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Let n > 2 be a positive integer. Let P(n) denote denote the largest prime factor of n.
Erd6s and Pomerance [4] proved that the number of n < z such that P(n) < P(n + 1)
is at least 0.0099z, and the same holds for P(n) > P(n + 1).
was subsequently improved by several authors (0.05544 by de la Breteche, Pomerance and
Tenenbaum [2], 0.1063 by Z. Wang [14]). The current record holders are Lii and Wang [7],
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Abstract

Let P(n) be the largest prime factor of n. We give an alternative proof of the
existence of infinitely many n such that P(n) > P(n + 1) > P(n + 2). Further, we
prove that the set { P(n+1)/P(n)}nen has infinitely many limit points {0, ., 1, yn }nen
with 0 < z, < 1 < ¥y, and limz,, = limy, = 1.

Introduction

who proved that the lower density is at least 0.2017.

Erdés and Pomerance [4] also noted that the three patterns P(n) < P(n+1) > P(n+2),
P(n) > P(n+1) < P(n+2), and P(n) < P(n+ 1) < P(n+ 2) occur infinitely often. They

presented a simple proof for the infinitude of the third pattern. Namely, they took

om

n:me—l, n+l=p ,andn+2:p2m+1,

This lower density 0.0099


mailto:sungjin.kim@csun.edu

where p is prime and m = inf{k|P(p*" + 1) > p}. They left the infinitude of the fourth
pattern P(n) > P(n+ 1) > P(n + 2) as an open problem.

This problem was later solved by Balog [1], who showed that the number of occurrence
of this pattern for n < z is > /z. Building on earlier results by Matoméki, Radziwilt, and
Tao [10], and Teréviinen [12], Tao and Terdvéiinen [13] proved that the following sets have
positive lower density:

{neN|Pn)<Pn+1)<Pn+2)>Pn+3)}and

{neN|Pn)>Pn+1)>Pn+2)<P(n+3)}

Using the Maynard-Tao theorem [11], in this paper we provide a simple alternative proof of
the infinitude of the patterns P(n) < P(n+1) < P(n+2) and P(n) > P(n+1) > P(n+2).
We prove that both patterns occur for > z/(log )® values of n < x. The result is weaker
than Tao and Teravainen’s, and stronger than Balog’s.

Theorem 1. For sufficiently large x, we have

#{n <z | P(n)<P(n+1)<P(n+2)}>>W and

Erdés and Pomerance [4, Theorem 1] proved that for any € > 0, there is 6 > 0 such that
the number of n < z with
5 P(n+1) 5
P(n)

is less than ex. They remarked that this means P(n) and P(n + 1) are usually not close.

In the opposite direction, we prove that this ratio can approach arbitrarily close to 1 from
both sides.

Theorem 2. For any € > 0, we have

#{n§$
#{ngx

P(n+1)

'S Thw)

(log x)>

x
<1—|—6} >, —— and

P 1
FKMQ}»G%

P(n) log )59
Let R := {% | n € N}. As a direct consequence of Theorem 2, we obtain that 1 € R.
From the proof of Theorem 2, we obtain a finite set {a;,...,a5} € N with 1 < @; < a;

for each 1 <i < j < 50 such that aj;, /a;, € RN (1,00) for some 1 < i; < j; < 50, and
ai,/aj, € RN (0,1) for some 1 <y < jo < 50. Changing a; with €, we obtain a sequence
rational numbers with 0 < x,, < 1 < y,, such that limz, = limy, = 1 and {z,,, ¥, }neny C R.
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In fact, there is an elementary proof of 1 € R. This elementary proof is based on a
solution (e = 1 in the following argument) that appeared in Mathematics Stack Exchange [3]
by Barry Cipra. For any 0 < € < 1, take primes p and ¢ satisfying p < ¢ < (1 + €)p so that

1
<Po1<ciq4e

1+e¢ q P

By the extended Euclidean algorithm, there exist integers v and v with 0 < u < ¢, 0 <v <p
and pu —qu=1. Let U = q—u, V =p—wv. Then qV — pU = 1. The integers qu and ¢V’
have ¢ as largest prime factor. Since u+ U = g < (1 + €)p, at least one of u < por U <p
holds. If u < p, then p is the largest prime factor of pu. If U < p, then p is also the largest
prime factor of pU. Thus, either one of the following holds:

Pn+1) p
n =quv, n+1:pu7 T 57 N T
P(n) g
or P )
n—+ q
n=pU n+1=qV, ————= = =,
Pn) p
Therefore, 1 € R follows. From this argument the number of n < z with = < P(TL)I) <l+e

is >, x/(logz)?. Slightly modifying this argument, we have for any x E [1, 2], either z or
1/z is in R. However, this argument does not determine whether a limit point is in [0,1) or
(1,00).

