

Journal of Integer Sequences, Vol. 23 (2020), Article 20.10.1

Two Remarks on the Largest Prime Factors of n and n+1

Sungjin Kim Department of Mathematics Santa Monica College California State University, Northridge 18111 Nordhoff Street Northridge, CA 91330 USA sungjin.kim@csun.edu

Abstract

Let P(n) be the largest prime factor of n. We give an alternative proof of the existence of infinitely many n such that P(n) > P(n+1) > P(n+2). Further, we prove that the set $\{P(n+1)/P(n)\}_{n\in\mathbb{N}}$ has infinitely many limit points $\{0, x_n, 1, y_n\}_{n\in\mathbb{N}}$ with $0 < x_n < 1 < y_n$ and $\lim x_n = \lim y_n = 1$.

1 Introduction

Let $n \ge 2$ be a positive integer. Let P(n) denote denote the largest prime factor of n. Erdős and Pomerance [4] proved that the number of $n \le x$ such that P(n) < P(n+1)is at least 0.0099x, and the same holds for P(n) > P(n+1). This lower density 0.0099 was subsequently improved by several authors (0.05544 by de la Bretèche, Pomerance and Tenenbaum [2], 0.1063 by Z. Wang [14]). The current record holders are Lü and Wang [7], who proved that the lower density is at least 0.2017.

Erdős and Pomerance [4] also noted that the three patterns P(n) < P(n+1) > P(n+2), P(n) > P(n+1) < P(n+2), and P(n) < P(n+1) < P(n+2) occur infinitely often. They presented a simple proof for the infinitude of the third pattern. Namely, they took

$$n = p^{2^m} - 1$$
, $n + 1 = p^{2^m}$, and $n + 2 = p^{2^m} + 1$,

where p is prime and $m = \inf\{k|P(p^{2^k} + 1) > p\}$. They left the infinitude of the fourth pattern P(n) > P(n+1) > P(n+2) as an open problem.

This problem was later solved by Balog [1], who showed that the number of occurrence of this pattern for $n \leq x$ is $\gg \sqrt{x}$. Building on earlier results by Matomäki, Radziwiłł, and Tao [10], and Teräväinen [12], Tao and Teräväinen [13] proved that the following sets have positive lower density:

$$\{n \in \mathbb{N} \mid P(n) < P(n+1) < P(n+2) > P(n+3)\} \text{ and} \\ \{n \in \mathbb{N} \mid P(n) > P(n+1) > P(n+2) < P(n+3)\}.$$

Using the Maynard-Tao theorem [11], in this paper we provide a simple alternative proof of the infinitude of the patterns P(n) < P(n+1) < P(n+2) and P(n) > P(n+1) > P(n+2). We prove that both patterns occur for $\gg x/(\log x)^{50}$ values of $n \le x$. The result is weaker than Tao and Teräväinen's, and stronger than Balog's.

Theorem 1. For sufficiently large x, we have

$$#\{n \le x \mid P(n) < P(n+1) < P(n+2)\} \gg \frac{x}{(\log x)^{50}} \text{ and} \\ #\{n \le x \mid P(n) > P(n+1) > P(n+2)\} \gg \frac{x}{(\log x)^{50}}.$$

Erdős and Pomerance [4, Theorem 1] proved that for any $\epsilon > 0$, there is $\delta > 0$ such that the number of $n \leq x$ with

$$x^{-\delta} < \frac{P(n+1)}{P(n)} < x^{\delta}$$

is less than ϵx . They remarked that this means P(n) and P(n+1) are usually not close. In the opposite direction, we prove that this ratio can approach arbitrarily close to 1 from both sides.

