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Abstract

We give two new explicit formulas for the even-indexed Bernoulli numbers in terms
of the Stirling numbers of the second kind.

1 Introduction

Definition 1. The Bernoulli numbers B, can be defined by the following generating func-

tion:
t B, t"
et —1 Z n! "’

where [t| < 2.

Definition 2. The Stirling number of the second kind, denoted by S(n,m), is the number
of ways of partitioning a set of n elements into m nonempty sets.

There are many explicit formulas known for the Bernoulli numbers [1, 9, 4, 5, 6]. For
example, all of the formulas below express the Bernoulli numbers explicitly in terms of the
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Stirling numbers of the second kind:
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where (E,) denotes the Fuler numbers defined by the following generating function:
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In the following section, we derive two new explicit formulas for the even-indexed Bernoulli
numbers in terms of the Stirling numbers of the second kind.

2 Main results

Our main results are the following.

Theorem 3. For all positive integers r we have
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where S(2r — 1, k) denotes the Stirling numbers of the second kind, and
2" =z +1)(z+2) - (x+n—1)
denotes the rising factorial.

To prove the above result, we first recall the following fact

Theorem 4. [10] The nth Bernoulli polynomial, B,(t), defined by

B,(t) = Z:; (?) Byt

takes the following ‘special’ values at certain rational numbers with small denominators

B,.(1) = B,(0) = B, forn > 1,
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Remark 5. Granville and Sun [2] noted that, “It is not known if B, (a/q) has as simple a
‘closed form’ for any other rational a/q with 1 < a < ¢ —1 and (a,q) = 1, though this has
long been considered an interesting question.”

Our proof also requires the following result.

Lemma 6. For all0 <t <1 andl € N we have
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where Li_j(—x) is the negative polylogarithm function, and B,(1 —t) denotes the Bernoulli
polynomial.

Proof. Consider the following generating function [8]
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where S,(n) =Y ;_, k" forn > 1, and S,(0) = 0.
We use Ramanujan’s master theorem (RMT) from [3] that states that
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where the integral is convergent for 0 < R(¢) < 1, and after certain conditions are satisfied

by ¢.
Using RMT with Eq. (8) gives us Eq. (7). O

Proof of Theorem 3. Substituting ¢t = 2/3 and [ = 2r — 1 in Eq. (7) gives us
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We use the following representation from the note [7]
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where I'(+) denotes the Gamma function. Recalling Eq. (5) we have
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Now we can readily conclude Eq. (2).
To prove Eq. (3) we substitute t = 5/6 and [ = 2r — 1 in the Eq. (7) to get
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The representation (9) also lets us to conclude that
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Recalling Eq. (6) we have
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Now we can readily conclude Eq. (3). O
Remark 7. Substituting t = 3/4 and [ = 2r — 1 in Eq. (7), and using Eq. (4) we can obtain
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The above is just a special case of Eq. (1) which was obtained in [6].
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