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Abstract

Various kinds of representations of positive integers using nonconsecutive Lucas

numbers are used to define arrays related to the Wythoff array. The columns of these

arrays, or their order arrays, partition the positive integers. Limiting densities are

found for numbers whose Lucas representations all have the same least term.

1 Introduction

Throughout, the set of positive integers is denoted by N, and i, k,m, n, u represent elements
of N. The golden ratio, (1 +

√
5)/2, is denoted by τ . The sequence (Ln) of Lucas numbers

is given by L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2 for n ≥ 2. In 1972, Carlitz, Scoville, and
Hoggatt [2] proved the following uniqueness theorem for representations of positive integers
as sums of nonconsecutive Lucas numbers.

Theorem 1. Every n has a unique representation in exactly one of these two forms:

n = Lk1
+ · · ·+ Lku + L0 (or n = 2), (1)

where ki − ki+1 ≥ 2 for 1 ≤ i ≤ u− 1, ku ≥ 3 (2)

or

n = Lk1
+ · · ·+ Lku (3)

where ki − ki+1 ≥ 2 for 1 ≤ i ≤ u− 1, ku ≥ 1. (4)
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Following the notation in [2], let B0 be the sequence of numbers n given by (1) and (2),
and let Bk be the sequence given by (3) and (4); e.g.,

B0 = (2, 6, 9, 13, 17, 20, 24, 27, 31, 35, 38, 42, 46, 49, · · · )
B1 = (1, 5, 8, 12, 16, 19, 23, 26, 30, 34, 37, 41, 45, 48, · · · )
B2 = (3, 10, 14, 21, 28, 32, 39, 43, 50, 57, 61, 68, 75, 79, · · · ).

In general, Bk consists of all n such that the least term in (1), or (3), is Lk. Clearly the
sequences Bk partition N.

The representations in Theorem 1 are patterned after Zeckendorf representations, which
we review as follows. The sequence (Fn) of Fibonacci numbers is given by F0 = 0, F1 = 1,
and Fn = Fn−1 + Fn−2 for n ≥ 2. The Zeckendorf representation of n is the unique sum

n = Fk1
+ · · ·+ Fku (5)

where ki − ki+1 ≥ 2 for i = 1 · · · u− 1, ku ≥ 2. (6)

For every n, the greedy algorithm can be used to find the successive terms in all three
representations (1) and (2), (3) and (4), and (5) and (6).

Historically, the Zeckendorf representation dates back to Zeckendorf’s work as early as
1939, but he did not submit the result for publication until April, 1972; remarkably, his
reference section includes the 1972 papers [1] and [2]. Zeckendorf’s theorems [8] are quoted
here:

THÉORÈME I.a. Tout nombre naturel N peut être représenté par une somme de

nombres de Fibonacci distincts non consécutifs.

THÉORÈME I.b. Pour tout nombre naturel, cette somme est unique.

THÉORÈME II.a. Tout nombre naturel N peut être représenté par une somme de

nomberes de Lucas distincts non consécutifs.

THÉORÈME II.b. La représenté des nombres naturels par une somme de nombres de

Lucas non consécutifs est unique, sauf pour les nombres L2v+1 + 1.

Aside from the Lucas representations in Theorem 1, another kind of Lucas representation is
given by Luo [5], in which some but not all n have a unique representation; indeed those n
having more than one representation have exactly two representations.

The main purpose of this article can now be stated: to partition N, or some subset of N,
as the set of columns of certain arrays (as in Tables 2-5) obtained from various kinds of Lucas
representations, and to consider corresponding order arrays, densities, and limiting densities.
These results can be compared to similar results already well known for the Wythoff array.

2 Wythoff array and Lucas-Wythoff arrays

In 1980, Morrison defined the Wythoff array (w(n, k)) by the formulas

w(n, 1) = ⌊⌊nτ⌋τ⌋ and w(n, 2) = ⌊⌊nτ⌋τ 2⌋
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together with the Fibonacci recurrence

w(n, k) = w(n, k − 1) + w(n, k − 2) for k ≥ 3.