By Dirichlet’s theorem on primes in arithmetic progressions, it is easy to see that 0 is
also a limit point of R. For if we take a prime n = ar — 1, with a large, then P(n) = ar — 1
and P(n+1) < max(a,r). Assuming the prime k-tuples conjecture (Conjecture 4), we prove
that all nonnegative real numbers are limit points of R.

Theorem 3 (Conditional). Assuming the prime k-tuples conjecture (Conjecture 4), we have
R =10,00).

2 Estimates on the numbers of prime k-tuples

A set of k-tuple of linear forms {a;x + by, ...axx + by} is said to be admissible if for any
prime p there is z, € Z such that p { Hle(aixp + b;). We consider the tuples with

HaﬁéO and Hal i) # 0.

1<j

The following is a special case of Bateman-Horn conjecture (a quantitative estimate on
Dickson’s prime k-tuples conjecture).



Conjecture 4 (Bateman-Horn). Let k£ > 2 and Ay, = {a;x+by, ..., apx+bi} be an admissible
set of linear forms. Then for sufficiently large x, the number Ry(z) of r < z such that a;x+b;,
1 <1 < k are all prime satisfies

Substantial progress toward this conjecture begin with Zhang’s result [15] on bounded
gaps in primes. Subsequently, Maynard [8] and Polymath8b ([11] led by Tao) improved upon
Zhang’s result. We state a quantitative form of the Maynard-Tao theorem for admissible sets
of linear forms. The proof requires slight modifications of [11] and the stated lower bound
can be found in [11, Remark 32]. Note that the following is unconditional.

Lemma 5 (Maynard-Tao-Polymath8b). Let A = {a1r + by, ..., a5 + bso} be an admis-
sible set of linear forms. Then for sufficiently large x, the number R(A,z) of r < (x —
max; b;)/ max; a; such that at least two of the linear forms are primes satisfies

X

R(A, :B) > W

We will apply the above lemma in the following two special cases:
Case 1. 0<a; <---<agand b;=1foralli=1,... k.
Case 2. 0<a; < ---<apand b;=—1foralli=1,..., k.

The set of linear forms in these cases is always admissible.

3 The main lemma

We construct a special sequence {a;} by the following inductive process.

Lemma 6 (The main lemma). Let k > 2 and e, = 1. For each 0 < j < k — 2, assume that
{er—j, ..., ex} satisfies

>

s<i<t

Z e; forany k—j<s<t<k.

k—j<i<s

Let e—j—1 be a multiple of

lcm{ d e

s<i<t

k—j§s<t§k}.

Then a; =) .. en satisfies 0 < a; — a; | a; for each 1 <i < j <k.

m<i
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Proof. The proof is clear from the inductive construction. O]

We exhibit some sequences {a;} that can be produced by the main lemma.

Example 7. If k = 2, then let {ej,es} = {1,1} and {a1, a2} = {1,2}.
If £ = 3, then let {e,e9,e3} = {2,1,1} and {ay, as,a3} = {2,3,4}.
If k =4, then let {eq, e, e3,e4} ={12,2,1,1} and {ay, as, a3, as} = {12,14,15,16}.
If k=5, then let {ey,eq,e3,€4,65} = {1680,12,2,1,1} and
{a1, as, as, ay, a5} = {1680, 1692, 1694, 1695, 1696 } .

Note that e; can be made arbitrarily large in the final inductive step. We will use the
sequence {a;}1<i<s0-

Lemma 8. Let {a;}1<i<s0 be a sequence produced in the main lemma. Thatis, 0 < a;—a; | a;
for each 1 < i < j <50. Suppose that a;r +1 and a;r + 1 are primes. Then by taking
a;

a.
1 1= —Y (441 1
aj—ai(ajr—i_ ), n+ aj_ai(a'r—l— ), (1)

n =

we have for sufficiently large r,
P(n)=ajr+1, P(n+1) =a;r + 1.

