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Abstract

We propose a generalization of Carmichael numbers, where the multiplicative group
Gm = GL(1) is replaced by GL(m) for m ≥ 2. We prove basic properties of these
families of numbers and give some examples.

1 Introduction

Recall that a composite number n ∈ N is called Carmichael if an−1 ≡ 1 (mod n) for every
a ∈ (Z/nZ)×. In other words, Carmichael numbers are Fermat pseudoprimes to all values of
a that are coprime to n. Alford, Granville, and Pomerance [1] proved that there are infinitely
many Carmichael numbers.

Recently, various generalizations and analogues of Carmichael numbers were proposed,
see, e.g., [3, 5, 7] and references therein. In this paper, we introduce another analogue of
Carmichael numbers, where the multiplicative group Gm = GL(1) is replaced by GL(m) for
m ≥ 2. Namely, we start with the exponent Km(p) of the group GL(m,Fp), extrapolate
it naturally to all naturals as Km(n), and then define a composite number n ∈ N to be
m-Carmichael if AKm(n) = I for all A ∈ GL(m,Z/nZ). Thus, the “classical” Carmichael
numbers can be recovered as 1-Carmichael numbers.

We study basic properties of m-Carmichael numbers, including an analogue of Korselt’s
criterion for a number to be Carmichael in terms of its prime divisors. This criterion appears
to be practical for numbers of reasonable size. Using this, we compute all m-Carmichael
numbers less than or equal to 105 for 2 ≤ m ≤ 10. Also, we describe the structure of
m-Carmichael numbers with given prime factors.
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Some properties of m-Carmichael numbers for m ≥ 2 appear to be rather different from
those of the “classical” Carmichael numbers. Namely, m-Carmichael numbers for m ≥ 2 can
be non-squarefree or even. Moreover, all prime powers are m-Carmichael for m ≥ 2. Possible
explanation of these phenomena is the fact that the groups GL(m) for m ≥ 2 contain (many
copies of) the additive group Ga.

The paper is organized as follows. In Section 2, we define m-Carmichael numbers and
discuss their basic properties. The main result of the paper is Theorem 8, an analogue of
Korselt’s criterion for m-Carmichael numbers. In Section 3, we consider the distribution of
m-Carmichael numbers with prescribed prime factors, give several particular examples, and
summarize the general pattern in Theorem 16. In Section 4, we list some open questions and
discuss possible generalizations. In Appendix, we describe our computations of relatively
small m-Carmichael numbers.

Throughout this paper, p denotes a prime number. In particular,
∏

p|n stands for a
product taken over all prime divisors of n.

2 m-Carmichael numbers

Let Φk(X) be the kth cyclotomic polynomial. The following proposition is well known, but
for the reader’s convenience we provide a proof.

Proposition 1. If a ∈ Z, then

lcm(a− 1, a2 − 1, . . . , am − 1) =
m
∏

k=1

Φk(a).

Proof. We proceed by induction with the obvious base. We have

lcm(a− 1, a2 − 1, . . . , am − 1) = lcm

(

m−1
∏

k=1

Φk(a), a
m − 1

)

=





∏

d|m,d<m

Φd(a)



 · lcm





∏

k∤m,k<m

Φk(a),Φm(a)



 .

By [2, Theorem 5] we have gcd (Φk(a),Φl(a)) = 1 unless k
l
is a prime power. Therefore,

gcd





∏

k∤m,k<m

Φk(a),Φm(a)



 = 1,

and

lcm





∏

k∤m,k<m

Φk(a),Φm(a)



 = Φm(a)
∏

k∤m,k<m

Φk(a),

which finishes the proof.
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Recall that the exponent of a (finite) group G is the least common multiple of orders of
elements of G.

Theorem 2. [4, 6] The exponent of GL(m,Fp) equals

p⌈logp m⌉ lcm(p− 1, p2 − 1, . . . , pm − 1) = p⌈logp m⌉

m
∏

k=1

Φk(p).