The Wythoff array, which shows all the winning pairs for the Wythoff game, has been widely
studied; see, for example, the Comments and Links at A035513 in [7] and “Wythoff visions”
[3] In Theorem 4, we state and verify a formula for w(n, k) that appears elsewhere (e.g.,
[4]) without proof. We begin with lemmas that account for the first two columns of the
Wythoff array. The notation {x} is used for the fractional part of a real number x, defined
by {x} = x− ⌊x⌋.
Lemma 2. If n ≥ 1, then ⌊⌊nτ⌋τ⌋ = ⌊nτ⌋+ n− 1.

Proof. Since the fractional part {nτ} of nτ is in (0, 1), we have

⌊n− {nτ}(τ − 1)⌋ = n− 1.

The identity τ 2 = τ + 1 then gives

n− 1 = ⌊nτ 2 − nτ − {nτ}(τ − 1)⌋
= ⌊(nτ − {nτ})(τ − 1)⌋
= ⌊⌊nτ⌋(τ − 1)⌋
= ⌊⌊nτ⌋τ⌋ − ⌊nτ⌋.

Lemma 3. ⌊⌊nτ⌋τ 2⌋ = 2⌊nτ⌋+ n− 1.

Proof. Using Lemma 2, we have

⌊⌊nτ⌋τ 2⌋ = ⌊⌊nτ⌋(τ + 1)⌋
= ⌊⌊nτ⌋τ⌋+ ⌊nτ⌋
= (⌊nτ⌋+ n− 1) + ⌊nτ⌋.

Theorem 4. The Wythoff array is given by

w(n, k) = ⌊nτ⌋Fk+1 + (n− 1)Fk (7)

for n ≥ 1, k ≥ 1.

Proof. For every n, equation (7) holds for k = 1 and k = 2, by the two lemmas. Assume (7)
for all n and arbitrary k ≥ 2. Then

w(n, k + 1) = w(n, k) + w(n, k − 1)

= ⌊nτ⌋Fk+1 + (n− 1)Fk + ⌊nτ⌋Fk + (n− 1)Fk−1

= ⌊nτ⌋(Fk+1 + Fk) + (n− 1)(Fk + Fk−1)

= ⌊nτ⌋Fk+2 + (n− 1)Fk+1;

so that inductively, (7) holds for all k.
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1 2 3 5 8 13 21 34 55 89 . . .
4 7 11 18 29 47 76 123 199 322
6 10 16 26 42 68 110 178 288 466
9 15 24 39 63 102 165 267 432 699
12 20 32 52 84 136 220 356 576 932
14 23 37 60 97 157 254 411 665 1076
...

Table 1: Wythoff array

1 2 3 4 7 11 18 29 47 76 . . .
5 6 10 15 25 40 65 105 170 275
8 9 14 22 36 58 94 152 246 398
12 13 21 33 54 87 141 228 369 597
16 17 28 44 72 116 188 304 492 796
...

Table 2: 1st Lucas-Wythoff array

Referring to Table 1, the Fibonacci numbers and Lucas numbers occupy rows 1 and 2,
respectively, and every row satisfies the recurrence rn = rn−1 + rn−2, and every n occurs
exactly once. Furthermore, for all k, column k consists of those numbers m having Fk+1

as least term in the Zeckendorf representation ((5) and (6)), as proved in [4]. Indeed, the
Zeckendorf array as defined in [4] is identical to the Wythoff array.

We now define the 1st Lucas-Wythoff array, (r(n, k)), by columns: (column 1) = B1,
(column 2) = B0, and, for k ≥ 2, (column k) = Bk. See Table 2.

The inclusion of column 2 ensures that every n in N occurs (exactly once) in the array and
that all rows and columns are strictly increasing. However, column 2 interrupts the Fibonacci
row recurrence seen in the Zeckendorf array. Here, instead, we have r(n, 4) = r(n, 1)+r(n, 3)
for all n, and r(n, k) = r(n, k − 1) + r(n, k − 2) for n ≥ 1 and k ≥ 5. Deleting column 2
results in the 2nd Lucas-Wythoff array, (r∗(n, k)), for which we have a formula much like
(7), shown in Theorem 5. See Table 3.