Theorem 2. For any $\epsilon > 0$, we have

$$\#\left\{n \le x \left| 1 \le \frac{P(n+1)}{P(n)} < 1 + \epsilon\right\} \gg_{\epsilon} \frac{x}{(\log x)^{50}} \text{ and} \right.$$
$$\#\left\{n \le x \left| 1 - \epsilon < \frac{P(n+1)}{P(n)} \le 1\right\} \gg_{\epsilon} \frac{x}{(\log x)^{50}}.$$

Let $R := \{\frac{P(n+1)}{P(n)} \mid n \in \mathbb{N}\}$. As a direct consequence of Theorem 2, we obtain that $1 \in \overline{R}$. From the proof of Theorem 2, we obtain a finite set $\{a_1, \ldots, a_{50}\} \subseteq \mathbb{N}$ with $1 \leq a_i < a_j$ for each $1 \leq i < j \leq 50$ such that $a_{j_1}/a_{i_1} \in \overline{R} \cap (1, \infty)$ for some $1 \leq i_1 < j_1 \leq 50$, and $a_{i_2}/a_{j_2} \in \overline{R} \cap (0, 1)$ for some $1 \leq i_2 < j_2 \leq 50$. Changing a_i with ϵ , we obtain a sequence rational numbers with $0 < x_n < 1 < y_n$ such that $\lim x_n = \lim y_n = 1$ and $\{x_n, y_n\}_{n \in \mathbb{N}} \subseteq \overline{R}$. In fact, there is an elementary proof of $1 \in \overline{R}$. This elementary proof is based on a solution ($\epsilon = 1$ in the following argument) that appeared in Mathematics Stack Exchange [3] by Barry Cipra. For any $0 < \epsilon \leq 1$, take primes p and q satisfying $p < q < (1 + \epsilon)p$ so that

$$\frac{1}{1+\epsilon} < \frac{p}{q} < 1 < \frac{q}{p} < 1 + \epsilon.$$

By the extended Euclidean algorithm, there exist integers u and v with 0 < u < q, 0 < v < pand pu - qv = 1. Let U = q - u, V = p - v. Then qV - pU = 1. The integers qu and qVhave q as largest prime factor. Since $u + U = q < (1 + \epsilon)p$, at least one of $u \le p$ or $U \le p$ holds. If $u \le p$, then p is the largest prime factor of pu. If $U \le p$, then p is also the largest prime factor of pU. Thus, either one of the following holds:

$$n = qv, \ n+1 = pu, \ \frac{P(n+1)}{P(n)} = \frac{p}{q},$$

or

$$n = pU, \ n + 1 = qV, \ \frac{P(n+1)}{P(n)} = \frac{q}{p}$$

Therefore, $1 \in \overline{R}$ follows. From this argument the number of $n \leq x$ with $\frac{1}{1+\epsilon} < \frac{P(n+1)}{P(n)} < 1+\epsilon$ is $\gg_{\epsilon} x/(\log x)^2$. Slightly modifying this argument, we have for any $x \in [1, 2]$, either x or 1/x is in \overline{R} . However, this argument does not determine whether a limit point is in [0, 1) or $(1, \infty)$.

By Dirichlet's theorem on primes in arithmetic progressions, it is easy to see that 0 is also a limit point of R. For if we take a prime n = ar - 1, with a large, then P(n) = ar - 1and $P(n+1) \leq \max(a, r)$. Assuming the prime k-tuples conjecture (Conjecture 4), we prove that all nonnegative real numbers are limit points of R.

Theorem 3 (Conditional). Assuming the prime k-tuples conjecture (Conjecture 4), we have $\overline{R} = [0, \infty)$.

2 Estimates on the numbers of prime k-tuples

A set of k-tuple of linear forms $\{a_1x + b_1, \dots, a_kx + b_k\}$ is said to be *admissible* if for any prime p there is $x_p \in \mathbb{Z}$ such that $p \nmid \prod_{i=1}^k (a_i x_p + b_i)$. We consider the tuples with

$$\prod_{i} a_i \neq 0 \text{ and } \prod_{i < j} (a_i b_j - a_j b_i) \neq 0.$$

The following is a special case of Bateman-Horn conjecture (a quantitative estimate on Dickson's prime k-tuples conjecture).

