2 ≥ 0, Qn is nonnegative definite. But
detQn = 1 > 0, so it has full rank. In particular, x′Qnx > 0, which implies, since x 6= 0 is
arbitrary, that Qn is positive definite.

We now establish item 1 of the proposition’s statement. The first column of Sn equals
the first column of Dn, both of which equal 1n. Thus, recalling Eq. (4),

Rnµn = D−1
n SnDnµn = D−1

n Snδn = D−1
n 1n = δn.

The first column of each of the upper-triangular matrices (D−1
n )′, D′

n and S ′
n equals δn, so

Qnµn = R′
nRnµn = D′

nS
′
n

(

D−1
n

)′
δn = D′

nS
′
nδn = D′

nδn = δn.

For the proof of item 2, note that φk of Lemma 5 satisfies φk(l) > 0 whenever l ≥ k.
Therefore Qn(j, k) =

∑

l≤n φ
j(l)φk(l) ≥ φj(n)φk(n) > 0 when 1 ≤ j, k ≤ n. Item 3 is also

immediate from Lemma 5. Indeed, Qn(1, 1) =
∑

j≤n (φ
1(j))

2
=
∑

j≤n(φ(j))
2.
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In the discussion below, it may be helpful to have a reference example of Rn, Qn and Q−1
n :

R7 =





















1
1 1
2 1 1
2 1 1 1
4 2 1 1 1
2 1 1 1 1 1
6 3 2 1 1 1 1





















, Q7 =





















66 33 22 14 12 8 6
33 17 11 7 6 4 3
22 11 8 5 4 3 2
14 7 5 4 3 2 1
12 6 4 3 3 2 1
8 4 3 2 2 2 1
6 3 2 1 1 1 1





















,

and

(Q7)
−1 =





















1 −1 −1 −1 1 −1
−1 2
−1 3 −1 2 −2 1

−1 2 −1 1
−1 2 −1 4 −3 2
1 −2 −3 4 −3

−1 1 1 2 −3 5





















.

Item 1 of the proposition states that µn is the first column of (Qn)
−1. The second

column of (Qn)
−1 has a far simpler form, namely q := (−1, 2, 0, 0, 0, . . . , 0). To see this,

observe that Rn(2, 1) = Rn(2, 2) = 1. When j > 2, Rn(j, 2) = ⌊Rn(j, 1)/2⌋, and since
Rn(j, 1) = φ1(j) = φ(j) is even, ⌊Rn(j, 1)/2⌋ = Rn(j, 1)/2. Noting that R′

n is upper-
triangular and R(1, 1) = 1, one has

R′
nRnq = R′

n















−1
1
0
...
0















=















0
1
0
...
0















.

Since Qn is Hermitian, the eigenvalues of Qn are real. Let λ1 ≤ λ2 ≤ . . . ≤ λn denote
the eigenvalues of Qn. By item 2, we may invoke the Perron-Frobenius theorem to conclude
that λn is simple and that the eigenvector associated with λn, denoted vn, satisfies vn(j) > 0
for 1 ≤ j ≤ n.

The following two propositions concern the spectrum of Qn. Table 1 illustrates these
propositions.

Proposition 7. The eigenvalues of Qn interlace the eigenvalues of Qn+1. That is, if λi is

the ith eigenvalue of Qn and γi the ith eigenvalue of Qn+1, then

γ1 ≤ λ1 ≤ γ2 ≤ · · · ≤ γn ≤ λn ≤ γn+1.
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Table 1: Eigenvalue λi of Qn.

i n = 999 n = 1000 n = 1001

1 4.588× 10−4 4.580× 10−4 4.573× 10−4

2 6.887× 10−4 6.879× 10−4 6.859× 10−4

· · ·
n− 1 4.458× 104 4.471× 104 4.487× 104

n 2.344× 108 2.346× 108 2.355× 108

Proof. We claim that (Qn)
−1 is a leading principal submatrix of (Qn+1)

−1. Assume, for
the moment, that this has been established. Then by Cauchy’s interlacing theorem, the
eigenvalues of (Qn)

−1 interlace those of (Qn+1)
−1. That is, letting λ−1

i and γ−1
i denote the

eigenvalues of (Qn)
−1 and (Qn+1)

−1, respectively,

γ−1
n+1 ≤ λ−1

n ≤ γ−1
n ≤ · · · ≤ γ−1

2 ≤ λ−1
1 ≤ γ−1

1 .

Since all quantities in this expression are positive scalars, the proposition follows.
We now show that (Qn)

−1 is a leading principal submatrix of (Qn+1)
−1. From the defi-

nition of Qn, we have that

Q−1
n = (R′

nRn)
−1 = (Rn)

−1(R′
n)

−1 = (Rn)
−1(R−1

n )′. (12)

Recall from Lemma 5 the entrywise equality, Rn(j, k) = φk(j). Since the right-hand side
does not depend on n, the (j, k) entry of Rn does not depend on n. Therefore, Rn is a
leading principal submatrix of Rm whenever m ≥ n. Since Rn is lower-triangular, it follows
(by consideration of block matrix inversion, for example) that (Rn)

−1 is a leading principal
submatrix of (Rm)

−1 for all m ≥ n. This also shows that (R−1
n )′ is a leading principal

submatrix of (R−1
m )′ whenever m ≥ n.