From now on we assume that m ≥ 2. Notice that if p ≥ m, then the exponent of
GL(m,Fp) equals p ·

∏m

k=1Φk(p).
Let us introduce the following notation:

Dm(n) =
m
∏

k=1

Φk(n),

∇m(n) =
∏

p|n

p⌈logp m⌉−1,

Km(n) = n∇m(n)Dm(n).

In this notation, the exponent of GL(m,Fp) equals Km(p).
Notice also that if p ≥ m, then p⌈logp m⌉−1 = 1. Therefore,

∇m(n) =
∏

p|n, p<m

p⌈logp m⌉−1.

Example 3.

(a) For m = 2, we have ∇2(n) = 1, D2(n) = (n−1)(n+1). Thus K2(n) = n(n−1)(n+1).

(b) For m = 3, we have ∇3(n) = 1 for n odd, ∇3(n) = 2 for n even, and D3(n) =
(n− 1)(n+ 1)(n2 + n+ 1). Therefore, K3(n) = n(n− 1)(n+ 1)(n2 + n+ 1) for n odd
and K3(n) = 2n(n− 1)(n+ 1)(n2 + n+ 1) for n even.

Definition 4. A composite number n ∈ N is called an m-Carmichael number if AKm(n) = I
for all A ∈ GL(m,Z/nZ).

First, we show that any prime power is an m-Carmichael number. For this purpose, we
need two simple lemmas.

Lemma 5. If a ∈ Z, k ∈ N, then Dm(a) | Dm(a
k).

Proof. Consider Dm(X) =
∏m

k=1Φk(X) ∈ Z[X]. Since all roots of Dm(X) are simple, and
each root of Dm(X) is a root of Dm(X

k), we have Dm(X) | Dm(X
k). Since the polynomial

Dm(X) is monic, this implies the lemma.
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Lemma 6. Let B ∈ Mat(m,Z), B ≡ I (mod p). Then for any k ∈ N we have Bpk−1
≡

I (mod pk).

Proof. We use induction by k with the obvious base. Let Bpk−1
= I + pkC. Then, by the

binomial theorem, we have

Bpk = (I + pkC)p = I + pk+1C +

p
∑

l=2

pkl
(

p

l

)

C l ≡ I (mod pk+1).

Proposition 7. If k ∈ N, k > 1, then pk is an m-Carmichael number.

Proof. Let A ∈ Mat(m,Z), gcd(detA, p) = 1. By Theorem 2, we have B := AKm(p) ≡
I (mod p). Therefore, by Lemma 6 we have Bpk−1

≡ I (mod pk). Since ∇m(p
k) = ∇m(p)

and, by Lemma 5, Dm(p) | Dm(p
k), the equation Bpk−1

= Apk∇m(p)Dm(p) ≡ I (mod pk) implies
AKm(pk) = Apk∇m(pk)Dm(pk) ≡ I (mod pk).

Now we present the main theorem of the paper, an analogue of Korselt’s criterion for a
number to be m-Carmichael.

Theorem 8. Let n ∈ N be composite. The following are equivalent:
(1) n is an m-Carmichael number,
(2) if p | n, then Dm(p) | Km(n).

Proof. (2) =⇒ (1): Let Dm(p) | Km(n) for all p | n. Since pordp(n)∇m(p) | Km(n) and

gcd(pordp(n)∇m(p), Dm(p)) = 1,

we have pordp(n)∇m(p)Dm(p) | Km(n) for all p | n.
Now consider A ∈ Mat(m,Z), gcd(detA, n) = 1. By Theorem 2, we have Ap∇m(p)Dm(p) ≡

I (mod p) for all p | n. Lemma 6 implies Apordp(n)∇m(p)Dm(p) ≡ I (mod pordp(n)). Thus,
AKm(n) ≡ I (mod pordp(n)) for all p | n. By the Chinese remainder theorem, AKm(n) ≡
I (mod n). Therefore, n is an m-Carmichael number.

(1) =⇒ (2): Conversely, assume that for some p | n we have Dm(p) ∤ Km(n). Since
Dm(p) = lcm(p−1, p2−1, . . . , pm−1), there exists k ∈ {1, 2, . . . ,m} such that pk−1 ∤ Km(n).