Conjecture 4 (Bateman-Horn). Let $k \ge 2$ and $A_k = \{a_1x+b_1, \ldots, a_kx+b_k\}$ be an admissible set of linear forms. Then for sufficiently large x, the number $R_k(x)$ of $r \le x$ such that a_ix+b_i , $1 \le i \le k$ are all prime satisfies

$$R_k(x) \gg_{A_k} \frac{x}{(\log x)^k}.$$

Substantial progress toward this conjecture begin with Zhang's result [15] on bounded gaps in primes. Subsequently, Maynard [8] and Polymath8b ([11] led by Tao) improved upon Zhang's result. We state a quantitative form of the Maynard-Tao theorem for admissible sets of linear forms. The proof requires slight modifications of [11] and the stated lower bound can be found in [11, Remark 32]. Note that the following is unconditional.

Lemma 5 (Maynard-Tao-Polymath8b). Let $A = \{a_1r + b_1, \ldots, a_{50}r + b_{50}\}$ be an admissible set of linear forms. Then for sufficiently large x, the number R(A, x) of $r \leq (x - \max_i b_i) / \max_i a_i$ such that at least two of the linear forms are primes satisfies

$$R(A, x) \gg_A \frac{x}{(\log x)^{50}}.$$

We will apply the above lemma in the following two special cases:

Case 1. $0 < a_1 < \cdots < a_k$ and $b_i = 1$ for all i = 1, ..., k.

Case 2. $0 < a_1 < \cdots < a_k$ and $b_i = -1$ for all $i = 1, \dots, k$.

The set of linear forms in these cases is always admissible.

3 The main lemma

We construct a special sequence $\{a_i\}$ by the following inductive process.

Lemma 6 (The main lemma). Let $k \ge 2$ and $e_k = 1$. For each $0 \le j \le k - 2$, assume that $\{e_{k-j}, \ldots, e_k\}$ satisfies

$$\sum_{s < i \le t} e_i \left| \sum_{k-j \le i \le s} e_i \text{ for any } k-j \le s < t \le k.$$

Let e_{k-j-1} be a multiple of

$$\operatorname{lcm}\left\{\sum_{s \le i \le t} e_i \; \left| k - j \le s < t \le k \right\}\right\}.$$

Then $a_i = \sum_{m \leq i} e_m$ satisfies $0 < a_j - a_i \mid a_i$ for each $1 \leq i < j \leq k$.

Proof. The proof is clear from the inductive construction.

We exhibit some sequences $\{a_i\}$ that can be produced by the main lemma.

Example 7. If k = 2, then let $\{e_1, e_2\} = \{1, 1\}$ and $\{a_1, a_2\} = \{1, 2\}$.

If k = 3, then let $\{e_1, e_2, e_3\} = \{2, 1, 1\}$ and $\{a_1, a_2, a_3\} = \{2, 3, 4\}$.

If
$$k = 4$$
, then let $\{e_1, e_2, e_3, e_4\} = \{12, 2, 1, 1\}$ and $\{a_1, a_2, a_3, a_4\} = \{12, 14, 15, 16\}.$

If k = 5, then let $\{e_1, e_2, e_3, e_4, e_5\} = \{1680, 12, 2, 1, 1\}$ and

 ${a_1, a_2, a_3, a_4, a_5} = {1680, 1692, 1694, 1695, 1696}.$

Note that e_1 can be made arbitrarily large in the final inductive step. We will use the sequence $\{a_i\}_{1 \le i \le 50}$.

Lemma 8. Let $\{a_i\}_{1 \le i \le 50}$ be a sequence produced in the main lemma. That is, $0 < a_j - a_i \mid a_i$ for each $1 \le i < j \le 50$. Suppose that $a_ir + 1$ and $a_jr + 1$ are primes. Then by taking

$$n = \frac{a_i}{a_j - a_i}(a_j r + 1), \ n + 1 = \frac{a_j}{a_j - a_i}(a_i r + 1),$$
(1)

we have for sufficiently large r,

$$P(n) = a_j r + 1, \ P(n+1) = a_i r + 1.$$

Now suppose that $a_ir - 1$ and $a_ir - 1$ are primes. Then by taking

$$n = \frac{a_j}{a_j - a_i}(a_i r - 1), \ n + 1 = \frac{a_i}{a_j - a_i}(a_j r - 1),$$
(2)

we have for sufficiently large r,

$$P(n) = a_i r - 1, P(n+1) = a_j r - 1.$$

Proof. We take large enough r so that $a_1r - 1$ exceeds the largest prime factor of $\prod a_i$. \Box