Now suppose that a;r — 1 and a;r — 1 are primes. Then by taking

Q5 a;
=1, n+1= r—1), 2
o =), 1= () ¢l

n =

we have for sufficiently large r,

Pn)=ar—1, P(n+1)=ar — 1.

Proof. We take large enough r so that a;r — 1 exceeds the largest prime factor of [[a;. O

Remark 9. The author recently learned that a sequence {a;} with the property 0 < a;—a; | a;
for each 1 <i < j was obtained earlier by Heath-Brown [6, Lemma 1], and such a sequence
is used in an unpublished work of Maynard and Ford [5, Theorem 7.18]. Using such a
sequence and Lemma 8 (1), Maynard and Ford proved that there is a constant B > 0 so
that P(n) > n/B and P(n+ 1) > (n+ 1)/B for infinitely many n.
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4 Proof of theorems

4.1 Proof of Theorem 1

Proof. Let {a;}1<i<50 be a sequence produced in the main lemma. We apply (1) of Lemma 8.
By letting n + 2 divisible by —— + 1, we obtain P(n) > P(n+ 1) > P(n + 2) for n in
(1). For this idea to work, we need to require r to be divisible by —*
1 <1<y <50. To see this, we let

—— + 1 for any choice of
7 i

M:lcm{ 4 +1‘1§i<]’§50}.
aj—ai

Then we work with the admissible set of linear forms {a;Mr + 1}1<;<50. By Lemma 5 and
the pigeonhole principle, there is a pair (i,j), 1 < i < j < 50 depending on z such that
a;Mr +1 and a;Mr + 1 are primes for > z/(logz)*® values of r < (z — aso)/(a2yM). For
such r > 1o, we have n = —%—(a;Mr+1) <z, P(n) =a;Mr+1, P(n+1) = a;Mr+1, and

a;—a;

Pn+2) < (n+2)/(=%- +1). Thus, P(n) > P(n+1) > P(n+ 2) is satisfied for such r.

To obtain an anal(;golus result on P(n) < P(n+ 1) < P(n + 2), we apply Part (2) of
Lemma 8. By letting n — 1 divisible by —“— + 1, we obtain P(n — 1) < P(n) < P(n+ 1)

aj—a;
for n in (2). Then we work with the admissible set of linear forms {a;Mr — 1}1<;<50. The
rest of the argument is similar to the previous case. O

4.2 Proof of Theorem 2

Proof. Let € > 0 be arbitrary. We show that the number of n < x with 1 — e < PI(DTE:;) <1

is >, W. In the inductive process in Lemma 6, we let e; be large enough to have

l—e<® <1 foreach 1<i<j<50.
a;

Then we apply Lemma 8 (1) to conclude the existence of a pair (i,7), 1 < i < j < 50
depending on z such that a;r + 1 and a;r + 1 are primes for >, z/(logz)*® values of
r < (z — as)/az,. It is clear that (‘Z’;—ﬁ Z—; + aj‘(li;:fl). Since P(n) = a;r + 1 and
P(n+1) = a;r + 1 for such r by Lemma 8 (1), we have

Pn+1) ar+1 _ a
= >—>1—¢.
P(n) ar+1° a;

1>

The result now follows. ]

To obtain an analogous result for 1 < % < 1+ €, we apply Lemma 8 (2).



4.3 Proof of Theorem 3

Proof. Let ay be an even positive integer, and as be a positive integer with (a;,as) = 1. By
Bezout’s identity, we can find positive integers by and by such that a;by — asb; = (a1, a2) = 1.
The sets of linear forms {a;r + by, asr + bo} and {a1r — by, aor — by} are admissible. By
Conjecture 4, there are infinitely many r such that both of these forms are primes. We take

n=as(a;r +by), n+1=ai(asr + by)
or
n = aj(asr — by), n+1=as(a;r — by).

If we select r to exceed any prime factor of ajas, then we see in both cases

a a —
{_17_2} cR
Ao A1

Hence, it follows that any positive rational numbers with numerator and denominator of

different parity are limit points of R, and consequently, R = [0, 00). O
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