We construct an element A ∈ GL(m,Z/nZ) of order pk − 1. Therefore, AKm(n) 6= I, and
n is not m-Carmichael.

To this end, let α be a generator of the cyclic group F×
pk
. Consider the polynomial

(X−α)(X−αp) . . . (X−αpk−1
) ∈ Fp[X], and let B ∈ GL(k,Fp) be its Frobenius companion

matrix. Then B is of order pk − 1, and the same is true for C = diag(B, I) ∈ GL(m,Fp).

Lift C to an element of Mat(m,Z). Then Cpk−1 ≡ I (mod p). By Lemma 6, we have

(Cpordp(n)−1
)p

k−1 ≡ I (mod pordp(n)). Moreover, since gcd(pordp(n), pk − 1) = 1, we see that

Cpordp(n)−1
mod pordp(n) is also of order pk − 1. Finally, by the Chinese remainder theorem,

consider A ∈ GL(m,Z/nZ) such that A ≡ Cpordp(n)−1
(mod pordp(n)) and, for example, A ≡

I (mod n

pordp(n) ). By construction, A is of order pk − 1, which finishes the proof.

4



Remark 9. Proposition 7 also follows easily from Theorem 8.

Moreover, applying Theorem 8 and Lemma 5, we get

Corollary 10. If n is an m-Carmichael number, and k ∈ N, then nk is also an m-Carmichael
number.

Finally, we present one necessary condition for a number to be m-Carmichael.

Proposition 11. Assume that n is an m-Carmichael number. Then n 6≡ 2 (mod 4).

Proof. Let n ∈ N be composite, n ≡ 2 (mod 4). ThenDm(n) is odd, and thus ord2(Km(n)) =
⌈log2 m⌉.

On the other hand, consider an odd p | n. Since Φ2k(p) = p2
k−1

+ 1 is even for k ≥ 1,
and 8 | Φ1(p)Φ2(p) = p2 − 1, we have ord2(Dm(p)) ≥ ⌊log2 m⌋ + 2 > ⌈log2 m⌉. Thus,
Dm(p) ∤ Km(n), and n is not m-Carmichael.

3 m-Carmichael numbers with prescribed prime fac-

tors

In Theorem 8, the divisibility condition for small values of m is transparent enough to find
some infinite families of m-Carmichael numbers (apart of prime powers).

Let us start with m = 2. Let d2(p, n) denote the condition D2(p) | K2(n), i.e., p
2 − 1 |

n(n2 − 1). We have

• d2(2, n) is equivalent to 3 | n(n2 − 1), which is satisfied for all n.

• d2(3, n) is equivalent to 8 | n(n2 − 1), which is satisfied if and only if n is odd or 8 | n.

• d2(5, n) is equivalent to 3 · 8 | n(n2 − 1), which is also satisfied if and only if n is odd
or 8 | n.

• d2(7, n) is equivalent to 3·16 | n(n2−1), which is satisfied if and only if n ≡ ±1 (mod 8)
or 16 | n.

• d2(11, n) is equivalent to 3 · 5 · 8 | n(n2 − 1), which is satisfied if and only if d2(5, n)
and 5 | n(n2 − 1) are satisfied; the latter is satisfied if and only if n ≡ 0,±1 (mod 5).

Using the above, the following propositions are proven by a direct application of Theorem
8.

Proposition 12. Let n ∈ N be a composite 7-smooth number which is not a prime power.
Then n is 2-Carmichael if and only if n belongs to one of the following families:

1. n = 2k · 3l · 5r, where k ≥ 3,
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2. n = 2k · 3l · 5r · 7s, where k ≥ 4, s ≥ 1,

3. n = 3l · 5r,

4. n = 3l · 5r · 7s, where l ≡ r (mod 2), s ≥ 1.