For 1 ≤ j ≤ n, define rj as the jth column of (R−1
n+1)

′. Since (R−1
n )′ is a leading principal

submatrix of (R−1
n+1)

′, the first n entries of rj agree with the jth column of (R−1
n )′. This,

combined with Eq. (12) and the fact that R−1
n is lower-triangular, implies that the jth column

of (Qn)
−1 equals the column vector that is comprised of the first n entries of (Rn+1)

−1rj.
Eq. (12) also implies that the jth column of (Qn+1)

−1 equals (Rn+1)
−1rj. This applies to all

1 ≤ j ≤ n, so it follows that (Qn)
−1 is a leading principal submatrix of (Qn+1)

−1.

The next proposition establishes bounds on the extremal eigenvalues of Qn.

Proposition 8. Let λn denote the dominant eigenvalue of Qn. Then

(c+ o(1))n3 ≤ λn ≤ π2

18
n3 +O(n2),
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where c is a constant that is approximately equal to 0.1427. Let λ1 denote the smallest

eigenvalue of Qn. Then

λ1 ≤
π2

6
n−1 +O

(

n−3/2
)

.

Proof. We first show the lower bound on λn. Since λn is the dominant eigenvalue of Qn,
applying item 3 of Proposition 6 one has,

λn ≥ δ′nQnδn

‖δn‖2
= Qn(1, 1) =

∑

k≤n

(φ(k))2 .

We estimate the right-hand sum by applying the Wiener-Ikehara Theorem to the function
H(s) :=

∑

k≥1 φ(k)
2k−s. A comment associated with the sequence A127473 asserts that

H(s) = ζ(s−2)
∏

p prime (1− 2p1−s + p−s). Since this is a known fact, but no proof is provided

in the citation, we sketch a proof here. To start, if n =
∏

p p
r, then φ(n) =

∏

p|n p
r − pr−1.

Since n 7→ φ(n)n−s is a multiplicative function, one has the Euler product,

H(s) =
∏

p prime

(

1 +
∑

r≥1

(pr − pr−1)
2

prs

)

=
∏

p prime

(

1 +
∑

r≥1

p2r

prs
− 2

p2r−1

prs
+

p2r−2

prs

)

=
∏

p prime

(

1 +

(

1− 2

p
+

1

p2

)

p2−s

1− p2−s

)

=
∏

p prime

(

1− p2−s + p2−s − 2p1−s + p−s
)

(

1

1− p2−s

)

= ζ(s− 2)
∏

p prime

(

1− 2p1−s + p−s
)

.

At s = 3, the infinite product converges and ζ(s − 2) has a simple pole with residue equal
to 1. Therefore, H has a simple pole at s = 3, with residue equal to the product of the
right-hand side. We now apply the Wiener-Ikehara Theorem to conclude that

∑

k≤n

(φ(x))2 ∼ n3

3

∏

p prime

(

1− 2p−2 + p−3
)

=

(

n3

3

)

(0.42824950 . . .)
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We now show the upper bound on λn. Indeed,

Trace (Qn) =
n
∑

k=1

Qn(k, k)

=
n
∑

k=1

n
∑

j=1

(

φk(j)
)2

≤
∞
∑

k=1

n
∑

j=1

(

j

k

)2

=
n(n+ 1)(2n+ 1)

6

∞
∑

k=1

k−2

=
π2

18
n3 +O(n2),

where we have used the elementary identity
∑n

j=1 j
2 = n(n+1)(2n+1)/6 and Euler’s identity

∑∞
i=1 i

−2 = π2/6. Finally, recall that Qn is positive definite and Trace (Qn) =
∑n

i=1 λi ≥ λn.
We now show the upper bound on λ1. We have by item 1 of Proposition 6 that

µ′
nQnµn

‖µn‖2
=

µ′
nδn

‖µn‖2
=

µ(1)
∑

k≤n µn(k)2
=

1
∑

k≤n |µn(k)|
≥ λ1.

The penultimate expression is the reciprocal of the number of squarefree integers not ex-
ceeding n. The desired bound is a consequence of this, combined with an application of
Gegenbauer’s estimate [4, p. 47],

∑

k≤n

|µn(k)| =
6

π2
n+O(n1/2).

That is,

λ1 ≤
(

∑

k≤n

|µn(k)|
)−1

=
π2

6
n−1 +O(n−3/2).

Corollary 9. In the established notation, |v′nµn| ≤ n−3/2C(1 + o(1)), where the constant C
is approximately 2.6467.

Proof. For 1 ≤ i ≤ n, let vi satisfy Qnvi = λivi. We may assume that v′ivj = 0 whenever
i 6= j, that v′ivi = 1 for all 1 ≤ i ≤ n and that the space spanned by {vi : 1 ≤ i ≤ n} has
dimension n. Then µn =

∑

1≤i≤n(v
′
iµn)vi. By item 1 of Proposition 6, µ′

nQnµn = 1. Since
λi > 0 for all i,

1 = µ′
nQnµn =

∑

1≤i≤n

λi |v′iµn|2 ≥ λn |v′nµn|2 ≥ n3(c+ o(1)) |v′nµn|2 ,
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where the last inequality is from Proposition 8. The constant C in the Corollary statement
is c−1/2.

We conclude with a conjecture. Recall that the dominant eigenvector of Qn, which is
denoted vn, was shown to satisfy vn(j) > 0, for all 1 ≤ j ≤ n. Assume we have normalized vn,
so that ‖vn‖2 = 1. Let h(k) := k−1 and let hn denote the nth truncation of h. Then

lim
n→∞

n ‖hn − (v′nhn)vn‖∞ = 1. (Conjecture)

The sequence hn arises in combination with µn in the asymptotic estimate,

h′
nµn =

n
∑

k=1

µ(k)

k
= o(1),

which is equivalent to the prime number theorem [6].
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