Theorem 5. The 2nd Lucas-Wythoff array is given by

r∗(n, k) = ⌊nτ⌋Lk + (n− 1)Lk−1, (8)

for n ≥ 1, k ≥ 1.

Proof. Let b(n, k) denote the nth term of the sequence Bk. First we prove that b(n, k) =
w(n, k − 2) + w(n, k) for k ≥ 1. Following [2], let

a(n) = ⌊τn⌋, b(n) = ⌊τ 2n⌋, and let
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1 3 4 7 11 18 29 47 76 123 . . .
5 10 15 25 40 65 105 170 275 445
8 14 22 36 58 94 152 246 398 644
12 21 33 54 87 141 228 369 597 966
16 28 44 72 116 188 304 492 796 1288
19 32 51 83 134 217 351 568 919 1487
23 39 62 101 163 264 427 691 1118 1809
...

Table 3: 2nd Lucas-Wythoff array

A2t = (abt−1a(n) : n ≥ 1, t ≥ 1)

A2t+1 = (bt−1a(n) : n ≥ 1, t ≥ 1),

where concatenation of functions abbreviates composition. As proved in [1], we have w(n, k) =
Ak. Likewise [2],

B0 = (a2(n) + n : n ≥ 1)

B1 = (a2(n) + n− 1 : n ≥ 1)

B2t = (bt−1a(n) + bta(n) : n ≥ 1, t ≥ 1)

B2t+1 = (abt−1a(n) + abta(n) : n ≥ 1, t ≥ 1).

Thus,

B2t = A2t−1 + A2t+1 = (w(n, 2t− 1) + (w(n, 2t+ 1))

B2t+1 = A2t + A2t+1 = (w(n, 2t) + w(n, 2t+ 1)),

so that b(n, k) = w(n, k − 2) + w(n, k) for all n and k ≥ 3. By Theorem 4,

b(n, k) = ⌊nτ⌋Fk−1 + (n− 1)Fk−2 + ⌊nτ⌋Fk+1 + (n− 1)Fk

= ⌊nτ⌋(Fk−1 + Fk+1) + (n− 1)(Fk−2 + Fk)

= ⌊nτ⌋Lk + (n− 1)Lk−1.

The first rows of Table 3 provide some interesting examples involving the Wythoff array
(W , as in Table 1):

Row 1 ∼ row 2 of W , as they have in common (4, 7, . . .)
Row 2 ∼ row 16 of W , with common tail (40, 65, . . .)
Row 3 ∼ row 9 of W , with common tail (22, 36, . . .)

Row 4 ∼ row 13 of W , with common tail (33, 54, . . .) .
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Because every positive Fibonacci sequence is represented in W , every row of both Lucas-
Wythoff arrays must, in the sense indicated by the examples, be tail-equivalent to a row of
W . We leave open further investigation of this equivalence, which can be cast as follows: in
each row of either Lucas-Wythoff array, where does a Wythoff pair first occur? (After the
first pair, all subsequent pairs in a row are Wythoff pairs.)

3 Admissible representations

The requirement ku ≥ 1 in connection with the representation (4) shows that the number 2
is disallowed as a term. If 2 is allowed, then uniqueness is lost; e.g., 5 can be represented
by both 4 + 1 and 3 + 2. Luo [5] proved that if 2 is allowed, then each n has at most two
representations, so that any n having at least two representations must have exactly two.
We shall identify them explicitly.

Definition 6. A representation

n = Lk1
+ · · ·+ Lku (9)

is an admissible representation of n if

ki − ki+1 ≥ 2 for 1 ≤ i ≤ u− 1, k1 ≥ 0. (10)

Note that, unlike (4), in (10), the index k1 can be 0. Clearly, both of the representations
((1) and (2)) and ((3) and (4)) are admissible.

Theorem 7. If n = Lk1
+ · · · + Lku, where u ≥ 2, ku = 1, and ku−1 is odd, then n has

exactly two admissible representations.

Proof. Suppose that k1 = 1 and k2 is odd. We consider two cases.

Case 1: u = 2. Here,
n = 1 + L2i+1 for some i ≥ 1.