Proposition 13. Let n ∈ N be a composite 11-smooth number which is not 7-smooth and
not a prime power. Then n is 2-Carmichael if and only if n belongs to one of the following
families:

1. n = 2k · 3l · 5r · 11t, where k ≥ 3, r ≥ 1,

2. n = 2k · 3l · 5r · 7s · 11t, where k ≥ 4, r ≥ 1, s ≥ 1,

3. n = 2k · 3l · 11t, where k ≥ 3, k ≡ l (mod 2),

4. n = 2k · 3l · 7s · 11t, where k ≥ 4, s ≥ 1, k + l + s is even,

5. n = 3l · 5r · 11t, where r ≥ 1,

6. n = 3l · 5r · 7s · 11t, where r ≥ 1, s ≥ 1, l + r + t is even,

7. n = 3l · 11t, where l is even,

8. n = 3l · 7s · 11t, where s ≥ 1, l ≡ s ≡ t (mod 2).

We now consider m = 3 or m = 4. We restrict ourselves to composite numbers of the
form n = 2k3l.

Proposition 14. Let n = 2k3l, where k, l ≥ 1. Then n is 3-Carmichael if and only if k ≥ 2,
and (k, l) belongs to one of the following families:

1. k ≡ 0 (mod 12), l ≡ 0, 2, 3, 4 (mod 6),

2. k ≡ ±2 (mod 12), l ≡ ±4 (mod 6),

3. k ≡ ±4 (mod 12), l ≡ 0,±1, 2, 4 (mod 6),

4. k ≡ 6 (mod 12), l ≡ 0 (mod 3).

Proposition 15. Let n = 2k3l, where k, l ≥ 1. Then n is 4-Carmichael if and only if k ≥ 3,
and (k, l) belongs to one of the families 1) – 4) in Proposition 14 or to one of the following
families:

5. k ≡ ±1 (mod 12), l ≡ ±2 (mod 6),

6. k ≡ ±3 (mod 12), l ≡ 0 (mod 3),

7. k ≡ ±5 (mod 12), l ≡ ±4 (mod 6).
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Proof of Propositions 14 and 15. We have D3(2) = 3 · 7, D4(2) = 3 · 5 · 7, D3(3) = 23 · 13,
D4(3) = 24 · 5 · 13, ∇3(n) = 2, ∇4(n) = 2 · 3. Therefore, n is 3-Carmichael if and only if
K3(n) = 2n(n2 − 1)(n2 + n + 1) is divisible by 23, 3, 7, and 13, which is equivalent to the
conditions 4 | n (i.e., k ≥ 2), n ≡ ±1, 2, 4 (mod 7), n ≡ ±1, 3, 9 (mod 13). Similarly, n is 4-
Carmichael if and only if K4(n) = 6n(n2−1)(n2+n+1)(n2+1) is divisible by 24, 3, 5, 7, and
13, which is equivalent to 8 | n (i.e., k ≥ 3), n ≡ ±1, 2, 4 (mod 7), n ≡ ±1, 3, 9,±5 (mod 13).
Since |F×

7 | = 6, |F×
13| = 12, and 3 mod 13 is of order 3, we see that the conditions on n modulo

7 and 13 depend only on k mod 12, l mod 6. The corresponding values of k mod 12, l mod 6
are obtained by a direct calculation.

Now we describe the general pattern of the distribution of m-Carmichael numbers with
prescribed prime factors.

Let P be a finite nonempty subset of primes. Let Dm(P ) denote the least common
multiple of Dm(p) for all p ∈ P .

Let us say that n ∈ N is a P -number, if n is divisible precisely by the primes in P . By
Theorem 8, a P -number n is m-Carmichael if and only if Dm(P ) | Km(n).

Further, write Dm(P ) = D′
m(P )D′′

m(P ), where D′
m(P ) is a product of primes in P ,

and D′′
m(P ) is coprime to all p ∈ P . Then a P -number n is m-Carmichael if and only if

D′
m(P ) | Km(n) and D′′

m(P ) | Km(n).
First, notice that, since n | Km(n), ∇m(P ) := ∇m(n) depends only on P , and D′

m(P )
is coprime to Dm(n), it follows that the condition D′

m(P ) | Km(n) is satisfied if and only if
ordp n ≥ ordp D

′
m(P )− ordp ∇m(P ) for all primes p ∈ P .