Remark 9. The author recently learned that a sequence $\{a_i\}$ with the property $0 < a_j - a_i \mid a_i$ for each $1 \leq i < j$ was obtained earlier by Heath-Brown [6, Lemma 1], and such a sequence is used in an unpublished work of Maynard and Ford [5, Theorem 7.18]. Using such a sequence and Lemma 8 (1), Maynard and Ford proved that there is a constant B > 0 so that $P(n) \geq n/B$ and $P(n+1) \geq (n+1)/B$ for infinitely many n.

4 Proof of theorems

4.1 Proof of Theorem 1

Proof. Let $\{a_i\}_{1 \le i \le 50}$ be a sequence produced in the main lemma. We apply (1) of Lemma 8. By letting n + 2 divisible by $\frac{a_j}{a_j - a_i} + 1$, we obtain P(n) > P(n + 1) > P(n + 2) for n in (1). For this idea to work, we need to require r to be divisible by $\frac{a_j}{a_j - a_i} + 1$ for any choice of $1 \le i < j \le 50$. To see this, we let

$$M = \operatorname{lcm} \left\{ \frac{a_j}{a_j - a_i} + 1 \ \middle| \ 1 \le i < j \le 50 \right\}.$$

Then we work with the admissible set of linear forms $\{a_iMr+1\}_{1\leq i\leq 50}$. By Lemma 5 and the pigeonhole principle, there is a pair $(i, j), 1 \leq i < j \leq 50$ depending on x such that a_iMr+1 and a_jMr+1 are primes for $\gg x/(\log x)^{50}$ values of $r \leq (x-a_{50})/(a_{50}^2M)$. For such $r \geq r_0$, we have $n = \frac{a_i}{a_j-a_i}(a_jMr+1) \leq x$, $P(n) = a_jMr+1$, $P(n+1) = a_iMr+1$, and $P(n+2) \leq (n+2)/(\frac{a_j}{a_j-a_i}+1)$. Thus, P(n) > P(n+1) > P(n+2) is satisfied for such r.

To obtain an analogous result on P(n) < P(n+1) < P(n+2), we apply Part (2) of Lemma 8. By letting n-1 divisible by $\frac{a_j}{a_j-a_i} + 1$, we obtain P(n-1) < P(n) < P(n+1)for n in (2). Then we work with the admissible set of linear forms $\{a_iMr-1\}_{1\leq i\leq 50}$. The rest of the argument is similar to the previous case.

4.2 Proof of Theorem 2

Proof. Let $\epsilon > 0$ be arbitrary. We show that the number of $n \leq x$ with $1 - \epsilon < \frac{P(n+1)}{P(n)} \leq 1$ is $\gg_{\epsilon} \frac{x}{(\log x)^{50}}$. In the inductive process in Lemma 6, we let e_1 be large enough to have

$$1 - \epsilon < \frac{a_i}{a_j} \le 1$$
 for each $1 \le i < j \le 50$.

Then we apply Lemma 8 (1) to conclude the existence of a pair (i, j), $1 \le i < j \le 50$ depending on x such that $a_ir + 1$ and $a_jr + 1$ are primes for $\gg_{\epsilon} x/(\log x)^{50}$ values of $r \le (x - a_{50})/a_{50}^2$. It is clear that $\frac{a_ir+1}{a_jr+1} = \frac{a_i}{a_j} + \frac{a_j-a_i}{a_j(a_jr+1)}$. Since $P(n) = a_jr + 1$ and $P(n+1) = a_ir + 1$ for such r by Lemma 8 (1), we have

$$1 \ge \frac{P(n+1)}{P(n)} = \frac{a_i r + 1}{a_j r + 1} > \frac{a_i}{a_j} > 1 - \epsilon.$$

The result now follows.

To obtain an analogous result for $1 \leq \frac{P(n+1)}{P(n)} < 1 + \epsilon$, we apply Lemma 8 (2).