As a first induction step, if i = 1, then n = 5 = 1 + 4 = 2 + 3, two representations. Assume
for arbitrary i ≥ 1 that n = 1 + L2i+1 has a second admissible representation, n = s, where
1 is not a term of s, and the greatest term of s is less than L2i+1. Then

1 + L2i+3 = 1 + L2i+1 + L2i+2 (11)

= s+ L2i+2. (12)

This shows that 1 + L2i+3 has two admissible representations.

Case 2: u ≥ 3. Here, suppose that

n′ = 1 + L2i+1 + s′ (13)
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where i ≥ 1 and the Lucas representation ((3) and (4)) of s′ has least term ≥ L2i+3. Then
by (12), a second admissible representation of n′ is s+ L2i+2.

For both cases, if n or n′ has a third admissible representation, then one of the repre-
sentations ((1) and (2)) or ((3) and (4)) is not unique, contrary to Theorem 1. Therefore,
numbers of the forms in cases 1 and 2 have exactly two admissible representations.

Theorem 8. (Converse of Theorem 7) If n = Lk1
+ · · ·+ Lku has two admissible represen-

tations, then one of them has u ≥ 2, ku = 1, and ku−1 odd.

Proof. Suppose that n has two admissible representations,

n = Lk1
+ · · ·+ Lku = Li1

+ · · ·+ Liv .

By Theorem 1, either ku = 0 or iv = 0; assume the latter, so that

n = Li1
+ · · ·+ Liv−1 + 2, where iv − 1 ≥ 3; i.e., Liv−1

≥ 4.

By the uniqueness of ((2) and (4)), we must have iv − 1 = 2 because of (2), leading to two
cases.

Case 1: n = 3 + 2, so that n = 4 + 1, as asserted.

Case 2: n = w + 3 + 2, where, by (3) and (4), the number w has a representation (3) with
least term Lm for some m ≥ 4. If m ≥ 5, then

n = · · ·+ Lm + 3 + 2 = · · ·+ Lm + 4 + 1, as asserted.

This leaves the possibility that m = 4, so that n = w′+7+3+2, where, again by (3) and (4),
the number w′ has a representation (3) with least term Lm for some m ≥ 6. This procedure
can be continued, leading to the asserted form of representation in fewer than 2i1 steps.

Examples:

12 = 11 + 1 = 7 + 3 + 2

16 = 11 + 4 + 1 = 11 + 3 + 2

19 = 18 + 1 (unique)

30 = 29 + 1 = 18 + 7 + 3 + 2

34 = 29 + 4 + 1 = 29 + 3 + 2

Definition 9. The Luo-Lucas array, (ℓ(n, k)), consists of the numbers that have exactly two
admissible representations: column k of the array is the increasing sequence of numbers n
whose representation (3) has least term L2k+1 + 1.

7



5 12 30 77 200 522 1365 3572 . . .
16 41 106 276 721 1886 4936 12921
23 59 153 399 1043 2729 7143 18699
34 88 229 598 1564 4093 10714 28048
45 117 305 797 2085 5457 14285 37397
52 135 352 920 2407 6300 16492 43175
...

Table 4: Luo-Lucas array

8 19 48 124 323 844 2208 . . .
26 66 171 446 1166 3051 7986
37 95 247 645 1687 4415 11557
55 142 370 967 2530 6622 17335
73 189 493 1289 3373 8829 23113
84 218 569 1488 3894 10193 26684
...

Table 5: Dual of Luo-Lucas array

Theorem 10. The Luo-Lucas array is given by

ℓ(n, k) = 1 + ⌊nτ⌋L2k+1 + (n− 1)L2k, n ≥ 1, k ≥ 1. (14)

Proof. Column k of (ℓ(n, k)) has first term m(1, k) = L2k+1 +1, and all the terms thereafter
are, in order, of the form m(1, k)+U , where U ranges through the positive integers u having
least term L ≥ L2k+3 in the Lucas-Wythoff representation of U . These numbers are, in the
same order, the numbers in column 2k + 1 of the 2nd Lucas-Wythoff array. Therefore, by
Theorem 5, equation (14) holds.