Secondly, since a P -number n is, by construction, invertible modulo D′′
m(P ), we see

that the condition D′′
m(P ) | Km(n) depends only on the values of ordp n mod λ(D′′

m(P )) for
p ∈ P . Here λ is the Carmichael function, i.e., λ(D′′

m(P )) is the exponent of the group
(Z/D′′

m(P )Z)×. Moreover, if p ∈ P , let vm,P (p) denote the order of p mod D′′
m(P ) in the

group (Z/D′′
m(P )Z)×. Then the condition D′′

m(P ) | Km(n) depends only on the values of
ordp n mod vm,P (p) for p ∈ P .

Thus, we get the following

Theorem 16. For any p ∈ P , the set of P -numbers which are m-Carmichael is invariant
under multiplication by pvm,P (p).

Corollary 17. Assume that there exists a P -number which is m-Carmichael. Then there
are infinitely many of them.

Remark 18. Corollary 17 follows also from Corollary 10.

All propositions of this section can be viewed as examples of Theorem 16. For example, for
m = 3 and P = {2, 3} we haveD′

m(P ) = 23·3, D′′
m(P ) = 7·13, and λ(7·13) = lcm(6, 12) = 12,

vm,P (2) = 12, vm,P (3) = 6, which is in accordance with Proposition 14.

4 Concluding remarks

We list some natural questions that remain open.
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• For what m and P are there P -numbers which are m-Carmichael?

• Are there squarefree m-Carmichael numbers for m ≥ 3?

Remark 19. One can consider an analogous notion for other affine group schemes of finite
type defined over Z. Namely, if G is such a group scheme, KG(p) the exponent of the
group G(Fp), and KG(n) its reasonable extrapolation to all n ∈ N, then one can consider
G-Carmichael numbers, i.e., composite n ∈ N such that gKG(n) = 1 for all g ∈ G(Z/nZ).
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A Numerical experiments

We calculate, via brute force, all m-Carmichael numbers up to 105 for 2 ≤ m ≤ 10. Let us
call an m-Carmichael number nontrivial if it is not a prime power. There are 1330 nontrivial
2-Carmichael numbers, 44 nontrivial 3-Carmichael numbers, and 28 nontrivial 4-Carmichael
numbers on the researched interval. There are no nontrivial m-Carmichael numbers for
5 ≤ m ≤ 10 on the researched interval.

Among 16 Carmichael numbers less than 105, the following four, namely,

1729 = 7 · 13 · 19, 2465 = 5 · 17 · 29, 6601 = 7 · 23 · 41, 41041 = 7 · 11 · 13 · 41,

are 2-Carmichael. None of these Carmichael numbers are m-Carmichael for 3 ≤ m ≤ 10.
Moreover, none of m-Carmichael numbers for 3 ≤ m ≤ 10 on the researched interval are
squarefree.

There are 18 numbers on the researched interval, namely,

48 = 24 · 3, 144 = 24 · 32, 1296 = 24 · 34, 1728 = 26 · 33,
2304 = 28 · 32, 5760 = 27 · 32 · 5, 9216 = 210 · 32, 11664 = 24 · 36,
20736 = 28 · 34, 25600 = 210 · 52, 27000 = 23 · 33 · 53, 30720 = 211 · 3 · 5,
34992 = 24 · 37, 36864 = 212 · 32, 46656 = 26 · 36, 62208 = 28 · 35,
96768 = 29 · 33 · 7, 99225 = 34 · 52 · 72,

that are nontrivial m-Carmichael numbers for all m ∈ {2, 3, 4}, and one number, 22815 =
33 · 5 · 132, that is nontrivial 3-Carmichael and 4-Carmichael, but not 2-Carmichael.