4.3 Proof of Theorem 3

Proof. Let a_1 be an even positive integer, and a_2 be a positive integer with $(a_1, a_2) = 1$. By Bezout's identity, we can find positive integers b_1 and b_2 such that $a_1b_2 - a_2b_1 = (a_1, a_2) = 1$. The sets of linear forms $\{a_1r + b_1, a_2r + b_2\}$ and $\{a_1r - b_1, a_2r - b_2\}$ are admissible. By Conjecture 4, there are infinitely many r such that both of these forms are primes. We take

$$n = a_2(a_1r + b_1), n + 1 = a_1(a_2r + b_2)$$

or

$$n = a_1(a_2r - b_2), n + 1 = a_2(a_1r - b_1),$$

If we select r to exceed any prime factor of a_1a_2 , then we see in both cases

$$\left\{\frac{a_1}{a_2}, \frac{a_2}{a_1}\right\} \subseteq \overline{R}.$$

Hence, it follows that any positive rational numbers with numerator and denominator of different parity are limit points of R, and consequently, $\overline{R} = [0, \infty)$.

5 Acknowledgments

The author thanks Kevin Ford for bringing [6], [10], and [12] to his attention. The author also thanks an anonymous referee and Paul Pollack for careful reading of the paper and helpful comments.

References

- A. Balog, On triplets with descending largest prime factors, Studia Sci. Math. Hungar. 38 (2001), 45–50.
- [2] R. de la Bretèche, C. Pomerance, and G. Tenenbaum, Products of ratios of consecutive integers, *Ramanujan J.* 9 (2005), 131–138.
- [3] B. Cipra, Greatest prime divisor of consecutive integers, Mathematics Stack Exchange, available at https://math.stackexchange.com/questions/1894873/ greatest-prime-divisor-of-consecutive-integers.
- [4] P. Erdős and C. Pomerance, On the largest prime factors of n and n + 1, Aequationes Math. 17 (1978), 311–321.
- [5] K. Ford, Sieve method lecture notes, 2020. Available at https://faculty.math. illinois.edu/~ford/sieve2020.pdf.

- [6] D. R. Heath-Brown, The divisor function at consecutive integers, *Mathematika* 31 (1984), 141-–149.
- [7] X. Lü and Z. Wang, On the largest prime factors of consecutive integers, preprint, 2018. Available at https://hal.archives-ouvertes.fr/hal-01797939/document.
- [8] J. Maynard, Small gaps between primes, Ann. of Math. 181 (2015), 383–413.
- [9] J. Maynard, Dense clusters of primes in subsets, Compos. Math. 152 (2016), 1517–1554.
- [10] K. Matomäki, M. Radziwiłł, and T. Tao, Sign patterns of the Liouville and Möbius functions, *Forum Math. Sigma*, 4 (2016), Paper e14. Available at https://doi.org/ 10.1017/fms.2016.6.
- [11] D. H. J. Polymath, Variants of Selberg sieve, and bounded intervals containing many primes, *Res. Math. Sci.* 1 (2014), 1–83.
- [12] J. Teräväinen, On binary correlations of multiplicative functions, Forum Math. Sigma 6 (2018), Paper e10. Available at https://doi.org/10.1017/fms.2018.10.
- [13] T. Tao and J. Teräväinen, Value patterns of multiplicative functions and related sequences, Forum Math. Sigma 7 (2019), Paper e33. Available at https://doi.org/10. 1017/fms.2019.28.
- [14] Z. Wang, On the largest prime factors of consecutive integers in short intervals, Proc. Amer. Math. Soc. 145 (2017), 3211–3220.
- [15] Y. Zhang, Bounded gaps between primes, Ann. of Math. 179 (2014), 1121–1174.

2010 Mathematics Subject Classification: Primary 11A41; Secondary 11N05. Keywords: largest prime factor, consecutive prime.

(Concerned with sequence $\underline{A006530}$.)

Received June 15 2020; revised versions received September 7 2020; October 16 2020. Published in *Journal of Integer Sequences*, October 16 2020.

Return to Journal of Integer Sequences home page.