Every number in the Luo-Lucas array is in column 1 of the Lucas-Wythoff array 3. The
remaining numbers in column 1, excluding the initial 1, form a sequence (d(n, k)) given by

d(n, k) = (8, 19, 26, 37, 48, 55, 66, . . .),

whose terms can be naturally arranged to form a dual, (ℓ∗(n, k)) of the Luo-Lucas array,
given by

ℓ∗(n, k) = 1 + ⌊nτ⌋L2k+2 + (n− 1)L2k+1, n ≥ 1, k ≥ 1.

4 Order arrays

Following the definition at A333029, suppose that (a(n, k)), for n ≥ 1, k ≥ 1, is an array of
distinct numbers. If each a(n, k) is replaced by its position when all the numbers a(n, k) are
ordered by <, the resulting array is the order array of (a(n, k)).
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In this section, we shall see that the order array of the 2nd Lucas-Wythoff array is the
Wythoff array. A proof depends on several lemmas. The first three involve properties of
the Fibonacci numbers that follow readily from the fact that the fractions Fk+1/Fk are the
convergents to τ . Proofs of these three are omitted.

Lemma 11. If k ≥ 3 is odd, then 0 < τFk−2 − Fk−1 + 1.

Lemma 12. If k ≥ 3 is odd, then Fk−2 − 1 < τ(Fk−3 + 1).

Lemma 13. If k ≥ 3 is even, then −1 ≤ τFk−3 − Fk−2 < 1.

Let β(n, k) be the number of numbers i in B0 such that i ≤ r∗(n, k). Several lemmas will
be used to prove the following equation, to be used in proving Theorem 19:

β(n, k) = ⌊nτ⌋Fk−1 + (n− 1)Fk−2, (15)

for n ≥ 1 and k ≥ 1, where F0 = 0 and F−1 = 1.

Lemma 14. If n ≥ 1 and k ≥ 3, then β(n, k) = ⌊ ⌊nτ⌋Lk+(n−1)Lk−1+1

τ+2
⌋.

Proof. The numbers in B0 = (B(m)), for m ≥ 1, are given by

B(m) = ⌊τ⌊τm⌋⌋+m

= ⌊mτ⌋+m− 1 +m by Lemma 2,

so that we seek the number of numbers m, hence the greatest such m, satisfying

⌊mτ⌋+ 2m− 1 ≤ ⌊nτ⌋Lk + (n− 1)Lk−1 + 1 + {mτ}.

This inequality can be recast as

m(τ + 2) ≤ ⌊nτ⌋Lk + (n− 1)Lk−1 + 1− {mτ},

and dividing by τ + 2 finishes the proof.

Lemma 15. The equation (15) holds for k = 1 and all n.

Proof.

0 < 1− {nτ} < τ + 2

(n− 1)(τ + 2) < nτ + {nτ}+ 2n− 1 < n(τ + 2)

n− 1 <
nτ + {nτ}+ 2n− 1

τ + 2
< n,

so that (15), the right-hand side of which is n− 1 when k = 1, holds.
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Lemma 16. The equation (15) holds for k = 2 and all n.

Proof. First, τ⌊nτ⌋ < τ 2n = (τ + 1)n, and also

n = nτ 2 − nτ < (τ − 1)(nτ + {nτ}) + τ + 2, so that

τ⌊nτ⌋ < ⌊nτ⌋+ n < τ⌊nτ⌋+ τ + 2.

Adding 2⌊nτ⌋ and dividing by τ + 2 give

⌊nτ⌋ < 3⌊nτ⌋+ n

τ + 2
< ⌊nτ⌋+ 1,

so that (15), the right-hand side of which is ⌊nτ⌋ when k = 2, holds.

Lemma 17. If k ≥ 3, then β(n, k) = ⌊ (n−1+3⌊nτ⌋)Fk−1+(2n−2+⌊nτ⌋)Fk−1+1

τ+2
⌋.

Proof. This results readily by substituting Lk = 3Fk−1+Fk−2 and Lk−1 = 2Fk−2+Fk−1 into
the formula in Lemma 14.