Also, on the researched interval there are 19 numbers, namely,

160 = 25 · 5, 448 = 26 · 7, 704 = 26 · 11, 800 = 25 · 52,
1056 = 25 · 3 · 11, 2640 = 24 · 3 · 5 · 11, 3136 = 26 · 72, 5929 = 72 · 112,
7744 = 26 · 112, 18144 = 25 · 34 · 7, 20000 = 25 · 54, 21952 = 26 · 73,
28672 = 212 · 7, 29952 = 28 · 32 · 13, 31744 = 210 · 31, 34496 = 26 · 72 · 11,
39424 = 29 · 7 · 11, 45056 = 212 · 11, 85184 = 26 · 113,
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that are nontrivial 2- and 3-Carmichael, but not 4-Carmichael; 8 numbers, namely,

216 = 23 · 33, 1152 = 27 · 32, 2592 = 25 · 34, 4000 = 25 · 53,
5832 = 23 · 36, 13824 = 29 · 33, 28800 = 27 · 32 · 52, 73728 = 213 · 32,

that are nontrivial 2- and 4-Carmichael, but not 3-Carmichael; 6 numbers, namely,

324 = 22 · 34, 900 = 22 · 32 · 52, 1404 = 22 · 33 · 13,
39204 = 22 · 34 · 112, 74088 = 23 · 33 · 73, 74536 = 23 · 7 · 113,

that are nontrivial 3-Carmichael, but not 2- or 4-Carmichael. Finally, one number, 26112 =
29 · 3 · 17, is nontrivial 4-Carmichael, but not 2- or 3-Carmichael.

Below we list all nontrivial 2-Carmichael numbers up to 3000 that are not treated by
Propositions 12 and 13 (i.e., not 11-smooth).

104 = 23 · 13 171 = 32 · 19 195 = 3 · 5 · 13 273 = 3 · 7 · 13
351 = 33 · 13 435 = 3 · 5 · 29 455 = 5 · 7 · 13 609 = 3 · 7 · 29
615 = 3 · 5 · 41 624 = 24 · 3 · 13 665 = 5 · 7 · 19 715 = 5 · 11 · 13
736 = 25 · 23 759 = 3 · 11 · 23 832 = 26 · 13 855 = 32 · 5 · 19
903 = 3 · 7 · 43 1001 = 7 · 11 · 13 1015 = 5 · 7 · 29 1045 = 5 · 11 · 19
1071 = 32 · 7 · 17 1088 = 26 · 17 1183 = 7 · 132 1216 = 26 · 19
1265 = 5 · 11 · 23 1352 = 23 · 132 1377 = 34 · 17 1431 = 33 · 53
1456 = 24 · 7 · 13 1520 = 24 · 5 · 19 1539 = 34 · 19 1560 = 23 · 3 · 5 · 13
1595 = 5 · 11 · 29 1625 = 53 · 13 1729 = 7 · 13 · 19 1856 = 26 · 29
1881 = 32 · 11 · 19 1911 = 3 · 72 · 13 1984 = 26 · 31 2001 = 3 · 23 · 29
2009 = 72 · 41 2015 = 5 · 13 · 31 2080 = 25 · 5 · 13 2211 = 3 · 11 · 67
2255 = 5 · 11 · 41 2365 = 5 · 11 · 43 2375 = 53 · 19 2457 = 33 · 7 · 13
2465 = 5 · 17 · 29 2535 = 3 · 5 · 132 2565 = 33 · 5 · 19 2624 = 26 · 41
2639 = 7 · 13 · 29 2736 = 24 · 32 · 19 2808 = 23 · 33 · 13 2871 = 32 · 11 · 29
2912 = 25 · 7 · 13 2925 = 32 · 52 · 13

Also, we manage to compute a few larger m-Carmichael numbers for m ≥ 5. We consider
numbers of the form 2k3l for relatively small values of k and l and apply Theorem 8. For
instance, 222 · 32 is 2- (by Proposition 12), 3- (by Proposition 14), 4- (by Proposition 15),
5- and 6-Carmichael, but not 7- or 8-Carmichael. Similarly, 2286 · 336 is 2-, 6-, 7-, and
8-Carmichael, but not 3-, 4-, or 5-Carmichael.
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