Lemma 18. The equation (15), for k ≥ 3 and all n, is equivalent to

0 < τFk−2 − Fk−1 + 1 + (Fk − τFk−1){nτ} < τ + 2. (16)

Proof. Equation (15) and Lemma 17 give the following inequalities equivalent to (15):

⌊nτ⌋Fk−1 + (n− 1)Fk−2 <
(n− 1 + 3⌊nτ⌋)Fk−1 + (2n− 2 + ⌊nτ⌋)Fk−1 + 1

τ + 2

< ⌊nτ⌋Fk−1 + (n− 1)Fk−2 + 1

Multiplying by τ + 2 and then expanding the products and canceling like terms leave

τ⌊nτ⌋Fk−1 + τ(n− 1)Fk−2 < (⌊nτ⌋+ n− 1)Fk−1 + ⌊nτ⌋Fk−2 + 1

< τ⌊nτ⌋Fk−1 + τ(n− 1)Fk−2 + τ + 2,

which is successively equivalent to each of these:

0 < ((1− τ){nτ} − 1)Fk−1 + (τ + {nτ})Fk−2 + 1 < τ + 2

0 < τFk−2 − Fk−1 + 1 + (Fk−2 + (1− τ)Fk−1){nτ} < τ + 2

0 < τFk−2 − Fk−1 + 1 + (Fk − τFk−1){nτ} < τ + 2.

Theorem 19. The order array of the 2nd Lucas-Wythoff array (Table 3 is the Wythoff
array.
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Proof. By Lemma 18, we must prove that (16) holds for k ≥ 3 and arbitrary n. (For k = 1
and k = 2, the proof is already established by Lemmas 15 and 16.)

Case 1: k odd. Here, Fk − τFk−1 > 0, so that by Lemma 11,

0 < τFk−2 − Fk−1 + 1 < τFk−2 − Fk−1 + 1 + (Fk − τFk−1){nτ}.

Also,

τFk−2 − Fk−1 + 1 + (Fk − τFk−1){nτ} < τFk−2 − Fk−1 + 1 + (Fk − τFk−1),

and this last expression simplifies to Fk−2 − τFk−3 + 1, which by Lemma 12 is < τ + 2.

Case 2: k even. Here, Fk − τFk−1 < 0, so that by Lemma 13,

0 < Fk−2 − τFk−3 + 1 < τFk−2 − Fk−1 + 1 + Fk − τFk−1

< τFk−2 − Fk−1 + 1 + (Fk − τFk−1){nτ}.

Also,

τFk−2 − Fk−1 + 1 + (Fk − τFk−1){nτ} < τFk−2 − Fk−1 + 1 + (Fk − τFk−1).

Abbreviating this last expression as E, the desired inequality E < τ + 2 is equivalent to

Fk − Fk−1 − 1 < τ(Fk−1 − Fk−2),

which is equivalent to Fk−2 − 1 ≤ τFk−3, which holds by Lemma 13.

The reader may wish to prove the following proposition.

Theorem 20. The Wythoff difference array, A080164, is the order array of both the Luo-
Lucas array (Table 4) and its dual (Table 5).

5 Densities and limiting densities

Suppose that s = (sk) for k ≥ 1, is a sequence in N. Define

c(s,m) = number of numbers in s that are ≤ m,

and define the density of s in [1,m], by

D(s,m) =
m

c(s,m)
. (17)

In order to estimate densities of column sequences of the Wythoff array, (w(n, k)), we start
with a lemma:
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Lemma 21. For every n and k, w(n+ 1, k)− w(n, k) ∈ {Fk+2, Fk+3}.

Proof. By Theorem 4,

w(n+ 1, k)− w(n, k) = ⌊(n+ 1)τ⌋Fk+1 + nFk − (⌊nτ⌋Fk+1 + (n− 1)Fk)

= (τ + {(n+ 1)τ} − {nτ})Fk+1 + Fk

= δFk+1 + Fk, where δ ∈ {1, 2}.

Example 22. For fixed n and all k, let sk = w(n, k). The density

D(w(n, k),m),

which is the proportion of numbers in column k (that is, numbers whose Zeckendorf repre-
sentation has Fk+1 as least term) of the Wythoff array that are ≤ m, is estimated as follows.
Let n be the number satisfying

w(n, k) ≤ m < w(n+ 1, k).

Then by Lemma 21,

n

w(n, k) + Fk+3

≤ n

w(n+ 1, k)
≤ D(w(n, k),m) =

n

m
<

n

w(n, k)
.

Applying Theorem 4 and dividing by n lead to a limiting density:

lim
n→∞

D(w(n, k)) =
1

τFk+1 + Fk

.

Since the columns of (w(n, k)) partition N, we have

∞∑

k=1

1

τFk+1 + Fk

= 1.

Example 23. We turn now to the second column, B0 = (r(2, k)) = A188378, of the 1st
Lucas-Wythoff array:

D(r(2, k), n) =
n

⌊τ⌊nτ⌋⌋+ n
,

so that the limiting density is

1

τ 2 + 1
=

2

5 +
√
5
≈ 27.64%.

Next, consider the 2nd Lucas-Wythoff array, (r∗(n, k)).
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Lemma 24. For every n and k, r∗(n+ 1, k)− r∗(n, k) ∈ {Lk+1, Lk+2}.
Proof. By Theorem 5,

r∗(n+ 1, k)− r∗(n, k) = ⌊(n+ 1)τ⌋Lk + nLk−1 − (⌊nτ⌋Lk + (n− 1)Lk−1)

= (τ + {nτ})Lk − Lk−1

= δLk + Lk−1, where δ ∈ {1, 2}.

Example 25. For fixed n and all k, let sk = r∗(n, k). The density

D(r∗(n, k),m),

which is the proportion of numbers in column k (that is, numbers whose Lucas representation
has Lk as least term) of the 2nd Lucas-Wythoff array that are ≤ m, is estimated as follows.
Let n be the number satisfying

r∗(n, k) ≤ m < r∗(n+ 1, k).

Then by Lemma 24,
n

r∗(n, k) + Lk+2

≤ n

r∗(n+ 1, k)
≤ D(r∗(n, k),m) =

n

m
<

n

r∗(n, k)
.

Applying Theorem 4 and dividing by n lead to a limiting density:

lim
n→∞

D(r∗(n, k)) =
1

τLk + Lk−1

.

Since the columns of (r∗(n, k)) partition N−B0, we have, as a corollary of Example 23,
∞∑

k=1

1

τLk + Lk−1

= 1− 1

τ 2 + 1
≈ 72.36%.

Example 26. Recall the Luo-Lucas array, (ℓ(n, k)). Following the proof of Lemma 24, it is
easy to find that

ℓ(n+ 1, k)− ℓ(n, k) ∈ {L2k+2, L2k+3}
and

∞∑

k=1

1

τL2k+1 + L2k

=
1

3τ + 1
=

3
√
5− 5

10
≈ 17.08%,

which agrees with the limit obtained in a different manner by Luo [5].

Example 27. Finally, recall the dual of the Luo-Lucas array, (ℓ∗(n, k)). As in Example 26,

ℓ∗(n+ 1, k)− ℓ∗(n, k) ∈ {L2k+2, L2k+3}
and

∞∑

k=1

1

τL2k+2 + L2k+1

= 1− 2√
5
≈ 10.55%.
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6 Concluding conjectures

In addition to the open question posed at the end of Section 2, we recall conjectures from
A214979 and A214981.

1. Let I(n) = {1, 2, . . . , n}. Let U(n) be the number of terms in the unique greedy Lucas
representations of the numbers in I(n), and let V (n) be the number of terms in the
Zeckendorf representations of I(n). Then V (n) ≥ U(n) for all n, and V (n) = U(n) for
infinitely many n.

2. Let S = (1, 2, 3, 4, 5, 7, 8, 11, 13, 18, . . .) be the sequence, in increasing order, of all
Fibonacci and Lucas numbers. Let W (n) be the number of terms in the greedy S-
representations of the numbers in I(n) (as in A214981). Then the limit of V (n)/W (n)
exists and is the interval (1.2, 1.4).
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